FAN54015BUCX [ONSEMI]

符合 USB 规范的单体锂离子开关充电器(带 USB-OTG 升压调节器);
FAN54015BUCX
型号: FAN54015BUCX
厂家: ONSEMI    ONSEMI
描述:

符合 USB 规范的单体锂离子开关充电器(带 USB-OTG 升压调节器)

开关 调节器
文件: 总33页 (文件大小:1184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
USB-Compliant Single-Cell  
Li-Ion Switching Charger  
with USB-OTG Boost  
Regulator  
FAN54015  
Description  
www.onsemi.com  
The FAN54015 combines a highly integrated switchmode charger,  
to minimize singlecell Lithiumion (Liion) charging time from a  
USB power source, and a boost regulator to power a USB peripheral  
from the battery.  
The charging parameters and operating modes are programmable  
through an I C Interface that operates up to 3.4 Mbps. The charger and  
boost regulator circuits switch at 3 MHz to minimize the size of  
external passive components.  
2
WLCSP20 1.96x1.87x0.586  
CASE 567SL  
The FAN54015 provides battery charging in three phases:  
conditioning, constant current and constant voltage.  
MARKING DIAGRAM  
To ensure USB compliance and minimize charging time, the input  
2
current limit can be changed through the I C by the host processor.  
A9&K  
&.&2&Z  
Charge termination is determined by a programmable minimum  
current level. A safety timer with reset control provides a safety  
backup for the I C host. Charge status is reported to the host through  
2
2
the I C port.  
A9 = Specific Device Code  
&K = 2Digits Lot Run Traceability Code  
&. = Pin One Dot  
&2 = 2Digit Date Code Format  
&Z = Assembly Plant Code  
The integrated circuit (IC) automatically restarts the charge cycle  
when the battery falls below an internal threshold. If the input source is  
removed, the IC enters a highimpedance mode, preventing leakage  
from the battery to the input. Charge current is reduced when the die  
temperature reaches 120°C, protecting the device and PCB from  
damage.  
The FAN54015 can operate as a boost regulator on command from  
the system. The boost regulator includes a softstart that limits inrush  
current from the battery and uses the same external components used  
for charging the battery.  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 31 of  
this data sheet.  
Features (continued)  
3 MHz Synchronous Buck PWM Controller  
with Wide Duty Cycle Range  
Features  
Fully Integrated, HighEfficiency Charger for SingleCell LiIon  
and LiPolymer Battery Packs  
Small Footprint 1 mH External Inductor  
Safety Timer with Reset Control  
1.8 V Regulated Output from VBUS for  
Auxiliary Circuits  
Faster Charging than Linear  
Charge Voltage Accuracy: +0.5% at 25°C  
+1% from 0 to 125°C  
Dynamic Input Voltage Control  
+5% Input Current Regulation Accuracy  
+5% Charge Current Regulation Accuracy  
Low Reverse Leakage to Prevent Battery  
Drain to VBUS  
20 V Absolute Maximum Input Voltage  
6 V Maximum Input Operating Voltage  
1.45 A Maximum Charge Rate  
5 V, 500 mA Boost Mode for USB OTG for  
3.0 V to 4.5 V Battery Input  
Available in a 1.96 x 1.87 mm, 20bump,  
0.4 mm Pitch WLCSP Package  
These are PbFree Devices  
2
Programmable through HighSpeed I C Interface (3.4 Mb/s) with  
Fast Mode Plus Compatibility  
Input Current  
FastCharge / Termination Current  
Charger Voltage  
Applications  
Cell Phones, Smart Phones, PDAs  
Tablet, Portable Media Players  
Gaming Device, Digital Cameras  
Termination Enable  
© Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
November, 2019 Rev. 2  
FAN54015D  
FAN54015  
L1  
SW  
VBUS  
1 μH  
C
1 μF  
BUS  
C
0.1 μF  
OUT  
PGND  
PMID  
C
4.7 μF  
MID  
CSIN  
R
SDA  
SENSE  
FAN54015  
68 mW  
SCL  
DISABLE  
OTG/USB#  
STAT  
VBAT  
Battery  
C
10 μF  
+
BAT  
VREG  
SYSTEM  
LOAD  
C
REG  
1 μF  
Figure 1. Typical Application  
Table 1. FEATURE SUMMARY  
Automatic  
Charge  
Special  
Charger (Note 1)  
Safety  
Limits  
Battery Absent  
Behavior  
Part Number  
Slave Address  
E2 Pin  
VREG (E3 Pin)  
FAN54015UCX  
1101010  
Yes  
Yes  
Yes  
ON  
DISABLE  
1.8 V  
1. A “special charger” is a currentlimited charger that is not a USB compliant source.  
VREG  
1.8 V / PMID REG  
C
REG  
PMID  
PMID  
1 μF  
Q1  
Q2  
C
Q3  
MID  
4.7 μF  
Q1A  
Q1B  
VBUS  
CHARGE  
PUMP  
C
BUS  
L1  
1 μF  
SW  
PWM  
MODULATOR  
1 μH  
I_IN  
CONTROL  
VBUS  
OVP  
R
C
SENSE  
OUT  
0.1 μF  
PGND  
VCC  
VREF  
+
Battery  
CSIN  
VBAT  
DAC  
C
BAT  
SDA  
SCL  
PMID  
SYSTEM  
LOAD  
2
I C  
STAT  
30 mA  
INTERFACE  
OSC  
DISABLE  
LOGIC  
AND  
PMID  
Q1A  
ON  
Q1B  
OFF  
ON  
OTG/USB#  
Greater than VBAT  
Less than VBAT  
CONTROL  
OFF  
Figure 2. IC and System Block Diagram  
www.onsemi.com  
2
 
FAN54015  
Table 2. RECOMMENDED EXTERNAL COMPONENTS  
Component  
Description  
Vendor  
Parameter  
Typ  
Unit  
L1  
Murata: LQM2HPN1R0  
Murata: LQM2MPN1R0  
L
1.0  
mH  
1 mH 20%, 1.6 A, DCR = 55 mW, 2520  
1 mH 30%, 1.4 A, DCR = 85 mW, 2016  
10 mF, 20%, 6.3 V, X5R, 0603  
CBAT  
CMID  
CBUS  
Murata: GRM188R60J106M  
TDK: C1608X5R0J106M  
C
C (Note 2)  
C
10  
4.7  
1.0  
mF  
mF  
mF  
4.7 mF, 10%, 6.3 V, X5R, 0603  
1.0 mF, 10%, 25 V, X5R, 0603  
Murata: GRM188R60J475K  
TDK: C1608X5R0J475K  
Murata GRM188R61E105K  
TDK:C1608X5R1E105M  
2. A 6.3 V rating is sufficient for C  
because PMID is protected from overvoltage surges on VBUS by Q3 (Figure 2).  
MID  
A1  
B1  
C1  
D1  
E1  
A2  
B2  
C2  
D2  
E2  
A3  
B3  
C3  
D3  
E3  
A4  
B4  
C4  
D4  
E4  
A4  
B4  
C4  
D4  
E4  
A3  
B3  
C3  
D3  
E3  
A2  
B2  
C2  
D2  
E2  
A1  
B1  
C1  
D1  
E1  
Top View  
Bottom View  
Figure 3. WLCSP20 Pin Assignments  
PIN DEFINITIONS  
Pin #  
A1, A2  
A3  
Name  
VBUS  
NC  
Description  
Charger Input Voltage and USBOTG output voltage. Bypass with a 1 mF capacitor to PGND.  
No Connect. No external connection is made between this pin and the IC’s internal circuitry.  
2
A4  
SCL  
I C Interface Serial Clock. This pin should not be left floating.  
B1B3  
PMID  
Power Input Voltage. Power input to the charger regulator, bypass point for the input current sense, and  
highvoltage input switch. Bypass with a minimum of 4.7 mF, 6.3 V capacitor to PGND.  
2
B4  
SDA  
SW  
I C Interface Serial Data. This pin should not be left floating.  
C1 C3  
C4  
Switching Node. Connect to output inductor.  
STAT  
PGND  
Status. Opendrain output indicating charge status. The IC pulls this pin LOW when charging.  
Power Ground. Power return for gate drive and power transistors. The connection from this pin to the bottom  
D1 D3  
of C  
should be as short as possible.  
MID  
D4  
E1  
E2  
E3  
E4  
OTG  
OnTheGo. Enables boost regulator in conjunction with OTG_EN and OTG_PL bits (see Table 16). On  
VBUS PowerOn Reset (POR), this pin sets the input current limit for t charging.  
15MIN  
CSIN  
CurrentSense Input. Connect to the sense resistor in series with the battery. The IC uses this node to sense  
current into the battery. Bypass this pin with a 0.1 mF capacitor to PGND.  
2
DISABLE Charge Disable. If this pin is HIGH, charging is disabled. When LOW, charging is controlled by the I C  
registers. When this pin is HIGH, the 15minute timer is reset. This pin does not affect the 32second timer.  
VREG  
Regulator Output. Connect to a 1 mF capacitor to PGND. This pin can supply up to 2mA of DC load current.  
The output voltage is PMID, which is limited to 1.8 V.  
VBAT  
Battery Voltage. Connect to the positive (+) terminal of the battery pack. Bypass with a 0.1 mF capacitor to  
PGND if the battery is connected through long leads.  
www.onsemi.com  
3
 
FAN54015  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Continuous  
Min  
–1.4  
–2.0  
–0.3  
Max  
Unit  
V
BUS  
VBUS Voltage  
20.0  
V
Pulsed, 100 ms Maximum NonRepetitive  
V
STAT  
STAT Voltage  
16.0  
V
V
V
I
PMID Voltage  
7.0  
SW, CSIN, VBAT, DISABLE Voltage  
Voltage on Other Pins  
–0.3  
–0.3  
7.0  
6.5 (Note 3)  
4
V
V
O
Maximum V  
Slope above 5.5 V when Boost or Charger are Active  
V/ms  
dVBUS  
dt  
BUS  
ESD  
Electrostatic Discharge Protection  
Level  
Human Body Model per JESD22A114  
Charged Device Model per JESD22C101  
2000  
500  
V
T
Junction Temperature  
Storage Temperature  
–40  
–65  
+150  
+150  
+260  
°C  
°C  
°C  
J
T
STG  
T
L
Lead Soldering Temperature, 10 Seconds  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
3. Lesser of 6.5 V or V + 0.3 V.  
I
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
4
Max  
6
Unit  
V
V
BUS  
Supply Voltage  
V
Maximum Battery Voltage when Boost enabled  
Negative VBUS Slew Rate during VBUS Short Circuit,  
4.5  
4
V
BAT(MAX)  
T
60°C  
60°C  
V/ms  
dVBUS  
A
C
4.7 mF (see VBUS Short While Charging)  
*
MID  
T
A
2
dt  
T
Ambient Temperature  
Junction Temperature (see Thermal Regulation and Protection section)  
–30  
–30  
+85  
+120  
°C  
°C  
A
T
J
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
THERMAL PROPERTIES  
Symbol  
Parameter  
Value  
60  
Unit  
°C/W  
°C/W  
q
q
JunctiontoAmbient Thermal Resistance  
JunctiontoPCB Thermal Resistance  
JA  
JB  
20  
Junctiontoambient thermal resistance is a function of application and board layout. This data is measured with fourlayer 2s2p boards in  
accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature T at a given ambient  
J(max)  
temperature T . For measured data, see Table 11.  
A
www.onsemi.com  
4
 
FAN54015  
ELECTRICAL SPECIFICATIONS (Unless otherwise specified: according to the circuit of Figure 1; recommended operating  
temperature range for T and T ; V = 5.0 V; HZ_MODE; OPA_MODE = 0; (Charge Mode); SCL, SDA, OTG = 0 or 1.8 V; and typical  
J
A
BUS  
values are for T = 25°C)  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
POWER SUPPLIES  
I
VBUS Current  
V
V
> V  
> V  
, PWM Switching  
; PWM Enabled,  
10  
mA  
mA  
VBUS  
BUS  
BUS(min)  
2.5  
BUS  
BUS(min)  
Not Switching (Battery OVP Condition);  
I_IN Setting = 100 mA  
0°C < T < 85°C, HZ_MODE = 1  
63  
90  
mA  
mA  
mA  
J
< V  
V
, 32S Mode  
BAT  
LOWV  
I
VBAT to VBUS Leakage Current  
0°C < T < 85°C, HZ_MODE = 1,  
0.2  
5.0  
LKG  
J
V
BAT  
= 4.2 V, V  
= 0 V  
BUS  
I
Battery Discharge Current in  
HighImpedance Mode  
0°C < T < 85°C, HZ_MODE = 1, V = 4.2 V  
BAT  
20  
10  
BAT  
J
DISABLE = 1, 0°C < T < 85°C, V  
= 4.2 V  
J
BAT  
CHARGER VOLTAGE REGULATION  
V
OREG  
Charge Voltage Range  
3.5  
–0.5%  
–1%  
4.4  
V
Charge Voltage Accuracy  
T = 25°C  
+0.5%  
+1%  
A
T = 0 to 125°C  
J
CHARGING CURRENT REGULATION  
I
Output Charge Current Range  
550  
92  
1450  
102  
mA  
%
V
< V  
< V  
, R  
= 68 mW  
OCHRG  
LOWV  
BAT  
OREG  
SENSE  
Charge Current Accuracy Across R  
20 mV V  
40 mV  
97  
97  
SENSE  
IREG  
V
IREG  
> 40 mV  
94  
100  
%
WEAK BATTERY DETECTION  
V
LOWV  
Weak Battery Threshold Range  
Weak Battery Threshold Accuracy  
Weak Battery Deglitch Time  
3.4  
–5  
3.7  
+5  
V
%
Rising Voltage  
30  
ms  
LOGIC LEVELS: DISABLE, SDA, SCL, OTG  
V
HighLevel Input Voltage  
LowLevel Input Voltage  
Input Bias Current  
1.05  
V
V
IH  
V
0.4  
IL  
I
IN  
Input Tied to GND or V  
0.01  
1.00  
mA  
IN  
CHARGE TERMINATION DETECTION  
I
Termination Current Range  
Termination Current Accuracy  
50  
–25  
–5  
400  
+25  
+5  
mA  
%
V
> V  
– V  
, R  
= 68 mW  
(TERM)  
BAT  
OREG  
RCH  
SENSE  
[V  
– V  
] from 3 mV to 20 mV  
CSIN  
CSIN  
BAT  
BAT  
[V  
– V  
] from 20 mV to 40 mV  
Termination Current Deglitch Time  
2 mV Overdrive  
30  
ms  
V
1.8 V LINEAR REGULATOR  
1.8 V Regulator Output  
INPUT POWER SOURCE DETECTION  
V
REG  
I
from 0 to 2 mA  
1.7  
1.8  
1.9  
REG  
V
V
VBUS Input Voltage Rising  
Minimum VBUS During Charge  
VBUS Validation Time  
To Initiate and Pass VBUS Validation  
During Charging  
4.29  
3.71  
30  
4.42  
3.94  
V
V
IN(MIN)1  
IN(MIN)2  
t
ms  
VBUS_VALID  
SPECIAL CHARGER (V  
)
BUS  
V
SP  
Special Charger Setpoint Accuracy  
–3  
+3  
%
www.onsemi.com  
5
FAN54015  
ELECTRICAL SPECIFICATIONS (Unless otherwise specified: according to the circuit of Figure 1; recommended operating  
temperature range for T and T ; V = 5.0 V; HZ_MODE; OPA_MODE = 0; (Charge Mode); SCL, SDA, OTG = 0 or 1.8 V; and typical  
J
A
BUS  
values are for T = 25°C) (continued)  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
INPUT CURRENT LIMIT  
I
Input Current Limit Threshold  
I
I
Set to 100 mA  
Set to 500 mA  
88  
93  
98  
mA  
INLIM  
IN  
450  
475  
500  
IN  
V
REF  
BIAS GENERATOR  
V
REF  
Bias Regulator Voltage  
V
BUS  
> V  
or V  
> V  
BAT(MIN)  
6.5  
V
IN(MIN)  
BAT  
ShortCircuit Current Limit  
20  
mA  
BATTERY RECHARGE THRESHOLD  
V
RCH  
Recharge Threshold  
Deglitch Time  
Below V  
100  
120  
130  
150  
mV  
ms  
(OREG)  
V
BAT  
Falling Below V  
Threshold  
RCH  
STAT OUTPUT  
V
STAT Output Low  
I
= 10 mA  
0.4  
1
V
STAT(OL)  
STAT(OH)  
STAT  
I
STAT High Leakage Current  
V
= 5 V  
mA  
STAT  
BATTERY DETECTION  
I
Battery Detection Current before Charge  
Done (Sink Current) (Note 4)  
Begins after Termination Detected and  
V – V  
–0.80  
262  
mA  
ms  
DETECT  
V
BAT  
OREG  
RCH  
t
Battery Detection Time  
DETECT  
SLEEP COMPARATOR  
SleepMode Entry Threshold,  
V
– V  
V
SLP  
2.3 V V  
V , V Falling  
OREG BUS  
0
0.04  
30  
0.10  
V
BUS  
BAT  
BAT  
t
Deglitch Time for VBUS Rising Above  
by V  
Rising Voltage  
ms  
SLP_EXIT  
V
BAT  
SLP  
POWER SWITCHES (see Figure 2)  
R
Q3 On Resistance (VBUS to PMID)  
Q1 On Resistance (PMID to SW)  
Q2 On Resistance (SW to GND)  
I
= 500 mA  
180  
130  
150  
250  
225  
225  
mW  
DS(ON)  
IN(LIMIT)  
CHARGER PWM MODULATOR  
f
Oscillator Frequency  
Maximum Duty Cycle  
Minimum Duty Cycle  
2.7  
3.0  
3.3  
100  
MHz  
%
SW  
D
MAX  
D
0
%
MIN  
I
Synchronous to NonSynchronous  
Current CutOff Threshold (Note 5)  
LowSide MOSFET (Q2) CyclebyCycle  
Current Limit  
140  
mA  
SYNC  
BOOST MODE OPERATION (OPA_MODE = 1, HZ_MODE = 0)  
V
Boost Output Voltage at VBUS  
2.5 V < V  
< 4.5 V, I  
< 4.5 V, I  
from 0 to 200 mA  
from 0 to 500 mA  
4.80  
4.77  
5.07  
5.07  
140  
5.17  
5.17  
300  
1908  
V
BOOST  
BAT  
BAT  
LOAD  
3.0 V < V  
LOAD  
I
Boost Mode Quiescent Current  
Q2 Peak Current Limit  
PFM Mode, V  
= 3.6 V, I = 0  
OUT  
mA  
mA  
V
BAT(BOOST)  
BAT  
I
1272  
1590  
2.42  
2.58  
LIMPK(BST)  
UVLO  
Minimum Battery Voltage for Boost  
Operation  
While Boost Active  
BST  
To Start Boost Regulator  
2.70  
VBUS LOAD RESISTANCE  
VBUS to PGND Resistance  
R
Normal Operation  
Charger Validation  
1500  
100  
kW  
VBUS  
W
www.onsemi.com  
6
FAN54015  
ELECTRICAL SPECIFICATIONS (Unless otherwise specified: according to the circuit of Figure 1; recommended operating  
temperature range for T and T ; V = 5.0 V; HZ_MODE; OPA_MODE = 0; (Charge Mode); SCL, SDA, OTG = 0 or 1.8 V; and typical  
J
A
BUS  
values are for T = 25°C) (continued)  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
PROTECTION AND TIMERS  
VBUS  
VBUS OverVoltage Shutdown  
Hysteresis  
V
V
Rising  
Falling  
6.09  
6.29  
100  
2.3  
6.49  
V
mV  
A
OVP  
BUS  
BUS  
I
Q1 CyclebyCycle Peak Current Limit  
Battery ShortCircuit Threshold  
Hysteresis  
Charge Mode  
LIMPK(CHG)  
V
V
BAT  
V
BAT  
V
BAT  
Rising  
Falling  
1.95  
2.00  
100  
30  
2.05  
V
SHORT  
mV  
mA  
°C  
I
Linear Charging Current  
Thermal Shutdown Threshold (Note 6)  
Hysteresis (Note 6)  
< V  
20  
40  
SHORT  
SHORT  
T
T Rising  
J
145  
10  
SHUTDWN  
T Falling  
J
T
Thermal Regulation Threshold (Note 6)  
Detection Interval  
Charge Current Reduction Begins  
120  
2.1  
°C  
s
CF  
t
INT  
t
32Second Timer (Note 7)  
Charger Enabled  
Charger Disabled  
15Minute Mode  
Charger Inactive  
20.5  
18.0  
12.0  
–25  
25.2  
25.2  
13.5  
28.0  
34.0  
15.0  
25  
s
32S  
t
15Minute Timer  
min  
%
15MIN  
Dt  
LowFrequency Timer Accuracy  
LF  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Negative current is current flowing from the battery to VBUS (discharging the battery).  
5. Q2 always turns on for 60 ns, then turns off if current is below I  
6. Guaranteed by design; not tested in production.  
.
SYNC  
7. This tolerance (%) applies to all timers on the IC, including softstart and deglitching timers.  
I2C TIMING SPECIFICATIONS (Guaranteed by design)  
Symbol  
Parameter  
SCL Clock Frequency  
Conditions  
Standard Mode  
Fast Mode  
HighSpeed Mode, C 100 pF  
Min  
Typ  
Max Unit  
fSCL  
100  
kHz  
400  
3400  
B
HighSpeed Mode, C 400 pF  
1700  
B
tBUF  
BusFree Time between STOP and START  
Conditions  
Standard Mode  
Fast Mode  
4.7  
1.3  
4
ms  
tHD;STA  
START or Repeated START Hold Time  
Standard Mode  
Fast Mode  
ms  
ns  
ns  
ms  
ms  
ns  
ns  
ms  
ns  
ns  
ns  
ms  
ns  
600  
160  
4.7  
1.3  
160  
320  
4
HighSpeed Mode  
Standard Mode  
Fast Mode  
tLOW  
tHIGH  
SCL LOW Period  
HighSpeed Mode, C 100 pF  
B
HighSpeed Mode, C 400 pF  
B
SCL HIGH Period  
Standard Mode  
Fast Mode  
600  
60  
HighSpeed Mode, C 100 pF  
B
HighSpeed Mode, C 400 pF  
120  
4.7  
600  
B
tSU;STA  
Repeated START Setup Time  
Standard Mode  
Fast Mode  
www.onsemi.com  
7
 
FAN54015  
I2C TIMING SPECIFICATIONS (Guaranteed by design) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
160  
250  
100  
10  
Max Unit  
HighSpeed Mode  
Standard Mode  
Fast Mode  
ns  
ns  
tSU;DAT  
Data Setup Time  
Data Hold Time  
HighSpeed Mode  
Standard Mode  
Fast Mode  
tHD;DAT  
tRCL  
0
3.45  
900  
70  
ms  
ns  
ns  
ns  
ns  
0
HighSpeed Mode, C 100 pF  
0
B
HighSpeed Mode, C 400 pF  
0
150  
1000  
300  
80  
B
SCL Rise Time  
SCL Fall Time  
Standard Mode  
Fast Mode  
20 + 0.1 C  
20 + 0.1 C  
B
B
HighSpeed Mode, C 100 pF  
10  
20  
B
HighSpeed Mode, C 400 pF  
160  
300  
300  
40  
B
tFCL  
Standard Mode  
Fast Mode  
20 + 0.1 C  
20 + 0.1 C  
ns  
ns  
ns  
B
B
HighSpeed Mode, C 100 pF  
10  
20  
B
HighSpeed Mode, C 400 pF  
80  
B
tRDA tRCL1 SDA Rise Time  
Standard Mode  
Fast Mode  
20 + 0.1 C  
20 + 0.1 C  
1000  
300  
80  
B
B
Rise Time of SCL after a Repeated START  
Condition  
and after ACK Bit  
HighSpeed Mode, C 100 pF  
10  
20  
B
HighSpeed Mode, C 400 pF  
160  
300  
300  
80  
B
tFDA  
SDA Fall Time  
Standard Mode  
Fast Mode  
20 + 0.1 C  
B
B
20 + 0.1 C  
HighSpeed Mode, C 100 pF  
10  
20  
B
HighSpeed Mode, C 400 pF  
160  
B
tSU;STO  
Stop Condition Setup Time  
Standard Mode  
Fast Mode  
4
ms  
ns  
ns  
pF  
600  
160  
HighSpeed Mode  
C
Capacitive Load for SDA, SCL  
400  
B
www.onsemi.com  
8
FAN54015  
TIMING DIAGRAMS  
tF  
tSU;STA  
tBUF  
SDA  
SCL  
tR  
TSU;DAT  
tHD;STO  
tHIGH  
tHD;DAT  
tLOW  
tHD;STA  
tHD;STA  
REPEATED  
START  
START  
STOP  
START  
Figure 4. I2C Interface Timing for Fast and Slow Modes  
REPEATED  
START  
STOP  
tFDA  
tRDA  
tSU;DAT  
SDAH  
tSU;STA  
tRCL1  
tFCL  
tHIGH  
tHD;DAT  
note A  
tRCL  
tSU;STO  
SCLH  
tLOW  
tHD;STA  
REPEATED  
START  
= MCS Current Source Pullup  
= RP Resistor Pullup  
Note A: First rising edge of SCLH after Repeated Start and after each ACK bit.  
Figure 5. I2C Interface Timing for HighSpeed Mode  
www.onsemi.com  
9
FAN54015  
CHARGE MODE TYPICAL CHARACTERISTICS  
(Unless otherwise specified, circuit of Figure 1, V  
= 4.2 V, V = 5.0 V, and T = 25°C)  
BUS A  
OREG  
180  
160  
140  
120  
100  
80  
900  
800  
700  
600  
500  
400  
300  
200  
100  
60  
5.5 VBUS  
5.0 VBUS  
4.5 VBUS  
5.5 VBUS  
5.0 VBUS  
4.5 VBUS  
40  
20  
2.5  
3
3.5  
4
4.5  
2.5  
3
3.5  
4
4.5  
Battery Voltage, V  
(V)  
Battery Voltage, V  
(V)  
BAT  
BAT  
Figure 6. Battery Charge Current vs. VBUS with  
Figure 7. Battery Charge Current vs. VBUS with  
INLIM = 500 mA  
IINLIM = 100 mA  
I
97%  
94%  
91%  
88%  
85%  
82%  
94%  
92%  
90%  
88%  
86%  
84%  
4.20 VBAT, 4.5 VBUS  
4.20 VBAT, 5.0 VBUS  
3.54 VBAT, 5.0 VBUS  
3.54 VBAT, 4.5 VBUS  
5.5 VBUS  
5.0 VBUS  
4.5 VBUS  
100  
300  
500  
700  
900 1100 1300 1500  
Battery Charge Current (mA)  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3  
Battery Voltage, V (V)  
BAT  
Figure 8. Charger Efficiency, No IINLIM  
OCHARGE = 1450 mA  
,
Figure 9. Charger Efficiency vs. VBUS  
INLIM = 500 mA  
,
I
I
Figure 10. AutoCharge Startup at VBUS Plugin,  
INLIM = 100 mA, OTG = 1, VBAT = 3.4 V  
Figure 11. AutoCharge Startup at VBUS Plugin,  
I
IINLIM = 500 mA, OTG=1, VBAT = 3.4 V  
www.onsemi.com  
10  
FAN54015  
CHARGE MODE TYPICAL CHARACTERISTICS  
(Unless otherwise specified, circuit of Figure 1, V  
= 4.2 V, V = 5.0 V, and T = 25°C) (continued)  
BUS A  
OREG  
Figure 12. AutoCharge Startup with 300mA Limited  
Charger / Adaptor, IINLIM = 500 mA, OTG = 1,  
Figure 13. Charger Startup with HZ_MODE Bit Reset,  
INLIM = 500 mA, IOCHARGE = 1050 mA, OREG = 4.2 V,  
BAT = 3.6 V  
I
V
BAT = 3.4 V  
V
Figure 14. Battery Removal / Insertion During  
Charging, VBAT = 3.9 V, IOCHARGE = 1050 Ma,  
No IINLIM, TE = 0  
Figure 15. Battery Removal / Insertion During  
Charging, VBAT = 3.9 V, IOCHARGE = 1050 mA,  
No IINLIM, TE = 1  
www.onsemi.com  
11  
FAN54015  
CHARGE MODE TYPICAL CHARACTERISTICS  
(Unless otherwise specified, circuit of Figure 1, V  
= 4.2 V, V  
= 5.0 V, and T = 25°C) (continued)  
OREG  
BUS  
A
200  
150  
100  
50  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
30°C  
+25°C  
+85°C  
30°C, 5.0 VBUS  
+25°C, 5.0 VBUS  
+85°C, 5.0 VBUS  
0
4.0  
4.5  
5.0  
5.5  
6.0  
0
1
2
3
4
5
Input Voltage, V  
(V)  
1.8 V Regulator Load Current (mA)  
BUS  
Figure 16. VBUS Current in HighImpedance Mode  
Figure 17. VREG 1.8 V Output Regulation  
with Battery Open  
Figure 18. No Battery, VBUS at Power Up  
www.onsemi.com  
12  
FAN54015  
BOOST MODE TYPICAL CHARACTERISTICS  
(Unless otherwise specified, using circuit of Figure 1, V  
= 3.6 V, T = 25°C)  
BAT  
A
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
3.0 VBAT  
80  
10°C, 3.6 VBAT  
+25°C, 3.6 VBAT  
+85°C, 3.6 VBAT  
3.6 VBAT  
4.2 VBAT  
75  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
V
BUS  
Load Current (mA)  
V
BUS  
Load Current (mA)  
Figure 19. Efficiency vs. VBAT  
Figure 20. Efficiency Over Temperature  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
10°C, 3.6 VBAT  
+25°C, 3.6 VBAT  
+85°C, 3.6 VBAT  
3.0 VBAT  
3.6 VBAT  
4.2 VBAT  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
V
BUS  
Load Current (mA)  
V
BUS  
Load Current (mA)  
Figure 21. Output Regulation vs. VBAT  
Figure 22. Output Regulation Over Temperature  
250  
200  
150  
100  
50  
20  
15  
10  
30°C  
+25°C  
+85°C  
5
0
30°C  
+25°C  
+85°C  
2
2.5  
3
3.5  
4
4.5  
5
2
2.5  
3
3.5  
4
4.5  
5
Battery Voltage, V  
(V)  
Battery Voltage, V  
(V)  
BUS  
BUS  
Figure 23. Quiescent Current  
Figure 24. HighImpedance Mode Battery Current  
www.onsemi.com  
13  
FAN54015  
BOOST MODE TYPICAL CHARACTERISTICS  
(Unless otherwise specified, using circuit of Figure 1, V  
= 3.6 V, T = 25°C)  
BAT  
A
Figure 27. Boost PWM Waveform  
Figure 28. Boost PFM Waveform  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
2.7 VBAT  
3.6 VBAT  
4.2 VBAT  
4.5 VBAT  
30°C, 3.6 VBAT  
+25°C, 3.6 VBAT  
+85°C, 3.6 VBAT  
0
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
V
BUS  
Load Current (mA)  
V
BUS  
Load Current (mA)  
Figure 25. Output Ripple vs. VBAT  
Figure 26. Output Ripple vs. Temperature  
www.onsemi.com  
14  
FAN54015  
BOOST MODE TYPICAL CHARACTERISTICS  
(Unless otherwise specified, using circuit of Figure 1, V  
= 3.6 V, T = 25°C)  
BAT  
A
VBUS  
IL  
IBAT  
Figure 29. Startup, 3.6 VBAT, 44 W Load, Additional  
10 mF, X5R Across VBUS  
Figure 30. VBUS Fault Response, 3.6 VBAT  
Figure 31. Load Transient, 5 155 5 mA,  
Figure 32. Load Transient, 5 255 5 mA,  
tR = tF = 100 ns  
tR = tF = 100 ns  
www.onsemi.com  
15  
 
FAN54015  
Battery Charging Curve  
If the battery voltage is below V  
source precharges the battery until V  
The PWM charging circuit is then started and the battery is  
charged with a constant current if sufficient input power is  
available. The current slew rate is limited to prevent  
overshoot.  
The FAN54015 is designed to work with a currentlimited  
input source at VBUS. During the current regulation phase  
CIRCUIT DESCRIPTION / OVERVIEW  
When charging batteries with a currentlimited input  
source, such as USB, a switching charger’s high efficiency  
over a wide range of output voltages minimizes charging  
time.  
FAN54015 combines a highly integrated synchronous  
buck regulator for charging with a synchronous boost  
regulator, which can supply 5 V to USB OnTheGo (OTG)  
peripherals. The regulator employs synchronous  
rectification for both the charger and boost regulators to  
maintain high efficiency over a wide range of battery  
voltages and charge states.  
, a linear current  
SHORT  
reaches V  
.
BAT  
SHORT  
of charging, I  
or the programmed charging current  
INLIM  
limits the amount of current available to charge the battery  
and power the system. The effect of I  
be seen in Figure 34.  
on I  
can  
INLIM  
CHARGE  
The FAN54015 has three operating modes:  
1. Charge Mode:  
VOREG  
Charges a singlecell Liion or Lipolymer  
battery.  
ICHARGE  
2. Boost Mode:  
VBAT  
Provides 5 V power to USBOTG with an  
integrated synchronous rectification boost  
regulator using the battery as input.  
ITERM  
VSHORT  
ISHORT  
3. HighImpedance Mode:  
Both the boost and charging circuits are OFF in  
this mode. Current flow from VBUS to the battery  
or from the battery to VBUS is blocked in this  
mode. This mode consumes very little current  
from VBUS or the battery.  
PRE  
CHARGE  
CONSTANT CURRENT CONSTANT  
(CC) VOLTAGE (CV)  
NOTE: Default settings are denoted by bold typeface.  
Figure 33. Charge Curve, ICHARGE Not Limited by IINLIM  
Charge Mode  
VOREG  
In Charge Mode, FAN54015 employs four regulation  
loops:  
1. Input Current: Limits the amount of current drawn  
from VBUS. This current is sensed internally and  
ICHARGE  
VBAT  
2
can be programmed through the I C interface.  
2. Charging Current: Limits the maximum charging  
current. This current is sensed using an external  
ITERM  
VSHORT  
ISHORT  
R
SENSE  
resistor.  
3. Charge Voltage: The regulator is restricted from  
exceeding this voltage. As the internal battery  
voltage rises, the battery’s internal impedance and  
PRE−  
CHARGE  
CURRENT  
REGULATION  
VOLTAGE  
REGULATION  
R
SENSE  
work in conjunction with the charge  
voltage regulation to decrease the amount of  
current flowing to the battery. Battery charging is  
Figure 34. Charge Curve, IINLIM Limits ICHARGE  
completed when the voltage across R  
drops  
SENSE  
Assuming that V  
charged “float” voltage, the current that the battery accepts  
with the PWM regulator limiting its output (sensed at  
is programmed to the cell’s fully  
OREG  
below the I  
threshold.  
TERM  
4. Temperature: If the IC’s junction temperature  
reaches 120°C, charge current is reduced until the  
IC’s temperature stabilizes at 120°C.  
VBAT) to V  
declines, and the charger enters the  
OREG  
voltage regulation phase of charging. When the current  
declines to the programmed I value, the charge cycle  
is complete. Charge current termination can be disabled by  
resetting the TE bit (REG1[3]).  
The charger output or “float” voltage can be programmed  
by the OREG bits from 3.5 V to 4.44 V in 20 mV increments,  
as shown in Table 3.  
5. An additional loop limits the amount of drop on  
TERM  
VBUS to a programmable voltage (V ) to  
SP  
accommodate “special chargers” that limit current  
to a lower current than might be available from a  
“normal” USB wall charger.  
www.onsemi.com  
16  
 
FAN54015  
Table 3. OREG BITS (OREG[7:2]) VS. CHARGER VOUT  
(VOREG) FLOAT VOLTAGE  
A new charge cycle begins when one of the following  
occurs:  
The battery voltage falls below V  
Decimal  
0
Hex  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
VOREG Decimal  
Hex  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
VOREG  
4.14  
4.16  
4.18  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
4.38  
4.40  
4.42  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
V  
OREG  
RCH  
3.50  
3.52  
3.54  
3.56  
3.58  
3.60  
3.62  
3.64  
3.66  
3.68  
3.70  
3.72  
3.74  
3.76  
3.78  
3.80  
3.82  
3.84  
3.86  
3.88  
3.90  
3.92  
3.94  
3.96  
3.98  
4.00  
4.02  
4.04  
4.06  
4.08  
4.10  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
VBUS Power on Reset (POR) clears and the battery  
1
voltage is below the weak battery threshold (V  
).  
LOWV  
2
CE or HZ_MODE is reset through I C write to  
2
CONTROL1 (R1) register.  
3
4
Charge Current Limit (IOCHARGE  
)
5
Table 5. IOCHARGE (REG4 [6:4]) CURRENT AS  
FUNCTION OF IOCHARGE BITS AND RSENSE RESISTOR  
VALUES  
6
7
8
I
(mA)  
100 mW  
374  
OCHARGE  
V
RSENSE  
(mV)  
9
68 mW  
550  
DEC  
BIN  
000  
001  
010  
011  
100  
101  
110  
111  
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
0
1
2
3
4
5
6
7
37.4  
44.2  
51.0  
57.8  
71.4  
78.2  
91.8  
98.6  
650  
442  
750  
510  
850  
578  
1050  
1150  
1350  
1450  
714  
782  
918  
986  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
Termination Current Limit  
Current charge termination is enabled when TE  
(REG1[3]) = 1. Typical termination current values are given  
in Table 6.  
Table 6. ITERM CURRENT AS FUNCTION OF ITERM  
BITS (REG4[2:0]) AND RSENSE RESISTOR VALUES  
I
(mA)  
TERM  
V
RSENSE  
(mV)  
68 mW  
49  
100 mW  
I
TERM  
0
3.3  
6.6  
33  
66  
1
2
3
4
5
6
7
97  
9.9  
146  
194  
243  
291  
340  
388  
99  
13.2  
16.5  
19.8  
23.1  
26.4  
132  
165  
198  
231  
264  
The following charging parameters can be programmed  
2
by the host through I C:  
Table 4. PROGRAMMABLE CHARGING PARAMETERS  
Parameter  
Name  
Register  
REG2[7:2]  
REG4[6:4]  
REG1[7:6]  
REG4[2:0]  
REG1[5:4]  
When the charge current falls below I  
, PWM  
TERM  
charging stops and the STAT bits change to READY (00) for  
about 500 ms while the IC determines whether the battery  
and charging source are still connected. STAT then changes  
to CHARGE DONE (10), provided the battery and charger  
are still connected.  
Output Voltage Regulation  
Battery Charging Current Limit  
Input Current Limit  
V
OREG  
I
OCHRG  
I
INLIM  
Charge Termination Limit  
Weak Battery Voltage  
I
TERM  
V
LOWV  
www.onsemi.com  
17  
 
FAN54015  
PWM Controller in Charge Mode  
USBFriendly Boot Sequence  
The IC uses a currentmode PWM controller to regulate  
the output voltage and battery charge currents. The  
synchronous rectifier (Q2) has a current limit that which off  
the FET when the current is negative by more than 140 mA  
peak. This prevents current flow from the battery.  
At VBUS POR, when the battery voltage is above the  
weak battery threshold (V  
accordance with its I C register settings. If V  
), the IC operates in  
LOWV  
2
< V  
,
BAT  
LOWV  
the IC sets all registers to their default values and enables the  
charger using an input current limit controlled by the OTG  
pin (100 mA if OTG is LOW and 500 mA if OTG is HIGH).  
This feature can revive a battery whose voltage is too low to  
ensure reliable host operation. Charging continues in the  
absence of host communication even after the battery has  
Safety Timer  
Section references Figure 39.  
At the beginning of charging, the IC starts a 15minute  
timer (t  
). When this times out, charging is terminated.  
15MIN  
reached V  
, whose default value is 3.54 V, and the  
OREG  
2
Writing to any register through I C stops and resets the  
charger remains active until t  
times out. Once the host  
15MIN  
t
timer, which in turn starts a 32second timer (t ).  
15MIN  
32S  
processor begins writing to the IC, charging parameters are  
Setting the TMR_RST bit (REG0[7]) resets the t  
timer.  
32S  
set by the host, which must continually reset the t timer  
32S  
If the t  
timer times out; charging is terminated, the  
32S  
to continue charging using the programmed charging  
registers are set to their default values, and charging resumes  
using the default values with the t timer running.  
parameters. If t .times out, the register defaults are loaded,  
32S  
15MIN  
the FAULT bits are set to 110, STAT is pulsed HIGH, and  
charging continues with default charge parameters.  
Normal charging is controlled by the host with the t  
32S  
timer running to ensure that the host is alive. Charging with  
the t timer running is used for charging that is  
Input Current Limiting  
15MIN  
unattended by the host. If the t  
turns off the charger, sets the CE bit, and indicates a timer  
fault (110) on the FAULT bits (REG0[2:0]). This sequence  
timer expires; the IC  
To minimize charging time without overloading VBUS  
current limitations, the IC’s input current limit can be  
15MIN  
programmed by the I  
bits (REG1[7:6]).  
INLIM  
prevents overcharge if the host fails to reset the t timer.  
32S  
Table 7. INPUT CURRENT LIMIT  
VBUS POR / NonCompliant Charger Rejection  
I
REG1[7:6]  
Input Current Limit  
100 mA  
INLIM  
When the IC detects that V  
has risen above V  
BUS  
IN(MIN)1  
(4.4 V), the IC applies a 100 W load from VBUS to GND. To  
clear the VBUS POR (PowerOnReset) and begin  
00  
01  
10  
11  
500 mA  
charging, VBUS must remain above V  
and below  
IN(MIN)1  
800 mA  
VBUS  
for t  
(30 ms) before the IC initiates  
OVP  
VBUS_VALID  
No limit  
charging. The VBUS validation sequence always occurs  
before charging is initiated or reinitiated (for example, after  
The OTG pin establishes the input current limit when  
is running.  
a VBUS OVP fault or a V  
recharge initiation).  
RCH  
t
t
ensures that unfiltered 50 / 60 Hz chargers  
15MIN  
VBUS_VALID  
and other noncompliant chargers are rejected.  
www.onsemi.com  
18  
 
FAN54015  
FLOW CHARTS  
VBUS POR  
YES  
HZ State  
HZ, CEor  
DISABLE Pin  
set?  
VBAT > VLOWV  
YES  
Charge  
Configuration  
State  
NO  
NO  
NO  
HZ, CEor  
DISABLE Pin  
set?  
T32Sec  
Armed?  
T15Min Timer?  
NO  
NO  
YES  
YES  
YES  
HZ, CEor  
DISABLE Pin  
set?  
YES  
HZ State  
T32Sec  
Armed?  
NO  
YES  
Charge State  
Reset all registers  
Start T15MIN  
NO  
Figure 35. Charger VBUS PO  
www.onsemi.com  
19  
FAN54015  
FLOW CHARTS (continued)  
CHARGE STATE  
Disable Charging  
NO  
Indicate  
VBUS Fault  
Enable ISHORT  
,
Reset Safety reg  
YES  
VBAT < VSHORT  
VBUS OK?  
YES  
NO  
Indicate Charging  
NO  
PWM Charging  
T15MIN  
VBUS OK?  
YES  
Indicate Charging  
Timeout?  
NO  
YES  
Indicate timer fault  
Set CE  
Charge  
Configuration  
State  
Disable Charging  
T15MIN  
Timeout?  
YES  
Indicate  
VBUS Fault  
NO  
NO  
HIGHZ mode  
IOUT < ITERM  
Termination enabled  
BAT > VOREG – VRCH  
Indicate Charge  
Complete  
YES  
VBAT < VOREG – VRCH  
NO  
V
Reset Safety reg  
Delay tINT  
NO  
YES  
Battery Removed  
Stop Charging  
YES  
VBAT < VOREG – VRCH  
Reset charge  
parameters  
Enable IDET for TDETECT  
Figure 36. Charge Mode  
www.onsemi.com  
20  
FAN54015  
FLOW CHARTS (continued)  
HZ State  
Charge  
Configuration  
State  
DISABLE  
PIN  
Reset T15min  
if running  
HIGH  
LOW  
T32Sec  
ARMED AND  
CE= 0?  
Stop T32Sec  
YES  
Charge State  
RUN  
T32Sec  
NO  
NO  
Has T15Min  
and CE= 0  
START T15Min  
NO  
HZ or CE set?  
YES  
VBAT > VLOWV?  
YES  
YES  
HIGH  
NO  
VBAT < VOREG  
for 262 ms?  
NO  
YES  
DISABLE  
PIN  
LOW  
Charge State  
Figure 37. Charge Configuration  
Figure 38. HZState  
Charge Start  
Start T15MIN  
Reset Registers  
YES  
T32SEC  
NO  
Expired?  
Start T32SEC  
YES  
NO  
Stop T15MIN  
T15MIN  
I2C Write  
received?  
T15MIN  
Continue  
Charging  
YES  
NO  
NO  
Active?  
Expired?  
Timer Fault :  
Set CE  
YES  
Figure 39. Timer Flow Chart  
www.onsemi.com  
21  
FAN54015  
Special Charger  
Table 9. ISAFE (IOCHARGE LIMIT) AS FUNCTION OF  
ISAFE BITS (REG6[6:4])  
The FAN54015 has additional functionality to limit input  
current in case a currentlimited “special charger” is  
supplying VBUS. These slowly increase the charging  
current until either:  
ISAFE (REG6[6:4])  
I
(mA)  
100 mW  
374  
SAFE  
68 mW  
550  
I  
or I  
is reached  
DEC  
BIN  
000  
001  
010  
011  
100  
101  
110  
111  
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
V
(mV)  
INLIM  
OCHARGE  
RSENSE  
0
1
2
3
4
5
6
7
37.4  
or  
V  
= V .  
SP  
44.2  
51.0  
57.8  
71.4  
78.2  
91.8  
98.6  
650  
442  
BUS  
If V  
collapses to V when the current is ramping up,  
BUS  
SP  
750  
510  
the FAN54015 charge with an input current that keeps  
= V . When the V control loop is limiting the  
850  
578  
V
BUS  
SP  
SP  
1050  
1150  
1350  
1450  
714  
charge current, the SP bit (REG5[4]) is set.  
782  
Table 8. VSP AS FUNCTION OF SP BITS (REG5[2:0])  
SP (REG5[2:0])  
918  
986  
DEC  
BIN  
000  
001  
010  
011  
HEX  
00  
V
SP  
0
1
2
3
4.213  
4.293  
4.373  
4.453  
Table 10. VSAFE (VOREG LIMIT) AS FUNCTION OF  
VSAFE BITS (REG6[3:0])  
01  
VSAFE (REG6[3:0])  
02  
VOREG  
03  
Max.  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
4.38  
4.40  
4.42  
4.44  
4.44  
4.44  
4.44  
DEC  
0
BIN  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
Max. OREG (REG2[7:2])  
100011  
4
5
6
7
100  
101  
110  
111  
04  
05  
06  
07  
4.533  
4.613  
4.693  
4.773  
1
100100  
2
100101  
3
100110  
4
100111  
Safety Settings  
FAN54015 contain a SAFETY register (REG6) that  
prevents the values in OREG (REG2[7:2]) and IOCHARGE  
(REG4[6:4]) from exceeding the values of the VSAFE and  
ISAFE values.  
5
101000  
6
101001  
7
101010  
After V  
exceeds V  
, the SAFETY register is  
8
101011  
BAT  
SHORT  
loaded with its default value and may be written only before  
any other register is written. The entire desired Safety  
register value should be written twice to ensure the register  
bits are set. After writing to any other register, the SAFETY  
register is locked until V  
The ISAFE (REG6[6:4]) and VSAFE (REG6[3:0])  
registers establish values that limit the maximum values of  
9
101100  
10  
11  
12  
13  
14  
15  
101101  
101110  
falls below V  
.
BAT  
SHORT  
101111  
110000  
110001  
I
and V  
used by the control logic. If the host  
OCHARGE  
OREG  
attempts to write a value higher than VSAFE or ISAFE to  
OREG or IOCHARGE, respectively; the VSAFE, ISAFE  
value appears as the OREG, IOCHARGE register value,  
respectively.  
110010  
www.onsemi.com  
22  
 
FAN54015  
Thermal Regulation and Protection  
When the IC’s junction temperature reaches T (about  
120°C), the charger reduces its output current to 550 mA to  
prevent overheating. If the temperature increases beyond  
this condition, V  
a high slew rate. Achieving this slew rate requires a 0 W short  
to the USB cable less than 10 cm from the connector.  
must be driven from 5 V to GND with  
BUS  
CF  
Charge Mode Battery Detection & Protection  
T
; charging is suspended, the FAULT bits are set  
SHUTDOWN  
to 101, and STAT is pulsed HIGH. In Suspend Mode, all  
timers stop and the state of the IC’s logic is preserved.  
Charging resumes at programmed current after the die cools  
to about 120°C.  
VBAT OverVoltage Protection  
The OREG voltage regulation loop prevents V  
overshooting the OREG voltage by more than 50 mV when  
the battery is removed. When the PWM charger runs with no  
battery, the TE bit is not set and a battery is inserted that is  
charged to a voltage higher than V  
If no further pulses occur for 30 ms, the IC sets the FAULT  
bits to 100, sets the STAT bits to 11, and pulses the STAT pin.  
from  
BAT  
Additional q  
data points, measured using the  
JA  
FAN54015 evaluation board, are given in Table 11  
; PWM pulses stop.  
OREG  
(measured with T = 25°C). Note that as power dissipation  
A
increases, the effective q decreases due to the larger  
JA  
difference between the die temperature and ambient.  
Battery Detection During Charging  
The IC can detect the presence, absence, or removal of a  
battery if the termination bit (TE) is set. During normal  
Table 11. EVALUATION BOARD MEASURED qJA  
Power (W)  
0.504  
q
JA  
charging, once V  
is close to V  
and the termination  
BAT  
OREG  
charge current is detected, the IC terminates charging and  
sets the STAT bits to 10. It then turns on a discharge current,  
54°C/W  
50°C/W  
46°C/W  
0.844  
I
, for t  
. If V  
is still above V  
– V  
,
DETECT  
DETECT  
BAT  
OREG  
RCH  
1.506  
the battery is present and the IC sets the FAULT bits to 000.  
If V is below V – V , the battery is absent and  
BAT  
OREG  
RCH  
Charge Mode Input Supply Protection  
the IC:  
1. Sets the registers to their default values.  
2. Sets the FAULT bits to 111.  
3. Resumes charging with default values after t  
Sleep Mode  
When V  
falls below V  
+ V , and V  
is above  
BUS  
BAT  
SLP  
BUS  
.
INT  
V
the IC enters Sleep Mode to prevent the battery  
IN(MIN),  
from draining into VBUS. During Sleep Mode, reverse  
current is disabled by body switching Q1.  
Battery ShortCircuit Protection  
If the battery voltage is below the shortcircuit threshold  
(V ); a linear current source, I , supplies V  
SHORT  
SHORT  
BAT  
Input Supply LowVoltage Detection  
The IC continuously monitors VBUS during charging. If  
until V  
> V  
.
BAT  
SHORT  
V
falls below V  
1. Terminates charging  
2. Pulses the STAT pin, sets the STAT bits to 11, and  
sets the FAULT bits to 011.  
, the IC:  
BUS  
IN(MIN)  
System Operation with No Battery  
The FAN54015 continues charging after VBUS POR with  
the default parameters, regulating the V line to 3.54 V  
until the host processor issues commands or the 15minute  
timer expires. In this way, the FAN54015 can start the  
system without a battery.  
The FAN54015 softstart function can interfere with the  
system supply with battery absent. The softstart activates  
BAT  
If V  
recovers above the V  
rising threshold after  
BUS  
IN(MIN)  
time t  
(about two seconds), the charging process is  
INT  
repeated. This function prevents the USB power bus from  
collapsing or oscillating when the IC is connected to a  
suspended USB port or a lowcurrentcapable OTG device.  
whenever V  
, I  
, or I  
are set from a lower  
IN  
is set to 11 (no limit).  
OREG INLIM  
OCHARGE  
Input OverVoltage Detection  
to higher value. During softstart, the I limit drops to  
When the V  
exceeds VBUS , the IC:  
100 mA for about 1 ms unless I  
BUS  
OVP  
INLIM  
1. Turns off Q3  
2. Suspends charging  
3. Sets the FAULT bits to 001, sets the STAT bits to  
11, and pulses the STAT pin.  
This could cause the system processor to fail to start. To  
avoid this behavior, use the following sequence.  
1. Set the OTG pin HIGH. When VBUS is plugged  
in, I  
is set to 500 mA until the system  
INLIM  
When V  
falls about 150 mV below VBUS , the  
processor powers up and can set parameters  
BUS  
OVP  
2
fault is cleared and charging resumes after V  
is  
through I C.  
BUS  
revalidated (see VBUS POR / NonCompliant Charger  
Rejection).  
2. Program the Safety Register.  
3. Set I  
to 11 (no limit).  
INLIM  
4. Set OREG to the desired value (typically 4.18).  
5. Reset the IO_LEVEL bit, then set IOCHARGE.  
VBUS Short While Charging  
If VBUS is shorted with a very low impedance while the  
6. Set I  
to 500 mA if a USB source is  
INLIM  
IC is charging with I  
= 100 mA, the IC may not meet  
INLIMIT  
connected.  
datasheet specifications until power is removed. To trigger  
www.onsemi.com  
23  
 
FAN54015  
During the initial system startup, while the charger IC is  
being programmed, the system current is limited to 500 mA  
for 1 ms during steps 4 and 5. This is the value of the  
Table 14. DISABLE PIN AND CE BIT FUNCTIONALITY  
Charging  
ENABLE  
DISABLE  
DISABLE  
DISABLE  
DISABLE Pin  
CE  
0
HZ_MODE  
0
X
X
1
0
X
1
softstart ICHARGE current used when I  
is set to No  
INLIM  
Limit.  
1
If the system is powered up without a battery present, the  
CV bit should be set. When a battery is inserted, the CV bit  
is cleared.  
X
X
X
Charger Status / Fault Status  
The STAT pin indicates the operating condition of the IC  
and provides a fault indicator for interrupt driven systems.  
Raising the DISABLE pin stops t from advancing, but  
32S  
does not reset it. If the DISABLE pin is raised during t  
15MIN  
charging, the t  
timer is reset.  
15MIN  
Operational Mode Control  
Table 12. STAT PIN FUNCTION  
OPA_MODE (REG1[0]) and the HZ_MODE (REG1[1])  
bits in conjunction with the FAULT state define the  
operational mode of the charger.  
EN_STAT  
Charge State  
X
STAT Pin  
OPEN  
OPEN  
LOW  
0
X
1
Normal Conditions  
Charging  
Table 15. OPERATION MODE CONTROL  
HZ_MODE  
OPA_MODE  
FAULT  
Operation Mode  
Charge  
X
Fault (Charging or Boost) 128 ms Pulse, then OPEN  
0
0
0
1
0
X
1
0
1
0
X
The FAULT bits (R0[2:0]) indicate the type of fault in  
Charge Mode (see Table 13).  
Charge Configure  
Boost  
X
High Impedance  
Table 13. FAULT STATUS BITS DURING CHARGE  
MODE  
The IC resets the OPA_MODE bit whenever the boost is  
deactivated, whether due to a fault or being disabled by  
setting the HZ_MODE bit.  
Fault Bit  
B2  
0
B1  
0
B0  
0
Fault Description  
Normal (No Fault)  
VBUS OVP  
BOOST MODE  
0
0
1
Boost Mode can be enabled if the IC is in 32Second  
Mode with the OTG pin and OPA_MODE bits as indicated  
in Table 16. The OTG pin ACTIVE state is 1 if OTG_PL = 1  
and 0 when OTG_PL = 0.  
If boost is active using the OTG pin, Boost Mode is  
initiated even if the HZ_MODE = 1. The HZ_MODE bit  
overrides the OPA_MODE bit.  
0
1
0
Sleep Mode  
0
1
1
Poor Input Source  
Battery OVP  
1
0
0
1
0
1
Thermal Shutdown  
Timer Fault  
1
1
0
1
1
1
No Battery  
Table 16. ENABLING BOOST  
OTG_EN OTG Pin HZ_ MODE OPA_MODE BOOST  
Charge Mode Control Bits  
Setting either HZ_MODE or CE through I C disables the  
charger and puts the IC into HighImpedance Mode and  
2
1
X
X
0
1
0
ACTIVE  
X
X
0
X
1
1
0
X
1
0
X
1
0
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
resets t . If V  
< V  
while in HighImpedance  
32S  
BAT  
LOWV  
ACTIVE  
X
Mode, t  
begins running and, when it overflows, all  
32S  
registers (except SAFETY) reset, which enables t  
charging on versions with the 15minute timer.  
15MIN  
ACTIVE  
ACTIVE  
When t  
overflows, the IC sets the CE bit and the IC  
15MIN  
enters HighImpedance Mode. If CE was set by t  
15MIN  
overflow, a new charge cycle can only be initiated through  
I C or VBUS POR.  
Setting the RESET bit clears all registers. If HZ_MODE  
or CE bits were set when the RESET bit is set, these bits are  
To remain in Boost Mode, the TMR_RST must be set by  
the host before the t timer times out. If t times out in  
Boost Mode; the IC resets all registers, pulses the STAT pin,  
sets the FAULT bits to 110, and resets the BOOST bit. VBUS  
POR or reading R0 clears the fault condition.  
2
32S  
32S  
also cleared, but the t  
timer is not started, and the IC  
32S  
remains in HighImpedance Mode.  
www.onsemi.com  
24  
 
FAN54015  
Boost PWM Control  
Table 17. Boost PWM Operating States  
The IC uses a minimum ontime and computed minimum  
offtime to regulate VBUS. The regulator achieves  
excellent transient response by employing currentmode  
modulation. This technique causes the regulator to exhibit a  
load line.  
Mode  
LIN  
Description  
Linear Startup  
Invoked When  
V
> V  
BUS  
BAT  
BUS  
SS  
Boost SoftStart  
Boost Operating Mode  
V
< V  
BST  
BST  
V
BAT  
> UVLO  
Completed  
and SS  
BST  
During PWM Mode, the output voltage drops slightly as  
the input current rises. With a constant V , this appears as  
BAT  
a constant output resistance.  
Startup  
The “droop” caused by the output resistance when a load  
is applied allows the regulator to respond smoothly to load  
transients with no undershoot from the load line. This can be  
seen in Figure 31 and Figure 40.  
When the boost regulator is shut down, current flow is  
prevented from V to V , as well as reverse flow from  
BAT  
BUS  
V
BUS  
to V  
.
BAT  
LIN State  
350  
325  
300  
275  
250  
225  
200  
When EN rises, if V  
attempts to bring PMID within 400 mV of V  
internal 450 mA current source from VBAT (LIN State). If  
PMID has not achieved V  
FAULT state is initiated.  
> UVLO , the regulator first  
BAT BST  
using an  
BAT  
– 400 mV after 560 ms, a  
BAT  
SS State  
When PMID > V  
– 400 mV, the boost regulator begins  
BAT  
switching with a reduced peak current limit of about 50% of  
its normal current limit. The output slews up until V is  
within 5% of its setpoint; at which time, the regulation loop  
is closed and the current limit is set to 100%.  
BUS  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
Battery Voltage, V  
If the output fails to achieve 95% of its setpoint (V  
)
BAT  
BST  
within 128 ms, the current limit is increased to 100%. If the  
output fails to achieve 95% of its setpoint after this second  
384 ms period, a fault state is initiated.  
Figure 40. Output Resistance (ROUT  
)
V
BUS  
as a function of I  
can be computed when the  
LOAD  
regulator is in PWM Mode (continuous conduction) as:  
BST State  
VOUT + 5.07 * ROUT @ ILOAD  
This is the normal operating mode of the regulator. The  
regulator uses a minimum t  
scheme. The minimum t  
which keeps the regulator’s switching frequency reasonably  
constant in CCM. t is proportional to V and is a  
(eq. 1)  
minimum t modulation  
OFF  
ON  
At V  
At V  
= 3.3 V, and I  
= 200 mA, V  
would drop to:  
BAT  
LOAD  
BUS  
is propotional to V / V  
,
OFF  
IN  
OUT  
VOUT + 5.07 * 0.26 @ 0.2 + 5.018 V  
(eq. 2)  
would drop to:  
(eq. 3)  
ON(MIN)  
BAT  
= 2.7 V, and I  
= 200 mA, V  
BUS  
BAT  
LOAD  
higher value if the inductor current reached 0 before  
in the prior cycle.  
VOUT + 5.07 * 0.327 @ 0.2 + 5.005 V  
t
OFF(MIN)  
To ensure the VBUS does not pump significantly above  
the regulation point, the boost switch remains off as long as  
FB > V  
PFM Mode  
.
REF  
If V  
> VREF  
(nominally 5.07 V) when the  
BOOST  
BUS  
minimum offtime has ended, the regulator enters PFM  
Mode. Boost pulses are inhibited until V < VREF  
Boost Faults  
If a BOOST fault occurs:  
.
BOOST  
BUS  
The minimum ontime is increased to enable the output to  
pump up sufficiently with each PFM boost pulse. Therefore  
the regulator behaves like a constant ontime regulator, with  
the bottom of its output voltage ripple at 5.07 V in PFM  
Mode.  
1. The STAT pin pulses.  
2. OPA_MODE bit is reset.  
3. The power stage is in HighImpedance Mode.  
4. The FAULT bits (REG0[2:0]) are set per Table 18.  
www.onsemi.com  
25  
FAN54015  
0
0
VBUS  
Restart After Boost Faults  
560  
5200  
If boost was enabled with the OPA_MODE bit and  
OTG_EN = 0, Boost Mode can only be enabled through  
450 mA  
BATTERY  
CURRENT  
2
subsequent I C commands since OPA_MODE is reset on  
64  
boost faults. If OTG_EN = 1 and the OTG pin is still  
ACTIVE (see Table 16), the boost restarts after a 5.2 ms  
delay, as shown in Figure 41. If the fault condition persists,  
restart is attempted every 5 ms until the fault clears or an I C  
command disables the boost.  
BOOST  
ENABLED  
2
Figure 41. Boost Response Attempting to Start into  
BUS Short Circuit (Times in ms)  
V
VREG Pin  
Table 18. FAULT BITS DURING BOOST MODE  
Fault Bit  
The 1.8 V regulated output on this pin can be disabled  
2
through I C by setting the DIS_VREG bit (REG5[6]).  
VREG can supply up to 2 mA. This circuit, which is  
B2 B1 B0  
Fault Description  
powered from PMID, is enabled only when PMID > V  
BAT  
0
0
0
0
0
1
0
1
0
Normal (no fault)  
and does not drain current from the battery. During boost,  
is off. It is also off when the HZ_MODE bit  
V
V
> VBUS  
OVP  
BUS  
V
REG  
fails to achieve the voltage required to  
(REG1[1]) = 1.  
BUS  
advance to the next state during softstart or  
sustained (>50 μs) current limit during the BST  
state.  
Monitor Register (Reg10H)  
Additional status monitoring bits enable the host  
processor to have more visibility into the status of the IC.  
The monitor bits are realtime status indicators and are not  
internally debounced or otherwise time qualified.  
The state of the MONITOR register bits listed in  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
V < UVLO  
BAT BST  
N/A: This code does not appear.  
Thermal shutdown  
Timer fault; all registers reset.  
N/A: This code does not appear.  
HighImpedance Mode is only valid when V  
is valid.  
BUS  
Table 19. MONITOR REGISTER BIT DEFINITIONS  
STATE  
0
1
BIT#  
NAME  
Active When  
MONITOR Address 10H  
< V  
7
6
ITERM_CMP  
VBAT_CMP  
V
– V  
V
CSIN  
– V  
> V  
ITERM  
Charging with TE = 1  
Charging with TE = 0  
Charging  
CSIN  
BAT  
ITERM  
BAT  
V
– V  
< 1 mV  
V
– V  
> 1mV  
CSIN  
BAT  
CSIN  
BAT  
V
< V  
VBAT > V  
SHORT  
BAT  
SHORT  
V
< V  
VBAT > V  
LOWV  
HighImpedance Mode  
Boosting  
BAT  
LOWV  
V
BAT  
< UVLO  
V > UVLO  
BAT BST  
BST  
5
4
3
LINCHG  
T_120  
ICHG  
Linear Charging Not Enabled  
Linear Charging Enabled  
Charging  
T < 120°C  
J
T > 120°C  
J
Charging Current Controlled by  
Charging Current Not Controlled by  
Charging  
Charging  
I
Control Loop  
I
Control Loop  
CHARGE  
CHARGE  
2
1
0
IBUS  
VBUS_VALID  
CV  
I
Limiting Charging Current  
Charge Current Not Limited by I  
BUS  
BUS  
V
BUS  
Not Valid  
V
BUS  
is Valid  
V
> V  
BUS BAT  
Constant Current Charging  
Constant Voltage Charging  
Charging  
www.onsemi.com  
26  
 
FAN54015  
2
I C INTERFACE  
The FAN54015’s serial interface is compatible with  
Standard, Fast, Fast Plus, and HighSpeed Mode I CBus  
specifications. The SCL line is an input and the SDA line is  
a bidirectional opendrain output; it can only pull down the  
bus when active. The SDA line only pulls LOW during data  
reads and signaling ACK. All data is shifted in MSB (bit 7)  
first.  
During a read from the FAN54015 (Figure 46, Figure 47),  
the master issues a Repeated Start after sending the register  
address and before resending the slave address. The  
Repeated Start is a 1to0 transition on SDA while SCL is  
HIGH, as shown in Figure 45.  
2
HighSpeed (HS) Mode  
The protocols for HighSpeed (HS), LowSpeed (LS),  
and FastSpeed (FS) Modes are identical except the bus  
speed for HS Mode is 3.4 MHz. HS Mode is entered when  
the bus master sends the HS master code 00001XXX after  
a start condition. The master code is sent in Fast or Fast Plus  
Mode (less than 1 MHz clock); slaves do not ACK this  
transmission.  
Slave Address  
Table 20. I2C SLAVE ADDRESS BYTE  
Part Type  
7
6
5
4
3
2
1
0
FAN54015  
1
1
0
1
0
1
0
R/W  
The master then generates a repeated start condition  
(Figure 45) that causes all slaves on the bus to switch to HS  
Mode. The master then sends I C packets, as described  
above, using the HS Mode clock rate and timing.  
The bus remains in HS Mode until a stop bit (Figure 44)  
is sent by the master. While in HS Mode, packets are  
separated by repeated start conditions (Figure 45).  
In hex notation, the slave address assumes a 0 LSB. The  
hex slave address for the FAN54015 is D4H and is D6H for  
all other parts in the family.  
2
Bus Timing  
As shown in Figure 42, data is normally transferred when  
SCL is LOW. Data is clocked in on the rising edge of SCL.  
Typically, data transitions shortly at or after the falling edge  
of SCL to allow ample time for the data to set up before the  
tSU;STA tHD;STA  
Slave Releases  
ACK(0) or  
NACK(1)  
SLADDR  
MS Bit  
SDA  
SCL  
Data change allowed  
SDA  
TH  
Figure 45. Repeated Start Timing  
TSU  
SCL  
Read and Write Transactions  
The figures below outline the sequences for data read and  
write. Bus control is signified by the shading of the packet,  
Figure 42. Data Transfer Timing  
Each bus transaction begins and ends with SDA and SCL  
HIGH. A transaction begins with a START condition, which  
is defined as SDA transitioning from 1 to 0 with SCL HIGH,  
as shown in Figure 43.  
defined as Master Drives Bus and  
Slave Drives Bus  
.
All addresses and data are MSB first.  
Table 21. BIT DEFINITIONS FOR FIGURE 46,  
FIGURE 47, AND FIGURE 48  
THD;STA  
Slave Address  
SDA  
MS Bit  
Symbol  
Definition  
START, see Figure 43  
S
A
SCL  
ACK. The slave drives SDA to 0 to acknowledge the  
preceding packet.  
Figure 43. Start Bit  
A
NACK. The slave sends a 1 to NACK the preceding  
packet.  
A transaction ends with a STOP condition, which is  
defined as SDA transitioning from 0 to 1 with SCL HIGH,  
as shown in Figure 44.  
R
P
Repeated START, see Figure 45  
STOP, see Figure 44. Figure 44  
Slave Releases  
Master Drives  
tHD;STO  
ACK(0) or  
NACK(1)  
SDA  
SCL  
Figure 44. Stop Bit  
www.onsemi.com  
27  
 
FAN54015  
7 bits  
8 bits  
8 bits  
Data  
0
0
0
S
Slave Address  
0
A
Reg Addr  
A
A
P
Figure 46. Write Transaction  
7 bits  
Slave Address  
8 bits  
Reg Addr  
7 bits  
8 bits  
Data  
0
0
0
1
S
0
A
A
R
Slave Address  
1
A
A
P
Figure 47. Read Transaction  
REGISTER DESCRIPTIONS  
The nine FAN54015 useraccessible registers are defined  
in Table 22.  
Table 22. I2C REGISTER ADDRESS  
Register  
Address Bits  
Name  
CONTROL0  
CONTROL1  
OREG  
REG#  
7
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
4
3
0
0
0
0
0
0
0
0
2
0
0
0
0
1
1
1
0
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
2
03 or 3BH  
IC_INFO  
IBAT  
4
5
SP_CHARGER  
SAFETY  
6
MONITOR  
10h  
Table 23. REGISTER BIT DEFINITIONS  
(This table defines the operation of each register bit for all IC versions. Default values are in bold text.)  
Bit  
Name  
Value  
Type  
Description  
CONTROL0  
Register Address: 00  
Default Value = X1XX 0XXX  
7
6
TMR_RST  
OTG  
W
R
Writing a 1 resets the t  
timer; writing a 0 has no effect  
1
32S  
Returns the OTG pin level (1 = HIGH)  
EN_STAT  
STAT  
0
1
R/W Prevents STAT pin from going LOW during charging; STAT pin still pulses to enunciate faults  
Enables STAT pin LOW when IC is charging  
5:4  
00  
01  
10  
11  
0
R
Ready  
Charge in progress  
Charge done  
Fault  
3
BOOST  
FAULT  
R
IC is not in Boost Mode  
1
IC is in Boost Mode  
2:0  
R
Fault status bits: for Charge Mode, see Table 13; for Boost Mode, see Table 18  
CONTROL1  
Register Address: 01  
Default Value = 0011 0000 (30h)  
7:6  
IINLIM  
VLOWV  
R/W Input current limit, see Table 7  
5:4  
00  
01  
10  
11  
R/W 3.4 V  
3.5 V  
Weak battery voltage threshold  
3.6 V  
3.7 V  
www.onsemi.com  
28  
 
FAN54015  
Table 23. REGISTER BIT DEFINITIONS  
(This table defines the operation of each register bit for all IC versions. Default values are in bold text.) (continued)  
Bit  
Name  
TE  
Value  
Type  
Description  
CONTROL1  
Register Address: 01  
Default Value = 0011 0000 (30h)  
3
0
1
0
1
0
1
0
1
R/W Disable charge current termination  
Enable charge current termination  
R/W Charger enabled  
Charger disabled  
2
CE  
1
0
HZ_MODE  
R/W Not HighImpedance Mode  
HighImpedance Mode  
See Table 16  
OPA_MODE  
R/W Charge Mode  
Boost Mode  
OREG  
Register Address: 02  
Default Value = 0000 1010 (0Ah)  
7:2  
OREG  
R/W Charger output “float” voltage; programmable from 3.5 to 4.44V in 20mV increments;  
defaults to 000010 (3.54 V), see Table 3  
1
0
OTG_PL  
0
1
0
1
R/W OTG pin active LOW  
OTG pin active HIGH  
R/W Disables OTG pin  
Enables OTG pin  
OTG_EN  
IC_INFO  
7:5  
Register Address: 03  
Default Value = 10010100 (94h)  
Vendor Code  
PN  
100  
00  
1
R
R
R
Identifies ON Semiconductor as the IC supplier  
Part number bits, see the Ordering Info on page 31  
4:2  
1:0  
REV  
IC Revision, revision 1.X, where X is the decimal of these three bits  
IBAT  
7
Register Address: 04  
Default Value = 1000 1001 (89h)  
RESET  
W
Writing a 1 resets charge parameters, except the Safety register (Reg6), to their defaults:  
writing a 0 has no effect; read returns 1  
6:4  
3
IOCHARGE  
Reserved  
ITERM  
Table 5  
1
R/W Programs the maximum charge current, see Table 5  
Unused  
R/W Sets the current used for charging termination, see Table 6  
R
2:0  
Table 6  
SP_CHARGER  
Register Address: 05  
Default Value = 001X X100  
7
6
Reserved  
0
0
1
0
1
R
Unused  
DIS_VREG  
IO_LEVEL  
R/W 1.8 V regulator is ON  
1.8 V regulator is OFF  
5
R/W Output current is controlled by IOCHARGE bits  
Voltage across R  
for output current control is set to 34 mV (500 mA for  
SENSE  
R
SENSE  
= 68 mW and 340 mA for 100 mW)  
4
3
SP  
EN_LEVEL  
VSP  
0
R
R
Special charger is not active (V  
is able to stay above V  
)
BUS  
SP  
1
Special charger has been detected and V  
DISABLE pin is LOW  
is being regulated to V  
BUS SP  
0
1
DISABLE pin is HIGH  
2:0  
SAFETY  
7
Table 8  
R/W Special charger input regulation voltage, see Table 8  
Register Address: 06  
Default Value = 0100 0000 (40h)  
Reserved  
ISAFE  
0
R
Bit disabled and always returns 0 when read back  
6:4  
Table 9  
Table 10  
R/W Sets the maximum I value used by the control circuit, see Table 9  
OCHARGE  
3:0  
VSAFE  
R/W Sets the maximum V  
used by the control circuit, see Table 10  
OREG  
www.onsemi.com  
29  
FAN54015  
Table 23. REGISTER BIT DEFINITIONS  
(This table defines the operation of each register bit for all IC versions. Default values are in bold text.) (continued)  
Bit  
Name  
Value  
Type  
Description  
MONITOR  
Register Address: 10h (16)  
See Table 19  
7
6
5
4
ITERM_CMP  
VBAT_CMP  
LINCHG  
See  
Table 19  
R
R
R
R
ITERM comparator output, 1 when VRSENSE > ITERM reference  
Output of VBAT comparator  
30 mA linear charger ON  
T_120  
Thermal regulation comparator; when = 1 and T_145 = 0, the charge current is limited to  
22.1 mV across R  
SENSE  
3
2
1
0
ICHG  
IBUS  
R
R
R
R
0 indicates the ICHARGE loop is controlling the battery charge current  
0 indicates the IBUS (input current) loop is controlling the battery charge current  
1 indicates VBUS has passed validation and is capable of charging  
VBUS_VALID  
CV  
1 indicates the constantvoltage loop (OREG) is controlling the charger and all current  
limiting loops have released  
PCB LAYOUT RECOMMENDATIONS  
PMID, and VBUS pins. All power and ground pins must be  
Bypass capacitors should be placed as close to the IC as  
possible. In particular, the total loop length for CMID should  
be minimized to reduce overshoot and ringing on the SW,  
routed to their bypass capacitors, using top copper whenever  
possible. Copper area connecting to the IC should be  
maximized to improve thermal performance if possible.  
Figure 48. PCB Layout Recommendations  
www.onsemi.com  
30  
FAN54015  
ORDERING INFORMATION  
Temperature  
Range  
PN Bits:  
IC_INFO[4:2]  
Part Number  
Package  
Shipping  
FAN54015UCX  
40 to 85°C  
20Bump, WaferLevel ChipScale  
Package (WLCSP), 0.4 mm Pitch,  
Estimated Size: 1.96 x 1.87 mm  
(PbFree)  
101  
3000 / Tape & Reel  
3000 / Tape & Reel  
FAN54015BUCX (Note 8)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
8. FAN54015BUCX includes backside lamination.  
2
ON Semiconductor is licensed by the Philips Corporation to carry the I C bus protocol.  
www.onsemi.com  
31  
 
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WLCSP20 1.96x1.87x0.586  
CASE 567SL  
ISSUE O  
DATE 30 NOV 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON16608G  
WLCSP20 1.96x1.87x0.586  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FAN54015UCX

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54015UCX

符合 USB 规范的单体锂离子开关充电器(带 USB-OTG 升压调节器)
ONSEMI

FAN5401UCX

USB-Compliant Single-Cell Li-Ion Switching Charger
FAIRCHILD

FAN5401UCX

符合 USB 标准的单锂离子电池开关充电器,带 USB-OTG 升压稳压器
ONSEMI

FAN5401XUCX

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN5402

USB-Compliant Single-Cell Li-Ion Switching Charger
FAIRCHILD

FAN54020UCX

兼容 USB 1.5 A 单体锂离子开关充电器,具有 DBP 和 OTG 升压调节器
ONSEMI

FAN5402UCX

USB-Compliant Single-Cell Li-Ion Switching Charger
FAIRCHILD

FAN5402UCX

符合 USB 标准的单锂离子电池开关充电器,带 USB-OTG 升压稳压器
ONSEMI

FAN5403

USB-Compliant Single-Cell Li-Ion Switching Charger
FAIRCHILD

FAN5403BUCX

符合 USB 标准的单锂离子电池开关充电器,带 USB-OTG 升压稳压器
ONSEMI

FAN5403UCX

USB-Compliant Single-Cell Li-Ion Switching Charger
FAIRCHILD