FAN54005UCX [ONSEMI]

电池充电控制器,开关,200mA - 1.45 A,带 USB-OTG 升压稳压器;
FAN54005UCX
型号: FAN54005UCX
厂家: ONSEMI    ONSEMI
描述:

电池充电控制器,开关,200mA - 1.45 A,带 USB-OTG 升压稳压器

电池 开关 控制器 稳压器
文件: 总32页 (文件大小:4712K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
USB-Compliant Single-Cell  
Li-Ion Switching Charger  
with USB-OTG Boost for  
200 mA to 1.45 A Systems  
FAN54005  
Description  
The FAN54005 is a highly integrated switchmode  
charger, configurable for 200 mA to 1.45 A systems using  
a single external resistor.  
www.onsemi.com  
The charging parameters and operating modes are program−  
2
mable through an I C Interface that operates up to 3.4 Mbps.  
1
The charger and boost regulator circuits switch at 3 MHz  
to minimize the size of external passive components.  
The FAN54005 provides battery charging in three phases:  
conditioning, constant current and constant voltage.  
To ensure USB compliance and minimize charging time, the  
WLCSP  
20 BALL  
CASE 567SL  
2
input current limit can be changed through the I C interface  
Charge Parameters Programmable through HighSpeed  
by the host processor. Charge termination is determined by  
a programmable minimum current level. A safety timer with  
2
I C Interface (3.4 Mb/s) with Fast Mode Plus  
Compatibility  
Input Current  
2
reset control provides a safety backup for the I C host.  
2
Charge status is reported to the host through the I C port.  
FastCharge / Termination Current  
Charger Voltage  
The integrated circuit (IC) automatically restarts the charge  
cycle when the battery falls below an internal threshold. If  
the input source is removed, the IC enters a highimpedance  
mode, preventing leakage from the battery to the input.  
Charge current is reduced when the die temperature reaches  
120°C, protecting the device and PCB from damage.  
The FAN54005 can operate as a boost regulator on  
command from the system. The boost regulator includes a  
softstart that limits inrush current from the battery and uses  
the same external components used for charging the battery.  
Termination Enable  
3 MHz Synchronous Buck PWM Controller with Wide  
Duty Cycle Range  
Small Footprint 1 mH External Inductor  
Safety Timer with Reset Control  
1.8 V Regulated Output from VBUS for Auxiliary Circuits  
Dynamic Input Voltage Control Automatically Reduces  
Charging Current with Weak Input Sources  
Low Reverse Leakage to Prevent Battery Drain to VBUS  
5 V, 500 mA Boost Mode for USB OTG for 3.0 V to  
4.5 V Battery Input  
Features  
Fully Integrated, HighEfficiency Charger for  
SingleCell LiIon and LiPolymer Battery Packs  
Charge Voltage Accuracy: 0.5% at 25°C  
Charge Voltage Accuracy: 1% from 0 to 125°C  
Available in a 1.96 x 1.87 mm, 20bump, 0.4 mm Pitch  
WLCSP Package  
Supports 200 mA to 1.45 A Systems  
95% Efficiency for 200 mAHour Batteries  
94% Efficiency for 500 mAHour Batteries  
90% Efficiency for 1.0 AHour Batteries  
Applications  
Wireless Speakers, Headphones  
Cell Phones, Gaming Devices  
Toys, Drones, Digital Cameras  
IoT Devices  
5% Input Current Regulation Accuracy  
5% Charge Current Regulation Accuracy  
20 V Absolute Maximum Input Voltage  
6 V Maximum Input Operating Voltage  
ECigs, Vapes  
ORDERING INFORMATION  
Part Number  
Temperature Range  
Package  
PN Bits: IC_INFO[4:2]  
Packing  
FAN54005UCX  
40°C to +85°C  
20Bump, WaferLevel ChipScale Package  
(WLCSP), 0.4 mm Pitch, 1.96 x 1.87 mm  
101  
Tape and Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
November, 2019 Rev. 4  
FAN54005/D  
 
FAN54005  
L1  
SW  
VBUS  
CBUS  
1mH  
COUT  
1mF  
0.1mF  
PMID  
CMID  
CSIN  
4.7mF  
SDA  
RSNS  
FAN54005  
SCL  
VBAT  
Battery  
DISABLE  
OTG/USB#  
STAT  
+
CBAT  
VREG  
CREG  
SYSTEM  
LOAD  
10 mF  
1mF  
Figure 1. Typical Application  
Block Diagram  
PMID  
Q1A  
ON  
Q1B  
OFF  
ON  
VREG  
1.8V / PMID REG  
> V  
BAT  
BAT  
CREG  
1mF  
PMID  
PMID  
< V  
OFF  
Q1  
Q3  
CMID  
Q1A  
Q1B  
4.7mF  
VBUS  
CHARGE  
PUMP  
CBUS  
1mF  
L1  
1mH  
SW  
Q2  
PWM  
MODULATOR  
I_IN  
CONTROL  
VBUS  
OVP  
PGND  
CSIN  
COUT  
0.1mF  
RSNS  
DAC  
VREF  
+
CSYS_DISTRIBUTED  
47mF  
CBAT  
10 mF  
SDA  
SCL  
PMID  
Battery  
I2C  
INTERFACE  
STAT  
30 mA  
SYSTEM  
LOAD  
OSC  
DISABLE  
OTG  
LOGIC  
AND  
CONTROL  
Figure 2. IC and System Block Diagram  
Table 1. RECOMMENDED EXTERNAL COMPONENTS  
Component  
Description  
Vendor  
Parameter  
Typ  
1.0  
Unit  
mH  
L1  
1 mH 20%, 4.0 A, 33 mW, 2016  
10 mF, 20%, 6.3 V, X5R, 0603  
Semco CIGT201610EH1R0M  
L
C
Murata: GRM188R60J106M  
TDK: C1608X5R0J106M  
C
10  
4.7  
1.0  
1.0  
0.1  
47  
mF  
BAT  
C
4.7 mF, 10%, 10 V, X5R, 0603  
1.0 mF, 10%, 25 V, X5R, 0603  
1.0 mF, 10%, 10 V, X5R, 0402  
0.1 mF, 10%, 16 V, X7R, 0402  
n/a  
Murata: GRM188R61A475K  
TDK: C1608X5R1A475K  
C (Note 1)  
mF  
mF  
mF  
mF  
mF  
MID  
C
Murata: GRM188R61E105K  
TDK: C1608X5R1E105M  
C
C
C
C
BUS  
REG  
OUT  
C
C
Murata: GRM155R61A105K  
TDK: C1005X5R1A105K  
Murata: GRM155R71C104K  
TDK: C1005X7R1C104K  
C
(Note 2)  
n/a  
SYS_DISTRIBUTED  
1. A 10 V rating is sufficient for CMID because PMID is protected from overvoltage surges on VBUS by Q3 (Figure 2).  
2. A minimum 47 mF of distributed capacitance on SYS is required for proper operation of the FAN54005.  
www.onsemi.com  
2
 
FAN54005  
Pin Configuration  
A1  
B1  
C1  
D1  
E1  
A2  
B2  
C2  
D2  
E2  
A3  
B3  
C3  
D3  
E3  
A4  
A4  
B4  
C4  
D4  
E4  
A3  
B3  
C3  
D3  
E3  
A2  
B2  
C2  
D2  
E2  
A1  
B1  
C1  
D1  
E1  
B4  
C4  
D4  
E4  
Top View  
Bottom View  
Figure 3. WLCSP20 Pin Assignments  
Table 2. PIN DEFINITIONS  
Pin #  
A1, A2  
A3  
Name  
VBUS  
NC  
Description  
Charger Input Voltage and USBOTG output voltage. Bypass with a 1 mF capacitor to PGND.  
No Connect. No external connection is made between this pin and the IC’s internal circuitry.  
2
A4  
SCL  
I C Interface Serial Clock. This pin should not be left floating.  
B1B3  
PMID  
Power Input Voltage. Power input to the charger regulator, bypass point for the input current sense, and  
highvoltage input switch. Bypass with a minimum of 4.7 mF, 6.3 V capacitor to PGND.  
2
B4  
SDA  
I C Interface Serial Data. This pin should not be left floating.  
C1C3  
C4  
SW  
Switching Node. Connect to output inductor.  
STAT  
PGND  
Status. Opendrain output indicating charge status. The IC pulls this pin LOW when charging.  
D1D3  
Power Ground. Power return for gate drive and power transistors. The connection from this pin to the bottom  
of C  
should be as short as possible.  
MID  
D4  
E1  
E2  
E3  
E4  
OTG  
CSIN  
OnTheGo. On VBUS PowerOn Reset (POR), this pin sets the input current limit for t  
charging. Also,  
15MIN  
the OTG pin enables the boost regulator in conjunction with OTG_EN and OTG_PL bits (See Table 21)  
CurrentSense Input. Connect to the sense resistor in series with the battery. The IC uses this node to  
sense current into the battery. Bypass this pin close to R  
with a 0.1 mF capacitor to PGND.  
SNS  
2
DISABLE  
VREG  
VBAT  
Charge Disable. If this pin is HIGH, charging is disabled. When LOW, charging is controlled by the I C regis-  
ters. When this pin is HIGH, the 15minute timer is reset. This pin does not affect the 32second timer.  
Regulator Output. Connect to a 1 mF capacitor to PGND. This pin provides regulated 1.8 V and can supply  
up to 2 mA of DC load current.  
Battery Voltage. Connect to the positive (+) terminal of the battery pack and close to R  
.
SNS  
www.onsemi.com  
3
FAN54005  
Table 3. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Continuous  
Pulsed, 100 ms Maximum NonRepetitive  
Min  
0.7  
1.0  
0.3  
Max  
Unit  
V
BUS  
VBUS Voltage  
20.0  
V
V
STAT Voltage  
PMID Voltage  
16.0  
V
V
STAT  
V
I
7.0  
SW, CSIN, VBAT, DISABLE Voltage  
Voltage on Other Pins  
0.3 (Note 3)  
0.3  
7.0  
V
O
6.5 (Note 4)  
V
dV  
/ dt Maximum V  
Slope above 5.5 V when Boost or Charger are Active  
4
4
2
V/ms  
V/ms  
BUS  
BUS  
dV  
/ dt Negative VBUS Slew Rate during VBUS Short Circuit,  
T
60°C  
60°C  
BUS  
A
C
4.7 mF (See VBUS Short While Charging)  
MID  
T
A
Human Body Model  
2000  
1000  
ESD  
Electrostatic Discharge Protection Level  
V
per JESD22A114  
Charged Device Model  
per JESD22C101  
T
Junction Temperature  
40  
65  
+150  
+150  
+260  
°C  
°C  
°C  
J
T
Storage Temperature  
STG  
T
L
Lead Soldering Temperature, 10 Seconds  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
3. SW only: Switching transients of 0.7 V, minimum, with duration <20 nsec, are acceptable.  
4. Lesser of 6.5 V or V + 0.3 V  
I
Table 4. RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Max  
6
Unit  
V
V
Supply Voltage  
4
BUS  
BAT(MAX)  
V
Maximum Battery Voltage when Boost enabled  
Ambient Temperature  
4.5  
V
T
A
30  
30  
+85  
+120  
°C  
°C  
T
J
Junction Temperature (See Thermal Regulation and Protection section)  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
Table 5. THERMAL PROPERTIES  
Symbol  
Parameter  
Typical  
60  
Unit  
°C/W  
°C/W  
q
q
JunctiontoAmbient Thermal Resistance  
JunctiontoPCB Thermal Resistance  
JA  
JB  
20  
NOTE: Junctiontoambient thermal resistance is a function of application and board layout. This data is measured with fourlayer 2s2p  
boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature T at a  
J(max)  
given ambient temperature T . For measured data, see Thermal Regulation and Protection.  
A
www.onsemi.com  
4
 
FAN54005  
Table 6. ELECTRICAL SPECIFICATIONS  
Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for T and T ;  
J
A
V
BUS  
= 5.0 V; HZ_MODE; OPA_MODE = 0; (Charge Mode); SCL, SDA, OTG = 0 or 1.8 V; and typical values are for T = 25°C.  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLIES  
I
VBUS Current  
V
V
> V  
> V  
, PWM Switching  
; PWM Enabled,  
10  
mA  
mA  
VBUS  
BUS  
IN(MIN)1  
2.5  
BUS  
IN(MIN)1  
Not Switching (Battery OVP Condition);  
I_IN Setting = 100 mA  
0°C < T < 85°C, HZ_MODE = 1, 32S Mode  
63  
90  
mA  
mA  
J
I
VBAT to VBUS Leakage Current  
0°C < T < 85°C, HZ_MODE = 1,  
0.2  
5.0  
LKG  
J
V
BAT  
= 4.2 V, V  
= 0 V  
BUS  
I
Battery Discharge Current in High−  
Impedance Mode  
0°C < T < 85°C, HZ_MODE = 1,  
BAT  
10  
10  
mA  
BAT  
J
V
= 4.2 V  
DISABLE = 1, 0°C < T < 85°C,  
J
V
BAT  
= 4.2 V  
CHARGER VOLTAGE REGULATION  
V
OREG  
Charge Voltage Range  
3.5  
0.5%  
1%  
4.4  
V
Charge Voltage Accuracy  
T = 25°C  
+0.5%  
+1%  
A
T = 0 to 125°C  
J
CHARGING CURRENT REGULATION  
I
Output Charge Current Range  
V
< V  
SNS  
< V  
,
200  
1450  
mA  
OCHARGE  
SHORT  
BAT  
OREG  
68 < R  
< 180 mW  
Charge Current Accuracy Across  
SNS  
20 mV [V  
– V  
] 40 mV  
92  
94  
97  
97  
102  
100  
%
%
CSIN  
BAT  
R
[V  
CSIN  
– V  
] > 40 mV  
BAT  
WEAK BATTERY DETECTION  
V
LOWV  
Weak Battery Threshold Range  
Weak Battery Threshold Accuracy  
Weak Battery Deglitch Time  
3.4  
3.7  
+5  
V
%
5  
Rising Voltage  
30  
ms  
LOGIC LEVELS: DISABLE, SDA, SCL, OTG  
V
HighLevel Input Voltage  
LowLevel Input Voltage  
Input Bias Current  
1.05  
V
V
IH  
V
0.4  
IL  
I
IN  
Input Tied to GND or V  
0.01  
1.00  
mA  
BUS  
CHARGE TERMINATION DETECTION  
I
Termination Current Range  
V
> V  
– V ,  
RCH  
20  
400  
mA  
%
TERM  
BAT  
OREG  
68 < R  
< 180 mW  
SNS  
– V  
– V  
Termination Current Accuracy  
[V  
[V  
] from 3 mV to 20 mV  
] from 20 mV to 40 mV  
25  
5  
+25  
+5  
CSIN  
CSIN  
BAT  
BAT  
Termination Current Deglitch Time  
30  
ms  
V
1.8 V LINEAR REGULATOR  
1.8 V Regulator Output  
INPUT POWER SOURCE DETECTION  
V
REG  
I
from 0 to 2 mA  
1.7  
1.8  
1.9  
REG  
V
VBUS Input Voltage Rising  
Minimum VBUS During Charge  
VBUS Validation Time  
To Initiate and Pass VBUS Validation  
During Charging  
4.29  
3.71  
30  
4.42  
3.94  
V
V
IN(MIN)1  
IN(MIN)2  
V
t
ms  
VBUS_VALID  
DYNAMIC INPUT VOLTAGE CONTROL (V  
)
BUS  
V
SP  
DIVC Accuracy  
3  
+3  
%
www.onsemi.com  
5
 
FAN54005  
Table 6. ELECTRICAL SPECIFICATIONS  
Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for T and T ;  
J
A
V
BUS  
= 5.0 V; HZ_MODE; OPA_MODE = 0; (Charge Mode); SCL, SDA, OTG = 0 or 1.8 V; and typical values are for T = 25°C.  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CURRENT LIMIT  
I
Input Current Limit Threshold  
I
I
Set to 100 mA  
88  
93  
98  
mA  
INLIM  
INLIM  
Set to 500 mA  
450  
475  
500  
INLIM  
BATTERY RECHARGE THRESHOLD  
V
RCH  
Recharge Threshold  
Deglitch Time  
Below V  
100  
120  
130  
150  
mV  
ms  
OREG  
V
BAT  
Falling Below V  
Threshold  
RCH  
STAT OUTPUT  
V
STAT Output Low  
I
= 10 mA  
0.4  
1
V
STAT(OL)  
STAT(OH)  
STAT  
I
STAT High Leakage Current  
V
= 5 V  
mA  
STAT  
BATTERY DETECTION  
I
Battery Detection Current before  
Begins after Termination Detected and  
V V –V  
BAT  
0.80  
mA  
ms  
DETECT  
Charge Done (Sink Current) (Note 5)  
OREG  
RCH  
t
Battery Detection Time  
262  
DETECT  
SLEEP COMPARATOR  
SleepMode Entry Threshold,  
V
SLP  
2.3 V V  
V , V Falling  
OREG BUS  
0
0.04  
30  
0.10  
V
BAT  
V
– V  
BUS  
BAT  
t
Deglitch Time for VBUS Rising  
Above V by V  
Rising Voltage  
ms  
SLP_EXIT  
BAT  
SLP  
POWER SWITCHES (See Figure 2)  
R
Q3 On Resistance (VBUS to PMID)  
Q1 On Resistance (PMID to SW)  
Q2 On Resistance (SW to GND)  
I
= 500 mA  
180  
130  
150  
250  
225  
225  
mW  
DS(ON)  
INLIM  
CHARGER PWM MODULATOR  
f
Oscillator Frequency  
Maximum Duty Cycle  
Minimum Duty Cycle  
2.7  
3.0  
3.3  
MHz  
%
SW  
D
100  
MAX  
D
0
%
MIN  
I
Synchronous to NonSynchronous  
Current CutOff Threshold (Note 6)  
LowSide MOSFET (Q2) CyclebyCycle  
Current Limit  
140  
mA  
SYNC  
BOOST MODE OPERATION (OPA_MODE = 1, HZ_MODE = 0)  
V
Boost Output Voltage at VBUS  
2.5 V < V  
< 4.5 V, I  
< 4.5 V, I  
from 0 to 200 mA  
from 0 to 500 mA  
4.80  
4.77  
5.07  
5.07  
140  
5.17  
5.17  
300  
V
BOOST  
BAT  
BAT  
LOAD  
3.0 V < V  
LOAD  
I
Boost Mode Quiescent Current  
Q2 Peak Current Limit  
PFM Mode, V  
= 3.6 V, I = 0  
OUT  
mA  
mA  
V
BAT(BOOST)  
BAT  
I
1440  
1700  
2.30  
2.50  
1960  
LIMPK(BST)  
UVLO  
Minimum Battery Voltage for Boost  
Operation  
While Boost Active  
BST  
To Start Boost Regulator  
2.70  
VBUS LOAD RESISTANCE  
VBUS to PGND Resistance  
R
Normal Operation  
Charger Validation  
1500  
100  
kW  
VBUS  
W
PROTECTION AND TIMERS  
VBUS  
VBUS OverVoltage Shutdown  
V
V
Rising  
Falling  
6.09  
6.29  
100  
6.49  
V
OVP  
BUS  
Hysteresis  
mV  
BUS  
www.onsemi.com  
6
FAN54005  
Table 6. ELECTRICAL SPECIFICATIONS  
Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for T and T ;  
J
A
V
BUS  
= 5.0 V; HZ_MODE; OPA_MODE = 0; (Charge Mode); SCL, SDA, OTG = 0 or 1.8 V; and typical values are for T = 25°C.  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PROTECTION AND TIMERS  
I
Q1 CyclebyCycle Peak Current  
Limit  
Charge Mode  
2.3  
A
LIMPK(CHG)  
V
Battery ShortCircuit Threshold  
Hysteresis  
V
V
V
Rising  
Falling  
1.95  
20  
2.00  
100  
30  
2.05  
40  
V
SHORT  
BAT  
BAT  
BAT  
mV  
mA  
°C  
I
Linear Charging Current  
< V  
SHORT  
SHORT  
T
Thermal Shutdown Threshold  
(Note 7)  
T Rising  
J
145  
SHUTDWN  
Hysteresis (Note 7)  
T Falling  
J
10  
T
CF  
Thermal Regulation Threshold  
(Note 7)  
Charge Current Reduction Begins  
120  
°C  
t
Detection Interval  
2.1  
s
s
INT  
t
32Second Timer (Note 8)  
Charger Enabled  
Charger Disabled  
15Minute Mode  
Charger Inactive  
20.5  
18.0  
12.0  
25  
25.2  
25.2  
13.5  
28.0  
34.0  
15.0  
25  
32S  
t
15Minute Timer  
min  
%
15MIN  
Dt  
LowFrequency Timer Accuracy  
LF  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Negative current is current flowing from the battery to GND (discharging the battery).  
6. Q2 always turns on for 60 ns, then turns off if current is below I  
7. Guaranteed by design; not tested in production.  
.
SYNC  
8. This tolerance (%) applies to all timers on the IC, including softstart and deglitching timers.  
Table 7. I2C TIMING SPECIFICATIONS Guaranteed by design, V  
2.5 V if valid VBUS not present.  
BAT  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
100  
Unit  
f
SCL Clock Frequency  
Standard Mode  
Fast Mode  
kHz  
SCL  
400  
HighSpeed Mode, C 100 pF  
3400  
1700  
B
HighSpeed Mode, C 400 pF  
B
t
BusFree Time between STOP and Standard Mode  
4.7  
1.3  
4
ms  
BUF  
START Conditions  
Fast Mode  
t
START or Repeated START Hold  
Time  
Standard Mode  
Fast Mode  
ms  
ns  
ns  
ms  
ms  
ns  
ns  
ms  
ns  
ns  
ns  
ms  
ns  
ns  
HD;STA  
600  
160  
4.7  
1.3  
160  
320  
4
HighSpeed Mode  
Standard Mode  
Fast Mode  
t
SCL LOW Period  
LOW  
HighSpeed Mode, C 100 pF  
B
HighSpeed Mode, C 400 pF  
B
t
SCL HIGH Period  
Standard Mode  
Fast Mode  
HIGH  
600  
60  
HighSpeed Mode, C 100 pF  
B
HighSpeed Mode, C 400 pF  
120  
4.7  
600  
160  
B
t
Repeated START Setup Time  
Standard Mode  
Fast Mode  
SU;STA  
HighSpeed Mode  
www.onsemi.com  
7
 
FAN54005  
Table 7. I2C TIMING SPECIFICATIONS Guaranteed by design, V  
2.5 V if valid VBUS not present.  
BAT  
Symbol  
Parameter  
Data Setup Time  
Conditions  
Min  
Typ  
250  
100  
10  
Max  
Unit  
t
Standard Mode  
Fast Mode  
ns  
SU;DAT  
HighSpeed Mode  
Standard Mode  
Fast Mode  
t
Data Hold Time  
SCL Rise Time  
SCL Fall Time  
0
0
0
0
3.45  
900  
70  
ms  
ns  
ns  
ns  
ns  
HD;DAT  
HighSpeed Mode, C 100 pF  
B
HighSpeed Mode, C 400 pF  
150  
1000  
300  
80  
B
t
Standard Mode  
Fast Mode  
20+0.1C  
RCL  
B
20+0.1C  
B
HighSpeed Mode, C 100 pF  
10  
B
HighSpeed Mode, C 400 pF  
20  
160  
300  
300  
40  
B
t
Standard Mode  
Fast Mode  
20+0.1C  
20+0.1C  
ns  
ns  
ns  
FCL  
B
B
HighSpeed Mode, C 100 pF  
10  
B
HighSpeed Mode, C 400 pF  
20  
80  
B
t
SDA Rise Time  
Rise Time of SCL after a Repeated  
START Condition and after ACK Bit  
Standard Mode  
Fast Mode  
20+0.1C  
20+0.1C  
1000  
300  
80  
RDA  
B
t
RCL1  
B
HighSpeed Mode, C 100 pF  
10  
B
HighSpeed Mode, C 400 pF  
20  
160  
300  
300  
80  
B
t
SDA Fall Time  
Standard Mode  
Fast Mode  
20+0.1C  
20+0.1C  
FDA  
B
B
HighSpeed Mode, C 100 pF  
10  
B
HighSpeed Mode, C 400 pF  
20  
4
160  
B
t
Stop Condition Setup Time  
Standard Mode  
Fast Mode  
ms  
ns  
ns  
pF  
SU;STO  
600  
160  
HighSpeed Mode  
C
Capacitive Load for SDA, SCL  
400  
B
www.onsemi.com  
8
FAN54005  
Timing Diagrams  
tF  
tSU;STA  
tBUF  
SDA  
SCL  
tR  
TSU;DAT  
tHD;STO  
tHIGH  
tHD;DAT  
tLOW  
tHD;STA  
tHD;STA  
REPEATED  
START  
START  
STOP  
START  
Figure 4. I2C Interface Timing for Fast and Slow Modes  
REPEATED  
START  
STOP  
tFDA  
tRDA  
tSU;DAT  
SDAH  
tSU;STA  
tRCL1  
tFCL  
tHIGH  
tHD;DAT  
note A  
tRCL  
tSU;STO  
SCLH  
tLOW  
tHD;STA  
REPEATED  
START  
= MCS Current Source Pullup  
= RP Resistor Pullup  
Note A: First rising edge of SCLH after Repeated Start and after each ACK bit.  
Figure 5. I2C Interface Timing for HighSpeed Mode  
www.onsemi.com  
9
FAN54005  
Charge Mode Typical Characteristics  
Unless otherwise specified, circuit of Figure 1, R  
= 68 mW, V  
= 4.2 V, V  
= 5.0 V, and T = 25°C.  
BUS A  
SNS  
OREG  
180  
160  
140  
120  
100  
80  
900  
800  
700  
600  
500  
400  
300  
5.5 VBUS  
5.5 VBUS  
5.0 VBUS  
4.7 VBUS  
5.0 VBUS  
4.7 VBUS  
60  
2.5  
3.0  
3.5  
4.0  
4.5  
2.5  
3.0  
3.5  
Battery Voltage, VBAT (V)  
4.0  
4.5  
Battery Voltage, VBAT (V)  
Figure 6. Battery Charge Current vs. VBUS with  
INLIM=100 mA, VOREG=4.35V  
Figure 7. Battery Charge Current vs. VBUS with  
INLIM=500 mA, VOREG=4.35V  
I
I
97%  
94%  
91%  
88%  
85%  
82%  
94%  
4.3 VBAT, 5.0 VBUS  
3.8 VBAT, 5.0 VBUS  
4.3 VBAT, 5.5 VBUS  
3.8 VBAT, 5.5 VBUS  
92%  
90%  
88%  
86%  
84%  
4.7 VBUS  
5.0 VBUS  
5.5 VBUS  
100  
300  
500  
700  
900  
1100  
1300  
1500  
2.5  
3.0  
3.5  
4.0  
4.5  
Battery Charge Current (mA)  
Battery Voltage, VBAT (V)  
Figure 8. Charger Efficiency, No  
INLIM,IOCHARGE=1450 mA  
Figure 9. Charger Efficiency vs. VBUS  
INLIM=500 mA, VOREG=4.35  
,
I
I
Figure 10. AutoCharge Startup at VBUS Plugin,  
Figure 11. AutoCharge Startup at VBUS Plugin,  
OTG=0, VBAT=3.4 V  
OTG=1, VBAT=3.4 V  
www.onsemi.com  
10  
FAN54005  
Charge Mode Typical Characteristics  
Unless otherwise specified, circuit of Figure 1, R  
= 68 mW, V  
= 4.2 V, V  
= 5.0 V, and T = 25°C.  
BUS A  
SNS  
OREG  
Figure 12. AutoCharge Startup with 300 mA  
Limited Charger / Adaptor, OTG=1, VBAT=3.4 V  
Figure 13. Charger Startup with HZ_MODE Bit  
Reset, IINLIM=500 mA, IOCHARGE=1050 mA,  
V
OREG=4.2 V, VBAT=3.6 V  
Figure 14. Battery Removal / Insertion During  
Charging, VBAT=3.9 V, IOCHARGE=1050 mA, No  
Figure 15. Battery Removal / Insertion During  
Charging, VBAT=3.9 V, IOCHARGE=1050 mA, No  
IINLIM, TE=0  
IINLIM, TE=1  
250  
200  
150  
100  
50  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
30C  
+25C  
+85C  
30C, 5.0 VBUS  
+25C, 5.0 VBUS  
+85C, 5.0 VBUS  
0
0
1
2
3
4
5
4.0  
4.5  
5.0  
5.5  
6.0  
1.8V Regulator Load Current (mA)  
Input Voltage, VBUS (V)  
Figure 16. VBUS Current in HighImpedance Mode  
Figure 17. VREG 1.8 V Output Regulation  
with Battery Open  
www.onsemi.com  
11  
FAN54005  
Charge Mode Typical Characteristics  
Unless otherwise specified, circuit of Figure 1, R  
= 68 mW, V  
= 4.2 V, V  
= 5.0 V, and T = 25°C.  
BUS A  
SNS  
OREG  
10  
8
6
4
2
30C  
+25C  
+85C  
0
2.5  
3.0  
3.5  
Battery Voltage, VBAT (V)  
4.0  
4.5  
Figure 18. No Battery, TE=0, VBUS Power Up  
Figure 19. Sleep Mode Battery Discharge Current,  
SDA=SCL=0 V, VBUS Open  
10  
8
VBUS open,  
SDA=SCL=0V  
VBUS open,  
SDA=SCL=1.8V  
VBUS=5.0V,  
SDA=SCL=0V,  
DIS or HZ=1  
6
4
2
0
2.5  
3.0  
3.5  
4.0  
4.5  
Battery Voltage, VBAT (V)  
Figure 20. Battery Discharge Current vs. Mode  
www.onsemi.com  
12  
FAN54005  
Boost Mode Typical Characteristics  
Unless otherwise specified, circuit of Figure 1, R  
= 68 mW, V = 3.6 V, and T = 25°C.  
BAT A  
SNS  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
30C, 3.6VBAT  
+25C, 3.6VBAT  
+85C, 3.6VBAT  
3.0 VBAT  
3.6 VBAT  
4.2 VBAT  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
VBUSLoad Current (mA)  
VBUSLoad Current (mA)  
Figure 21. Efficiency vs. VBAT  
Figure 22. Efficiency OverTemperature  
5.15  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
3.0 VBAT  
30C, 3.6VBAT  
3.6 VBAT  
4.2 VBAT  
+25C, 3.6VBAT  
+85C, 3.6VBAT  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
VBUSLoad Current (mA)  
VBUSLoad Current (mA)  
Figure 23. Output Regulation vs. VBAT  
Figure 24. Output Regulation OverTemperature  
300  
250  
200  
150  
100  
50  
30C  
+25C  
+85C  
2.5  
3.0  
3.5  
4.0  
4.5  
Battery Voltage, VBAT (V)  
Figure 25. Quiescent Current  
www.onsemi.com  
13  
FAN54005  
Boost Mode Typical Characteristics  
Unless otherwise specified, circuit of Figure 1, R  
= 68 mW, V = 3.6 V, and T = 25°C.  
BAT A  
SNS  
Figure 26. Boost PWM Waveform  
Figure 27. Boost PFM Waveform  
50  
50  
40  
30  
20  
10  
0
30C, 3.6VBAT  
3.0 VBAT  
3.6 VBAT  
4.2 VBAT  
+25C, 3.6VBAT  
+85C, 3.6VBAT  
40  
30  
20  
10  
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
VBUSLoad Current (mA)  
VBUSLoad Current (mA)  
Figure 28. Output Ripple vs. VBAT  
Figure 29. Output Ripple vs. Temperature  
Figure 30. Startup, 3.6 VBAT, 44 W Load, Additional  
10 mF, X5R Across VBUS  
Figure 31. VBUS Fault Response, 3.6 VBAT  
www.onsemi.com  
14  
FAN54005  
Boost Mode Typical Characteristics  
Unless otherwise specified, circuit of Figure 1, R  
= 68 mW, V = 3.6 V, and T = 25°C.  
BAT A  
SNS  
Figure 32. Load Transient, 51555 mA, tR=tF=100 ns  
Figure 33. Load Transient, 52555 mA, tR=tF=100 ns  
www.onsemi.com  
15  
 
FAN54005  
Circuit Description / Overview  
Battery Charging Curve  
If the battery voltage is below V  
source precharges the battery until V  
When charging batteries with a currentlimited input source,  
such as USB, a switching charger’s high efficiency over a  
wide range of output voltages minimizes charging time.  
, a linear current  
SHORT  
reaches V  
.
BAT  
SHORT  
The PWM charging circuit is then started and the battery is  
charged with a constant current if sufficient input power is  
available. The current slew rate is limited to prevent  
overshoot.  
The FAN54005 combines  
synchronous buck regulator for charging with  
a
highly integrated  
a
synchronous boost regulator, which can supply 5 V to USB  
OnTheGo (OTG) peripherals. The FAN54005 employs  
synchronous rectification for both the charger and boost  
regulators to maintain high efficiency over a wide range of  
battery voltages and charge states.  
During the current regulation phase of charging, I  
or  
INLIM  
the programmed charging current limits the amount of  
current available to charge the battery and power the system.  
The effect of I  
on I  
can be seen in Figure 35.  
INLIM  
OCHARGE  
The FAN54005 has three operating modes:  
1. Charge Mode: Charges a singlecell Liion or  
Lipolymer battery.  
V
VOREG  
ICHARGE  
2. Boost Mode: Provides 5 V power to USBOTG  
with an integrated synchronous rectification boost  
regulator using the battery as input.  
3. HighImpedance Mode: Both the boost and  
charging circuits are OFF in this mode. Current  
flow from VBUS to the battery or from the battery  
to VBUS is blocked in this mode. This mode  
consumes very little current from VBUS or the  
battery.  
ITERM  
V
SHORT  
I
ISHORT  
PRE  
CHARGE  
CONSTANT CURRENT  
(CC)  
CONSTANT  
VOLTAGE (CV)  
Charge Mode and Registers  
Note: Default settings are denoted by bold typeface.  
Figure 34. Charge Curve, IOCHARGE Not Limited by  
IINLIM  
Charge Mode  
In Charge Mode, FAN54005 employs four regulation loops:  
1. Input Current: Limits the amount of current drawn  
from VBUS. This current is sensed internally and  
V
OREG  
2
can be programmed through the I C interface.  
2. Charging Current: Limits the maximum charging  
current, which is sensed using an external R  
.
SNS  
Choose R  
to provide the desired I  
and  
SNS  
OCHARGE  
ITERM  
I
currents for your system, relative to the  
TERM  
V
SHORT  
V
levels determined by the I  
register settings, as shown in Table 4 and  
and  
RSNS  
OCHARGE  
ISHORT  
I
TERM  
Table 5, respectively.  
3. Charge Voltage: The regulator is restricted from  
exceeding this voltage. As the internal battery  
voltage rises, the battery’s internal impedance and  
PRE−  
CHARGE  
CURRENT REGULATION  
VOLTAGE  
REGULATION  
R
work in conjunction with the charge voltage  
SNS  
Figure 35. Charge Curve, IINLIM Limits IOCHARGE  
regulation to decrease the amount of current  
flowing to the battery. Battery charging is  
completed when the voltage across R  
Assuming that V  
is programmed to the cell’s fully  
OREG  
drops  
.
SNS  
charged “float” voltage, the current that the battery accepts  
with the PWM regulator limiting its output (sensed at  
below the threshold determined by I  
TERM  
4. Temperature: If the IC’s junction temperature  
reaches 120°C, charge current is reduced until the  
IC’s temperature stabilizes at 120°C.  
5. Dynamic Input Voltage Control (DIVC) limits the  
amount of drop on VBUS to a programmable  
VBAT) to V  
declines, and the charger enters the  
OREG  
voltage regulation phase of charging. When the current  
declines to the programmed I value, the charge cycle  
is complete. Charge current termination can be disabled by  
resetting the TE bit (REG 01[3]).  
The charger output or “float” voltage can be programmed  
by the OREG bits from 3.5 V to 4.44 V in 20 mV increments  
as shown in Table 8.  
TERM  
voltage (V ) to accommodate incompatible  
SP  
adapters that limit current to a lower current than  
might be available from a “normal” USB adapter.  
www.onsemi.com  
16  
 
FAN54005  
A new charge cycle begins when one of the following  
occurs:  
Table 8. OREG BITS (REG 02[7:2]) vs. CHARGER  
VOUT (VOREG) FLOAT VOLTAGE  
The battery voltage falls below V  
VBUS Power on Reset (POR)  
– V  
RCH  
OREG  
Decimal  
OREG  
0
Hex  
V
Decimal  
Hex  
V
OREG  
OREG  
2
CE or HZ_MODE is reset through I C write to  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
3.50  
3.52  
3.54  
3.56  
3.58  
3.60  
3.62  
3.64  
3.66  
3.68  
3.70  
3.72  
3.74  
3.76  
3.78  
3.80  
3.82  
3.84  
3.86  
3.88  
3.90  
3.92  
3.94  
3.96  
3.98  
4.00  
4.02  
4.04  
4.06  
4.08  
4.10  
4.12  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
4.14  
4.16  
4.18  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
4.38  
4.40  
4.42  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
CONTROL1 (REG 01) register.  
1
Charge Current Limit (IOCHARGE  
)
2
Charge current limit is established by regulating the  
voltage across R (V ) to the value controlled by the  
3
SNS  
RSNS  
4
IOCHARGE bits. Select R  
in the range of 68 mW < R  
SNS  
SNS  
5
< 180 mW.  
Charge current is further limited by the IO_LEVEL (Reg  
05[5]) bit by default (IO_LEVEL=1). When IOLEVEL=1,  
6
7
the voltage across R  
is limited to 34.0 mV. When  
SNS  
8
IO_LEVEL=0 charge current is limited by the IOCHARGE  
bits.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Table 10. IOCHARGE CURRENT AS FUNCTION OF  
IOCHARGE (REG 04 [6:4]) BITS AND RSNS VALUE  
I
Range (mA)  
OCHARGE  
180 mW  
68 mW  
Decimal  
HEX  
V
RSNS  
(mV)  
IOCHARGE  
0
1
2
3
4
5
6
7
00  
01  
02  
03  
04  
05  
06  
07  
37.4  
208  
246  
283  
321  
397  
434  
510  
548  
550  
650  
44.2  
51.0  
57.8  
71.4  
78.2  
91.8  
98.6  
750  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
850  
1050  
1150  
1350  
1450  
Termination Current Limit  
Current charge termination is enabled when TE (REG  
01[3])=1.  
Table 11. ITERM CURRENT AS FUNCTION OF ITERM  
BITS (REG 04[2:0]) AND RSNS RESISTOR VALUES  
I
Range (mA)  
TERM  
180 mW  
68 mW  
Decimal  
ITERM  
HEX  
V
RSNS  
(mV)  
The following charging parameters can be programmed by  
the host through I C:  
0
1
2
3
4
5
6
7
00  
01  
02  
03  
04  
05  
06  
07  
3.3  
18  
37  
49  
2
6.6  
9.9  
97  
55  
146  
194  
243  
291  
340  
388  
Table 9. PROGRAMMABLE CHARGING PARAMETERS  
Parameter  
Output Voltage Regulation  
Battery Charging Current Limit  
Input Current Limit  
Name  
Register  
13.2  
16.5  
19.8  
23.1  
26.4  
73  
V
OREG  
REG 02[7:2]  
REG 04[6:4]  
REG 01[7:6]  
REG 04[2:0]  
REG 01[5:4]  
92  
I
110  
128  
147  
OCHARGE  
I
INLIM  
TERM  
Charge Termination Limit  
Weak Battery Voltage  
I
V
LOWV  
www.onsemi.com  
17  
 
FAN54005  
When the charge current falls below I  
, PWM  
LOW, and charging resumes using the default values with  
the t timer running.  
TERM  
charging stops and the STAT bits change to READY (00) for  
about 500 ms while the IC determines whether the battery  
and charging source are still connected. STAT then changes  
to CHARGE DONE (10), provided the battery and charger  
are still connected.  
15MIN  
Normal charging is controlled by the host with the t  
32S  
timer running to ensure that the host is alive. Charging with  
the t timer running is used for charging that is  
15MIN  
unattended by the host. If the t  
timer expires; the IC  
15MIN  
turns off the charger, sets the CE bit, and indicates a timer  
fault (110) on the FAULT bits (REG 00[2:0]). This sequence  
PWM Controller in Charge Mode  
The IC uses a currentmode PWM controller to regulate  
the output voltage and battery charge currents. The  
synchronous rectifier (Q2) has a current limit that switches  
prevents overcharge if the host fails to reset the t timer.  
32S  
USBFriendly Boot Sequence  
At VBUS POR, the IC operates in accordance with its I C  
2
off the FET when the current is more negative than I  
.
SYNC  
register settings. If no registers have been written (including  
Safety, and the TMR_RST bit), typically due to an absence  
of host communication, the chargers input current limit is  
controlled by the OTG pin (100 mA if OTG is LOW and  
500 mA if OTG is HIGH).  
Charger Operation  
VBUS Plug In  
When the IC detects that V  
(4.4 V), the IC applies a 100 W load from VBUS to GND. To  
clear the VBUS PowerOnReset (POR) and begin  
charging, VBUS must remain above V  
has risen above V  
IN(MIN)1  
BUS  
Once the host processor begins writing to the IC, charging  
parameters are set by the host, which must continually reset  
and below  
IN(MIN)1  
the t  
timer to continue charging using the programmed  
32S  
VBUS  
for t  
(30 ms) before the IC initiates  
OVP  
VBUS_VALID  
charging parameters.  
charging.  
The VBUS validation sequence always occurs before  
charging is initiated or reinitiated (for example, after a  
Input Current Limiting  
To minimize charging time without overloading VBUS  
current limitations, the IC’s input current limit can be  
programmed by the IINLIM bits (REG 01[7:6]).  
VBUS OVP fault or a V  
recharge initiation).  
RCH  
T
ensures that unfiltered 50 / 60 Hz chargers  
VBUS_VALID  
and other noncompliant chargers are rejected.  
Table 12. INPUT CURRENT LIMIT  
Safety Timer  
IINLIM REG 01[7:6]  
Input Current Limit  
100 mA  
Section references Figure 39.  
At the beginning of charging, the IC starts a 15minute  
00  
01  
10  
11  
500 mA  
timer (t  
). When this times out, charging is terminated.  
15MIN  
2
Writing to any register through I C stops and resets the  
800 mA  
t
timer, which in turn starts a 32second timer (t ).  
15MIN  
32S  
No limit  
Setting the TMR_RST bit (REG 00[7]) resets the t timer.  
32S  
If the t  
timer times out; charging is terminated, all  
32S  
The OTG pin establishes the input current limit when t  
is running.  
15MIN  
registers (except Safety) are set to their default values, the  
FAULT bits are set to 110, STAT is pulsed HIGH and returns  
www.onsemi.com  
18  
 
FAN54005  
Flow Charts  
VBUS POR  
YES  
HZ State  
HZ, CE or  
DISABLE Pin  
set?  
VBAT > VLOWV  
YES  
Charge  
Configuration  
State  
NO  
NO  
NO  
HZ, CE or  
DISABLE Pin  
set?  
T32Sec  
Armed?  
T15Min Timer?  
NO  
NO  
YES  
YES  
YES  
HZ, CE or  
DISABLE Pin  
set?  
YES  
HZ State  
T32Sec  
Armed?  
NO  
YES  
Charge State  
Reset all registers  
NO  
Start T  
15MIN  
Figure 36. Charger VBUS POR  
www.onsemi.com  
19  
FAN54005  
Flow Charts (Continued)  
CHARGE STATE  
Disable Charging  
NO  
Indicate  
VBUS Fault  
Enable I  
,
SHORT  
Reset Safety reg  
VBAT < V  
YES  
VBUSOK?  
YES  
NO  
SHORT  
Indicate Charging  
NO  
PWM Charging  
T15MIN  
VBUS OK?  
YES  
Indicate Charging  
Timeout?  
NO  
YES  
Disable Charging  
Indicate timer fault  
Set CE  
Charge  
Configuration  
State  
T15MIN  
Timeout?  
YES  
Indicate  
VBUS Fault  
NO  
NO  
HIGHZ mode  
IOUT < ITERM  
Termination enabled  
VBAT > VOREG –VRCH  
Indicate Charge  
Complete  
VBAT < VOREG–VRCH  
YES  
NO  
Reset Safety reg  
Delay tINT  
NO  
YES  
Battery Removed  
Stop Charging  
YES  
VBAT < VOREG –VRCH  
Reset charge  
parameters  
Enable IDET for TDETECT  
Figure 37. Charge Mode  
www.onsemi.com  
20  
FAN54005  
Flow Charts (Continued)  
Charge  
Configuration  
State  
T32Sec  
YES  
ARMED AND  
Charge State  
CE  
= 0?  
NO  
Has T15Min  
and CE= 0  
START T15Min  
NO  
YES  
VBAT < VOREG  
for 262ms?  
NO  
YES  
Figure 38. Charge Configuration  
Charge Start  
Start T15MIN  
Reset Registers  
NO  
YES  
T32SEC  
Expired?  
Start T32SEC  
YES  
NO  
Stop T15MIN  
T15MIN  
I2C Write  
received?  
T15MIN  
Continue  
Charging  
YES  
NO  
NO  
Active?  
Expired?  
Timer Fault :  
Set
YES  
CE  
Figure 39. Timer Flow Chart  
Dynamic Input Voltage Control  
If V  
collapses to V when the current is ramping up, the  
SP  
BUS  
The FAN54005 has functionality that limits input current  
in case a currentlimited incompatible adapter is supplying  
VBUS. These slowly increase the charging current until  
either:  
FAN54005 charges with an input current that keeps  
=V . When the V control loop is limiting the charge  
current, the SP bit (REG 05[4]) is set.  
V
BUS  
SP  
SP  
I  
or I  
is reached  
INLIM  
OCHARGE  
or  
V =V .  
BUS  
SP  
www.onsemi.com  
21  
FAN54005  
Table 13. VSP AS FUNCTION OF VSP BITS (REG 05[2:0])  
Table 15. VSAFE (VOREG Max. Limit) AS FUNCTION  
OF VSAFE BITS (REG 06[3:0])  
Decimal  
HEX  
V
SP  
Max. OREG  
(REG 02[7:2])  
V
OREG  
Max. (V)  
VSP  
Decimal  
VSAFE  
HEX  
0
1
2
3
4
5
6
7
00  
01  
02  
03  
04  
05  
06  
07  
4.213  
4.293  
4.373  
4.453  
4.533  
4.613  
4.693  
4.773  
0
1
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
4.38  
4.40  
4.42  
4.44  
4.44  
4.44  
4.44  
2
3
4
5
6
7
Safety Settings  
8
FAN54005 contain a SAFETY register (REG 06) that  
prevents the values in OREG (REG 02[7:2]) and  
IOCHARGE (REG 04[6:4]) from exceeding the values of  
the VSAFE and ISAFE values. Refer to Table 14 and  
Table 15 for details.  
9
10  
11  
12  
13  
14  
15  
After V  
exceeds V  
, the SAFETY register is  
BAT  
SHORT  
loaded with its default value and may be written only before  
any other register is written. The entire desired Safety  
register value should be written twice to ensure the register  
bits are set. After writing to any other register, the SAFETY  
register is locked until V  
falls below V  
.
BAT  
SHORT  
The ISAFE (REG 06[6:4]) and VSAFE (REG 06[3:0])  
registers establish the maximum values of V and  
Thermal Regulation and Protection  
When the IC’s junction temperature reaches T (about  
RSNS  
CF  
V
OREG  
used by the control logic. If the host attempts to write  
120°C), the charger reduces its output current to  
a value higher than VSAFE or ISAFE to OREG or  
IOCHARGE, respectively; the VSAFE, ISAFE value  
appears as the OREG, IOCHARGE register value,  
respectively.  
37.4 mV/R  
to prevent overheating. If the temperature  
SNS  
increases beyond T  
; charging is suspended, the  
SHUTDOWN  
FAULT bits are set to 101, and STAT is pulsed HIGH. In  
Suspend Mode, all timers stop and the state of the IC’s logic  
is preserved. Charging resumes at programmed current after  
the die cools to about 120°C.  
Table 14. ISAFE (IOCHARGE Limit) AS FUNCTION OF  
ISAFE BITS (REG 06[6:4])  
Additional q  
data points, measured using the  
JA  
I
Range (mA)  
SAFE  
FAN54005 evaluation board, are given in Table 16  
(measured with T =25°C). Note that as power dissipation  
180 mW  
68 mW  
A
Decimal  
ISAFE  
HEX  
V
RSNS  
(mV)  
increases, the effective q decreases due to the larger  
JA  
difference between the die temperature and ambient.  
0
1
2
3
4
5
6
7
00  
01  
02  
03  
04  
05  
06  
07  
37.4  
208  
246  
283  
321  
397  
434  
510  
548  
550  
650  
Table 16. EVALUATION BOARD MEASURED qJA  
44.2  
51.0  
57.8  
71.4  
78.2  
91.8  
98.6  
Dissipation (W)  
0.504  
q
JA  
750  
54°C/W  
50°C/W  
46°C/W  
850  
0.844  
1050  
1150  
1350  
1450  
1.506  
www.onsemi.com  
22  
 
FAN54005  
Charge Mode Input Supply Protection  
Sleep Mode  
If V  
the IC:  
is below V  
– V  
, the battery is absent and  
BAT  
OREG  
RCH  
1. Sets the registers to their default values.  
2. Sets the FAULT bits to 111.  
3. Resumes charging with default values after t  
When V  
falls below V  
+ V , and V  
is above  
BUS  
BAT  
SLP  
BUS  
V
the IC enters Sleep Mode to prevent the battery  
IN(MIN)1,  
.
INT  
from draining into VBUS. During Sleep Mode, reverse  
current is disabled by body switching Q1.  
Battery ShortCircuit Protection  
If the battery voltage is below the shortcircuit threshold  
(V ); a linear current source, I , supplies V  
Input Supply LowVoltage Detection  
The IC continuously monitors VBUS during charging. If  
SHORT  
SHORT  
BAT  
until V  
> V  
.
BAT  
SHORT  
V
BUS  
falls below V  
, the IC:  
IN(MIN)2  
1. Terminates charging  
System Operation with No Battery  
2. Pulses the STAT pin, sets the STAT bits to 11, and  
sets the FAULT bits to 011.  
The FAN54005 continues charging after VBUS POR with  
the default parameters, regulating the V line to 3.54 V  
BAT  
If V  
recovers above the V  
rising threshold  
until the host processor issues commands or the t  
timer  
BUS  
IN(MIN)1  
15MIN  
after time t  
(about two seconds), the charging process is  
expires. In this way, the FAN54005 can start the system  
without a battery.  
The FAN54005 softstart function may interfere with the  
system supply when the battery is absent. The softstart  
INT  
repeated. This function prevents the USB power bus from  
collapsing or oscillating when the IC is connected to a  
suspended USB port or a lowcurrentcapable OTG device.  
activates whenever V  
from a lower to higher value. During softstart, the I limit  
drops to 100 mA for about 1 ms unless IINLIM is set to 11  
(no limit). This could cause the system processor to fail to  
start. To avoid this behavior, use the following sequence.  
1. Set the OTG pin HIGH. When VBUS is plugged  
, I  
, or I  
are set  
IN  
OREG INLIM  
OCHARGE  
Input OverVoltage Detection  
When V  
exceeds VBUS , the IC:  
OVP  
BUS  
1. Turns off Q3  
2. Suspends charging  
3. Sets the FAULT bits to 001, sets the STAT bits to  
11, and pulses the STAT pin.  
in, I  
is set to 500 mA until the system  
INLIM  
processor powers up and can set parameters  
through I C.  
2. Program the Safety Register.  
3. Set IINLIM to 11 (no limit).  
4. Set OREG to the desired value (typically 4.18).  
5. Reset the IO_LEVEL bit, then set IOCHARGE.  
When V  
falls about 100 mV below VBUS , the fault  
OVP  
BUS  
2
is cleared and charging resumes after V  
is revalidated.  
BUS  
VBUS Short While Charging  
If VBUS is shorted with a very low impedance while the  
IC is charging with I =100 mA, the IC may not meet  
datasheet specifications until power is removed. To trigger  
this condition, V must be driven from 5 V to GND with  
INLIMIT  
6. Set I  
to 500 mA if a USB source is  
INLIM  
BUS  
connected.  
a high slew rate. Achieving this slew rate requires a 0 W  
short from GND to the USB cable that is less than 10 cm  
from the connector.  
During the initial system startup, while the charger IC is  
being programmed, the system current is limited to 500 mA  
for 1 ms during steps 4 and 5. This is the value of the  
softstart I  
Limit.  
current used when I  
is set to No  
OCHARGE  
INLIM  
Charge Mode Battery Detection & Protection  
If the system is powered up without a battery present, the  
CV bit should be set. When a battery is inserted, the CV bit  
is cleared.  
VBAT OverVoltage Protection  
The OREG voltage regulation loop prevents V  
overshooting the OREG voltage by more than 50 mV when  
the battery is removed. When the PWM charger runs with no  
battery, the TE bit is not set, and a battery is inserted that is  
charged to a voltage higher than V  
If no further pulses occur for 30 ms, the IC sets the FAULT  
bits to 100, sets the STAT bits to 11, and pulses the STAT pin.  
from  
BAT  
Charger Status / Fault Status  
The STAT pin indicates the operating condition of the IC  
and provides a fault indicator for interrupt driven systems.  
; PWM pulses stop.  
OREG  
Table 17. STAT PIN FUNCTION  
EN_STAT  
Charge State  
X
STAT Pin  
OPEN  
OPEN  
LOW  
Battery Detection during Charging  
The IC can detect the presence, absence, or removal of a  
battery if the termination bit (TE) is set. During normal  
0
X
1
Normal Conditions  
Charging  
charging, once V  
is close to V  
and the termination  
BAT  
OREG  
charge current is detected, the IC terminates charging and  
sets the STAT bits to 10. It then turns on a discharge current,  
X
Fault (Charging or Boost)  
128 ms Pulse, then  
OPEN  
I
, for t  
. If V  
is still above V  
– V  
,
DETECT  
DETECT  
BAT  
OREG  
RCH  
the battery is present and the IC sets the FAULT bits to 000.  
www.onsemi.com  
23  
FAN54005  
Boost Mode  
The FAULT bits (REG 00[2:0]) indicate the type of fault  
in Charge Mode. See Table 18 for details.  
Boost Mode can be enabled if the IC is in 32Second  
Mode with the OTG pin and OPA_MODE bits as indicated  
in Table 21. The OTG pin ACTIVE state is 1 if OTG_PL=1  
and 0 when OTG_PL=0.  
Table 18. FAULT STATUS BITS DURING CHARGE MODE  
Fault Bit  
If boost is active using the OTG pin, Boost Mode is  
initiated even if the HZ_MODE=1. The HZ_MODE bit  
overrides the OPA_MODE bit.  
B2  
0
B1  
0
B0  
0
Fault Description  
Normal (No Fault)  
0
0
1
VBUS OVP  
Table 21. ENABLING BOOST  
0
1
0
Sleep Mode  
OTG_EN OTG Pin HZ_MODE OPA_MODE  
BOOST  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
0
1
1
Poor Input Source  
Battery OVP  
Thermal Shutdown  
Timer Fault  
1
X
X
0
1
0
ACTIVE  
X
X
0
X
1
1
0
X
1
0
X
1
0
1
0
0
1
0
1
ACTIVE  
X
1
1
0
1
1
1
No Battery  
ACTIVE  
ACTIVE  
Charge Mode Control Bits  
Setting either HZ_MODE or CE through I C disables the  
charger and puts the IC into HighImpedance Mode. The  
32S  
registers (except SAFETY) reset, which enables t  
charging. When the t  
the IC enters HighImpedance Mode. If CE was set by  
2
To remain in Boost Mode, the TMR_RST must be set by  
the host before the t timer times out. If t times out in  
32S  
32S  
t
timer will continue to run. If it is allowed to expire, all  
Boost Mode; the IC resets all registers, pulses the STAT pin,  
sets the FAULT bits to 110, and resets the BOOST bit. VBUS  
POR or reading REG00 clears the fault condition.  
15MIN  
expires, the IC sets the CE bit and  
15MIN  
t
overflow, a new charge cycle can only be initiated  
Boost PWM Control  
15MIN  
2
through I C or VBUS POR.  
The IC uses a minimum ontime and computed minimum  
offtime to regulate VBUS. The regulator achieves  
excellent transient response by employing currentmode  
modulation. This technique causes the regulator to exhibit a  
load line. During PWM Mode, the output voltage drops  
slightly as the input current rises. With a constant V , this  
appears as a constant output resistance.  
The “droop” caused by the output resistance when a load  
is applied allows the regulator to respond smoothly to load  
transients with no undershoot from the load line. This can be  
seen in Figure 32 and Figure 40.  
Setting the RESET bit clears all registers (except Safety).  
Table 19. DISABLE PIN AND CE BIT FUNCTIONALITY  
Charging  
ENABLE  
DISABLE  
DISABLE  
DISABLE  
DISABLE Pin  
CE  
0
HZ_MODE  
BAT  
0
X
X
1
0
X
1
1
X
X
X
Raising the DISABLE pin does stop the t  
from  
32S  
350  
325  
300  
275  
250  
225  
200  
advancing. If the DISABLE pin is raised during t  
15MIN  
charging, the t  
timer is reset.  
15MIN  
Operational Mode Control  
OPA_MODE (REG 01[0]) and the HZ_MODE (REG  
01[1]) bits in conjunction with the FAULT state define the  
operational mode of the charger.  
Table 20. OPERATION MODE CONTROL  
HZ_MODE  
OPA_MODE  
FAULT  
Operation Mode  
Charge  
0
0
0
1
0
X
1
0
1
0
X
Charge Configure  
Boost  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Figure 40. Output Resistance (ROUT  
)
X
High Impedance  
The IC resets the OPA_MODE bit whenever the boost is  
deactivated, whether due to a fault or being disabled by  
setting the HZ_MODE bit.  
www.onsemi.com  
24  
 
FAN54005  
V
BUS  
as a function of I  
can be computed when the  
To ensure VBUS does not pump significantly above the  
LOAD  
regulator is in PWM Mode (continuous conduction) as:  
regulation point, the boost switch remains off as long as the  
actual output voltage is greater than the regulation point.  
VBUS + 5.07 * ROUT @ ILOAD  
(eq. 1)  
Boost Faults  
At V =3.3 V, and I  
=200 mA, V  
would drop to:  
BAT  
LOAD  
BUS  
If a BOOST fault occurs:  
VBUS + 5.07 * 0.26 @ 0.2 + 5.018 V  
(eq. 2)  
1. The STAT pin pulses.  
At V =2.7 V, and I  
=200 mA, V  
would drop to:  
BAT  
LOAD  
BUS  
2. OPA_MODE bit is reset.  
3. The power stage is in HighImpedance Mode.  
4. The FAULT bits (REG 00[2:0]) are set per  
Table 23  
VBUS + 5.07 * 0.327 @ 0.2 + 5.005 V  
(eq. 3)  
PFM Mode  
If V  
> V  
(nominally 5.07 V) when the  
BUS  
BOOST  
Restart After Boost Faults  
minimum offtime has ended, the regulator enters PFM  
Mode. Boost pulses are inhibited until V < V . The  
minimum ontime is increased to enable the output to pump  
up sufficiently with each PFM boost pulse. Therefore the  
regulator behaves like a constant ontime regulator, with the  
bottom of its output voltage ripple at 5.07 V in PFM Mode.  
If boost was enabled with the OPA_MODE bit and  
OTG_EN=0, Boost Mode can only be enabled through  
BUS  
BOOST  
2
subsequent I C commands since OPA_MODE is reset on  
boost faults. If OTG_EN=1 and the OTG pin is still  
ACTIVE (see Table 21), the boost restarts after a 5.2 ms  
delay, as shown in Figure 41. If the fault condition persists,  
restart is attempted every 5 ms until the fault clears or an I C  
command disables the boost.  
2
Table 22. BOOST PWM OPERATING STATES  
Mode  
LIN  
Description  
Linear Startup  
Invoked When  
> V  
V
BAT  
Table 23. FAULT BITS DURING BOOST MODE  
Fault Bit  
BUS  
SS  
Boost SoftStart  
Boost Operating Mode  
V
< V  
BUS BOOST  
B2 B1 B0  
BST  
V
BAT  
> UVLO  
and  
Fault Description  
BST  
SS Completed  
0
0
0
0
0
1
0
1
0
Normal (no fault)  
V
V
> VBUS  
OVP  
BUS  
Startup  
fails to achieve the voltage required to  
BUS  
When the boost regulator is shut down, current flow is  
prevented from VBAT to VBUS, as well as reverse flow  
from VBUS to VBAT.  
advance to the next state during softstart or  
sustained (>50 ms) current limit during the BST  
state.  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
V
< UVLO  
BAT BST  
LIN State  
When the boost is enabled, if V  
N/A: This code does not appear.  
Thermal shutdown  
> UVLO , the  
BST  
BAT  
regulator first attempts to bring PMID within 400 mV of  
using an internal 450 mA current source from VBAT  
V
BAT  
Timer fault; all registers reset.  
N/A: This code does not appear.  
(LIN State). If PMID has not achieved V  
560 ms, a FAULT state is initiated.  
– 400 mV after  
BAT  
0
VBUS  
SS State  
When PMID > V  
switching with a reduced peak current limit of about 50% of  
its normal current limit. The output slews up until V is  
within 5% of its setpoint; at which time, the regulation loop  
is closed and the current limit is set to 100%.  
– 400 mV, the boost regulator begins  
560  
5200  
BAT  
450mA  
BATTERY  
CURRENT  
BUS  
0
64  
BOOST  
ENABLED  
If the output fails to achieve 95% of its setpoint (V  
)
BST  
Figure 41. Boost Response Attempting to Start into  
within 128 ms, the current limit is increased to 100%. If the  
output fails to achieve 95% of its setpoint after this second  
384 ms period, a fault state is initiated.  
VBUS Short Circuit (times in ms)  
VREG Pin  
The 1.8 V regulated output on this pin can be disabled  
through I C by setting the DIS_VREG bit (REG 05[6]).  
BST State  
2
This is the normal operating mode of the regulator. The  
regulator uses a scheme of calculated t , modulated t  
VREG can supply up to 2 mA. This circuit, which is  
OFF  
ON  
with a minimum t . The calculated t  
is proportional to  
powered from PMID, is enabled only when PMID > V  
ON  
OFF  
BAT  
V
/ V  
, which keeps the regulator’s switching  
and does not drain current from the battery. During boost,  
V is off. It is also off when the HZ_MODE bit (REG  
REG  
IN  
OUT  
frequency reasonably constant in CCM.  
01[1])=1.  
www.onsemi.com  
25  
 
FAN54005  
Monitor Register (Reg 10h)  
A transaction ends with a STOP condition, which is  
defined as SDA transitioning from 0 to 1 with SCL HIGH,  
as shown in Figure 44.  
Additional status monitoring bits enable the host  
processor to have more visibility into the status of the IC.  
The monitor bits are realtime status indicators and are not  
internally debounced or otherwise time qualified.  
The state of the MONITOR register bits listed in  
HighImpedance Mode is only valid when V  
Slave Releases  
Master Drives  
tHD;STO  
ACK(0) or  
NACK(1)  
SDA  
SCL  
is valid.  
BUS  
I2C Interface  
The FAN54005’s serial interface is compatible with  
Standard, Fast, Fast Plus, and HighSpeed Mode I CBus  
2
Figure 44. Stop Bit  
specifications. The SCL line is an input and the SDA line is  
a bidirectional opendrain output; it can only pull down the  
bus when active. The SDA line only pulls LOW during data  
reads and signaling ACK. All data is shifted in MSB (bit 7)  
first.  
During a read from the FAN54005 (Figure 47), the master  
issues a Repeated Start after sending the register address and  
before resending the slave address. The Repeated Start is a  
1to0 transition on SDA while SCL is HIGH, as shown in  
Figure 45.  
Slave Address  
HighSpeed (HS) Mode  
Table 24. I2C SLAVE ADDRESS BYTE  
The protocols for HighSpeed (HS), LowSpeed (LS),  
and FastSpeed (FS) Modes are identical except the bus  
speed for HS Mode is 3.4 MHz. HS Mode is entered when  
the bus master sends the HS master code 00001XXX after  
a start condition. The master code is sent in Fast or Fast Plus  
Mode (less than 1 MHz clock); slaves do not ACK this  
transmission.  
Part Type  
7
6
5
4
3
2
1
0
FAN54005  
1
1
0
1
0
1
0
R/W  
In hex notation, the slave address assumes a 0 LSB. The  
hex slave address for the FAN54005 is D4H and is D6H for  
all other parts in the family.  
The master then generates a repeated start condition  
(Figure 45) that causes all slaves on the bus to switch to HS  
Mode. The master then sends I C packets, as described  
above, using the HS Mode clock rate and timing.  
The bus remains in HS Mode until a stop bit (Figure 44)  
is sent by the master. While in HS Mode, packets are  
separated by repeated start conditions (Figure 45).  
Bus Timing  
As shown in Figure 42, data is normally transferred when  
SCL is LOW. Data is clocked in on the rising edge of SCL.  
Typically, data transitions shortly at or after the falling edge  
of SCL to allow ample time for the data to set up before the  
next SCL rising edge.  
2
Data change allowed  
Slave Releases  
tSU;STA  
tHD;STA  
SDA  
ACK(0) or  
NACK(1)  
SLADDR  
MS Bit  
SDA  
SCL  
TH  
TSU  
SCL  
Figure 45. Repeated Start Timing  
Read and Write Transactions  
The figures below outline the sequences for data read and  
write. Bus control is signified by the shading of the packet,  
defined as  
Figure 42. Data Transfer Timing  
Each bus transaction begins and ends with SDA and SCL  
HIGH. A transaction begins with a START condition, which  
is defined as SDA transitioning from 1 to 0 with SCL HIGH,  
as shown in Figure 43.  
Master Drives Bus  
THD;STA  
Slave Address  
MS Bit  
SDA  
and  
Slave Drives Bus  
SCL  
All addresses and data are MSB first.  
Figure 43. Start Bit  
www.onsemi.com  
26  
 
FAN54005  
Table 25. BIT DEFINITIONS FOR FIGURE 46 AND FIGURE 47  
Symbol  
Definition  
S
A
A
R
P
START, see Figure 43  
ACK. The slave drives SDA to 0 to acknowledge the preceding packet.  
NACK. The slave sends a 1 to NACK the preceding packet.  
Repeated START, see Figure 45  
STOP, see Figure 44  
0
0
0
7 bits  
8 bits  
8 bits  
Data  
S
Slave Address  
0
A
Reg Addr  
A
A
P
Figure 46. Write Transaction  
0
0
0
1
7 bits  
Slave Address  
8 bits  
7 bits  
8 bits  
Data  
S
0
A
Reg Addr  
A
R
Slave Address  
1
A
A
P
Figure 47. Read Transaction  
Register Descriptions  
The nine FAN54005 useraccessible registers are defined in Table 26.  
Table 26. I2C REGISTER ADDRESS  
Register  
Address Bits  
Name  
CONTROL0  
CONTROL1  
OREG  
REG#  
00  
7
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
5
4
0
0
0
0
0
0
0
1
3
0
0
0
0
0
0
0
0
2
1
0
0
1
1
0
0
1
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
01  
02  
IC_INFO  
03  
IBAT  
04  
SP_CHARGER  
SAFETY  
05  
06  
MONITOR  
10h  
www.onsemi.com  
27  
 
FAN54005  
Table 27. REGISTER BIT DEFINITIONS  
This table defines the operation of each register bit for all IC versions. Default values are in bold text.  
Bit  
Name  
Value  
Type  
Description  
Default Value=X1XX 0XXX  
timer; writing a 0 has no effect  
CONTROL0  
Register Address: 00  
7
6
TMR_RST OTG  
EN_STAT  
1
0
W
R
Writing a 1 resets the t  
32S  
Returns the OTG pin level (1=HIGH)  
R/W  
Prevents STAT pin from going LOW during charging; STAT pin still pulses to enunciate  
faults  
1
00  
01  
10  
11  
0
Enables STAT pin LOW when IC is charging  
5:4  
STAT  
R
Ready  
Charge in progress  
Charge done  
Fault  
3
BOOST  
FAULT  
R
IC is not in Boost Mode  
IC is in Boost Mode  
1
2:0  
R
Fault status bits: for Charge Mode, see Table 18  
CONTROL1  
Register Address: 01  
Default Value=0111 0000 (70h)  
7:6  
5:4  
IINLIM  
01  
00  
01  
10  
11  
0
R/W  
R/W  
Input current limit, see Table 12  
VLOWV  
3.4 V  
Weak battery voltage threshold  
3.5 V  
3.6 V  
3.7 V  
3
2
TE  
CE  
R/W  
R/W  
R/W  
R/W  
Disable charge current termination  
Enable charge current termination  
Charger enabled.  
1
0
1
Charger disabled. The T  
timer is not suspended  
32S  
1
0
HZ_MODE  
0
Not HighImpedance Mode  
HighImpedance Mode  
Charge Mode  
See Table 21  
1
OPA_MODE  
0
1
Boost Mode  
OREG  
Register Address: 02  
Default Value=0000 1010 (0Ah)  
7:2  
OREG  
000010  
R/W  
R/W  
Charger output “float” voltage; programmable from 3.5 to 4.44 V in 20 mV increments;  
defaults to 000010 (3.54 V). See Table 8  
1
0
OTG_PL  
0
1
0
1
OTG pin active LOW  
OTG pin active HIGH  
Disables OTG pin  
Enables OTG pin  
OTG_EN  
R/W  
IC_INFO  
7:5  
Register Address: 03  
Default Value=100101XX (9Xh)  
Vendor Code  
PN  
100  
101  
XX  
R
R
R
Identifies ON Semiconductor as the IC supplier  
4:2  
Part number bits, see the Ordering Information on page 1  
1:0  
REV  
IC Revision bits  
IBAT  
7
Register Address: 04  
Default Value=1000 1001 (89h)  
RESET  
1
W
Writing a 1 resets charge parameters, except the Safety register (REG 06), to their de-  
faults: writing a 0 has no effect; read returns 1  
6:4  
IOCHARGE  
000  
R/W  
Programs the maximum charge current when IO_LEVEL (REG 05[5]) = 0. See Table 10  
www.onsemi.com  
28  
 
FAN54005  
Table 27. REGISTER BIT DEFINITIONS  
This table defines the operation of each register bit for all IC versions. Default values are in bold text.  
Bit  
3
Name  
Reserved  
ITERM  
Value  
1
Type  
R
Description  
Unused  
Sets the current used for charging termination. See Table 11  
2:0  
001  
R/W  
SP_CHARGER  
Register Address: 05  
Default Value=001X X100  
7
6
Reserved  
0
0
R
Unused  
DIS_VREG  
IO_LEVEL  
SP  
R/W  
1.8 V regulator is ON  
1
1.8 V regulator is OFF  
5
4
3
0
R/W  
R
Output current is controlled by the IOCHARGE bits  
1
Output current control is limited to 34 mV across R  
SNS  
0
DIVC is not active (V  
is able to stay above V  
)
BUS  
SP  
1
DIVC has been detected and V  
is being regulated to V  
BUS SP  
EN_LEVEL  
VSP  
0
R
DISABLE pin is LOW  
1
DISABLE pin is HIGH  
2:0  
100  
R/W  
DIVC input regulation voltage. See Table 13  
SAFETY  
7
Register Address: 06  
Default Value=0100 0000 (40h)  
Reserved  
ISAFE  
0
R
Bit disabled and always returns 0 when read back  
6:4  
100  
0000  
R/W  
R/W  
Sets the maximum I  
value used by the control circuit. See Table 14  
used by the control circuit. See Table 15  
OCHARGE  
3:0  
VSAFE  
Sets the maximum V  
OREG  
MONITOR  
Register Address: 10h (16)  
7
6
ITERM_CMP  
VBAT_CMP  
R
R
ITERM comparator output, 1 when VRSENSE > See Table 11  
Output of VBAT comparator  
1 during charging indicates V  
> V  
BAT  
SHORT  
1 during HZ_MODE indicates V  
> V  
LOWV  
BAT  
1 during Boost Mode indicated V  
> UVLO  
BST  
BAT  
5
4
LINCHG  
T_120  
R
R
30 mA linear charger ON  
Thermal regulation comparator; when=1 and T_145=0, the charge current is limited to  
22.1 mV across R  
SENSE  
3
2
1
0
ICHG  
IBUS  
R
R
R
R
0 indicates the I  
loop is controlling the battery charge current  
OCHARGE  
0 indicates the IBUS (input current) loop is controlling the battery charge current  
1 indicates VBUS has passed validation and is capable of charging  
VBUS_VALID  
CV  
1 indicates the constantvoltage loop (OREG) had been active at least once since the  
last V  
plug in  
BUS  
0 indicates the constantvoltage loop (OREG) had never been reached since the last  
VBUS plug in or the part is in the Charge Done state with TE=1  
www.onsemi.com  
29  
FAN54005  
PCB Layout Recommendations  
Bypass capacitors should be placed as close to the IC as  
routed to their bypass capacitors, using top copper whenever  
possible. Copper area connecting to the IC should be  
maximized to improve thermal performance if possible.  
possible. In particular, the total loop length for CMID should  
be minimized to reduce overshoot and ringing on the SW,  
PMID, and VBUS pins. All power and ground pins must be  
Figure 48. PCB Layout Recommendations  
The table below pertains to the MOD information on the following page.  
PRODUCTSPECIFIC DIMENSIONS  
Product  
D
E
X
Y
FAN54005UCX  
1.960 0.030 mm  
1.870 0.030 mm  
0.335 mm  
0.180 mm  
2
ON Semiconductor is licensed by the Philips Corporation to use the I C bus protocol.  
www.onsemi.com  
30  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WLCSP20 1.96x1.87x0.586  
CASE 567SL  
ISSUE O  
DATE 30 NOV 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON16608G  
WLCSP20 1.96x1.87x0.586  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY