FAN54046UCX-T [ONSEMI]

USB-OTG,1.55A,锂离子开关充电器,带电源路径和 2.3A 生产测试报告;
FAN54046UCX-T
型号: FAN54046UCX-T
厂家: ONSEMI    ONSEMI
描述:

USB-OTG,1.55A,锂离子开关充电器,带电源路径和 2.3A 生产测试报告

开关 测试
文件: 总40页 (文件大小:1513K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FAN54040 — FAN54047  
USB-OTG, 1.55 A, Li-Ion Switching Charger with Power  
Path and 2.3 A Production Test Support  
Description  
Features  
The FAN5404X family includes I2C controlled 1.55 A USB-  
.
Fully Integrated, High-Efficiency Charger for Single-Cell  
Li-Ion and Li-Polymer Battery Packs  
compliant sw itch-mode chargers w ith pow er path operation  
and USB OTG boost operation. Integrated w ith the charger,  
the IC supports production test mode, w hich provides 4.2 V  
at up to 2.3 A to the system.  
.
Pow er Path Circuit Ensures Fast System Startup w ith a  
Dead Battery w hen VBUS is Connected  
.
.
1.55 A Maximum Charge Current  
Float Voltage Accuracy:  
To facilitate fast system startup, the IC includes a pow er  
path circuit, w hich disconnects the battery from the system  
rail, ensuring that the system can pow er up quickly follow ing  
a VBUS connection. The pow er path circuit ensures that the  
system rail stays up w hen the charger is plugged in, even if  
the battery is dead or shorted.  
-
-
±0.5% at 25°C  
±1% from 0 to 125°C  
.
.
±5% Input and Charge Current Regulation Accuracy  
Temperature-Sense Input Prevents Auto-Charging for  
JEITA Compliance  
The charging parameters and operating modes are  
programmable through an I2C Interface that operates up to  
3.4 Mbps. The charger and boost regulator circuits sw itch at  
3 MHz to minimize the size of external passive components.  
.
.
.
.
.
.
Thermal Regulation and Shutdow n  
4.2 V at 2.3 A Production Test Mode  
5 V, 500 mA Boost Mode for USB OTG  
28 V Absolute Maximum Input Voltage  
6 V Maximum Input Operating Voltage  
The FAN5404X provides battery charging in three phases:  
conditioning, constant current, and constant voltage. The  
integrated circuit automatically restarts the charge cycle  
w hen the battery falls below a voltage threshold. If the input  
source is removed, the IC enters a high-impedance mode  
blocking battery current from leaking to the input. Charge  
status is reported back to the host through the I2C port.  
Programmable through High-Speed I2C Interface  
(3.4 Mb/s) w ith Fast Mode Plus Compatibility  
-
-
-
-
Input Current  
Fast-Charge / Termination Current  
Float Voltage  
Dynamic input voltage control prevents a w eak adapter’s  
voltage from collapsing, ensuring charging capability from  
such adapters.  
Termination Enable  
The FAN5404X is available in a 25-bump, 0.4 mm pitch,  
WLCSP package.  
.
3 MHz Synchronous Buck PWM Controller w ith  
Wide Duty Cycle Range  
.
.
.
.
Small Footprint 1 µH External Inductor  
Safety Timer w ith Reset Control  
VBUS  
CBUS  
L1  
SW  
CSYS  
SYS  
PGND  
Dynamic Input Voltage Control  
SYSTEM  
LOAD  
Q5  
PMID  
GATE  
Very Low Battery Current w hen Charger Inactive  
CMID  
External  
PMOS  
Applications  
FAN5404X  
POK_B  
ILIM  
VBAT  
.
.
.
Cell Phones, Smart Phones, PDAs  
CBAT  
SDA  
SCL  
NTC  
REF  
Tablet, Portable Media Players  
Gaming Device, Digital Cameras  
RREF  
BATTERY  
DIS  
CREF  
+
STAT  
AGND  
T
Figure 1. Typical Application  
All trademarks are the property of their respective owners.  
© 2012 Semiconductor Components Industries, LLC.  
December-2017, Rev. 2  
Publication Order Number:  
FAN54041/D  
 
Ordering Information  
Part Number  
FAN54040UCX  
FAN54041UCX  
FAN54042UCX(1)  
FAN54045UCX(1)  
FAN54046UCX(1)  
FAN54047UCX  
Temperature Range  
Package  
PN Bits: IC_INFO[5:3] Packing Method  
000  
001  
25-Bump, Wafer-Level  
Chip-Scale Package  
(WLCSP), 0.4 mm Pitch  
010  
-40 to 85°C  
Tape and Reel  
101  
110  
110  
Note:  
1. Contact ON Semiconductor Sales for availability.  
Table 1. Feature Comparison Summary  
Part Number  
Slave Address  
Automatic Charge  
Battery Absent Behavior  
E1 Pin  
FAN54040  
FAN54041  
FAN54042  
FAN54045  
FAN54046  
FAN54047  
1101011  
1101011  
1101011  
1101011  
1101011  
1101011  
Yes  
No  
Off  
Off  
On  
Off  
On  
On  
POK_B  
POK_B  
POK_B  
ILIM  
Yes  
No  
No  
ILIM  
Yes  
ILIM  
www.onsemi.com  
2
 
Block Diagram  
VBUS  
PMID  
SW  
Q3  
CBUS  
Q1  
CMID  
Q1A  
Q1B  
PGND  
CHARGE  
PUMP  
L1  
IBUS &  
VBUS  
CONTROL  
CSYS  
AGND  
PWM  
MODULATOR  
Q2  
SYS  
SYSTEM  
LOAD  
VBUS OVP  
POWER OK  
PGND  
Q5  
GATE  
External  
PMOS  
Q4  
CC and CV  
Battery  
Charger  
Q4A  
Q4B  
POK_B  
ILIM  
SDA  
SCL  
I2C INTERFACE  
VBAT  
NTC  
CBAT  
LOGIC AND CONTROL  
DIS  
TEMP  
SENSE  
RREF  
STAT  
REF  
CREF  
BATTERY  
+
T
PMID  
Q1A  
Q1B  
SYS  
Q4A  
Q4B  
Greater than VBAT  
Less than VBAT  
ON  
OFF  
ON  
Greater than VBAT  
Less than VBAT  
ON  
OFF  
ON  
OFF  
OFF  
Figure 2. IC and System Block Diagram  
Table 2. Recommended External Components  
Component  
Description  
Vendor  
Parameter  
L
Typ.  
Unit  
1.0  
75  
µH  
Taiyo Yuden MAKK2016T1R0M  
or Equivalent  
L1  
1 µH, 20%, 2.2 A, 2016  
DCR (Series R)  
mΩ  
Murata: GRM188R60J106M  
TDK: C1608X5R0J106M  
CBAT, CSYS  
CMID  
10 µF, 20%, 6.3 V, X5R, 0603  
4.7 µF, 10%, 6.3 V, X5R, 0603  
1.0 µF, 10%, 25 V, X5R, 0603  
C
10  
4.7  
1.0  
µF  
µF  
µF  
(2)  
Murata: GRM188R60J475K  
TDK: C1608X5R0J475K  
C
Murata GRM188R61E105K  
TDK:C1608X5R1E105M  
CBUS,  
C
Q5  
CREF  
ON Semiconductor FDMA905P  
RDS(ON)  
C
16  
PMOS,12 V, 16 m, MLP2x2  
1 µF, 10%, 6.3 V, X5R, 0402  
mΩ  
µF  
1.0  
Note:  
2. 6.3 V rating is sufficient for CMID since PMID is protected from over-voltage surges on VBUS by Q3.  
www.onsemi.com  
3
 
 
Pin Configuration  
SDA PGND SW  
PMID VBUS  
A5  
B5  
C5  
D5  
E5  
A4  
B4  
C4  
D4  
E4  
A3  
B3  
C3  
D3  
E3  
A2  
B2  
C2  
D2  
E2  
A1  
B1  
C1  
D1  
E1  
A1  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
A4  
B4  
C4  
A5  
SCL  
B1  
B5  
DIS  
C1  
GATE  
C5  
STAT  
D1  
SYS VBAT NTC  
D3  
E3  
D4  
D5  
POK_B AGND  
REF  
E5  
E1  
E2  
E4  
Figure 3. Top View  
Figure 4. Bottom View  
Pin Definitions  
Pin #  
Name Description  
SDA  
SCL  
I2C Interface Serial Data. This pin should not be left floating.  
I2C Interface Serial Clock. This pin should not be left floating.  
A1  
B1  
C1  
Disable. If this pin is held HIGH, Q1 and Q3 are turned off, creating a HIGH Z condition at VBUS and  
the PWM converter is disabled.  
DIS  
Status. Open-drain output indicating charge status. The IC pulls this pin LOW w hen charge is in  
progress; can be used to signal the host processor w hen a fault condition occurs.  
D1  
E1  
STAT  
Pow er OK (FAN54040-2). Open-drain output that pulls LOW w hen VBUS is plugged in and the battery  
POK_B has risen above VLOWV. This signal is used to signal the host processor that it can begin to draw  
significant current.  
Input Current Limit (FAN54045-7). Controls input current limit in Auto-Charge Mode. When LOW, input  
current is limited to 100 mA maximum. When HIGH, input current is limited to 500 mA. In 32-Second  
Mode, the input current limit is set by the IBUSLIM bits.  
E1  
ILIM  
Power Ground. Pow er return for gate drive and pow er transistors. The connection from this pin to the  
bottom of CMID should be as short as possible.  
A2 – D2  
PGND  
E2  
AGND Analog Ground. All IC signals are referenced to this node.  
A3 – C3  
SW  
Switching Node. Connect to output inductor.  
System Supply. Output voltage of the sw itching charger and input to the pow er path controller. Bypass  
SYS to PGND w ith a 10 μF capacitor.  
D3 – E3  
A4 – C4  
SYS  
Power Input Voltage. Pow er input to the charger regulator, bypass point for the input current sense.  
Bypass w ith a minimum of a 4.7 µF, 6.3 V capacitor to PGND.  
PMID  
Battery Voltage. Connect to the positive (+) terminal of the battery pack. Bypass w ith a 10 µF capacitor  
to PGND. VBAT is a pow er path connection.  
D4 – E4  
A5 – B5  
VBAT  
VBUS  
Charger Input Voltage and USB-OTG output voltage. Bypass w ith a 1 µF capacitor to PGND.  
External MOSFET Gate. This pin controls the gate of an external P-channel MOSFET transistor used to  
augment the internal ideal diode. The source of the P-channel MOSFET should be connected to SYS  
and the drain should be connected to VBAT.  
C5  
GATE  
Thermistor input. The IC compares this node w ith taps on a resistor divider from REF to inhibit auto-  
charging w hen the battery temperature is outside of permitted fast-charge limits.  
D5  
E5  
NTC  
REF  
Reference Voltage. REF is a 1.8 V regulated output.  
www.onsemi.com  
4
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable  
above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition,  
extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute  
maximum ratings are stress ratings only.  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Continuous  
-0.3  
-1.0  
–0.3  
–0.3  
–0.3  
VBUS  
Voltage on VBUS Pin  
28.0  
V
Pulsed, 100 ms Maximum Non-Repetitive  
Voltage on PMID Voltage Pin  
7.0  
7.0  
6.5(3)  
VI  
V
V
Voltage on SW, SYS, VBAT, STAT, DIS Pins  
Voltage on Other Pins  
VO  
dV  
BUS  
Maximum V BUS Slope Above 5.5 V w hen Boost or Charger Active  
V/µs  
4
dt  
Human Body Model per JESD22-A114  
Electrostatic Discharge  
2000  
500  
15  
V
Protection Level  
Charged Device Model per JESD22-C101  
ESD  
Air Gap  
(4)  
USB Connector  
Pins (V BUS to GND)  
IEC 61000-4-2 System ESD  
kV  
Contact  
8
TJ  
TSTG  
TL  
Junction Temperature  
Storage Temperature  
–40  
–65  
+150  
+150  
+260  
°C  
°C  
°C  
Lead Soldering Temperature, 10 Seconds  
Note :  
3. Lesser of 6.5 V or VI + 0.3 V.  
4. Guaranteed if CBUS ≥1 µF and CMID ≥ 4. 7µF.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating  
conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not  
recommend exceeding them or designing to absolute maximum ratings.  
Symbol  
Parameter  
Min.  
Max.  
6
Unit  
V
VBUS  
Supply Voltage  
4
VBAT(MAX) Maximum Battery Voltage w hen Boost enabled  
4.5  
4
V
TA < 60°C  
TA > 60°C  
dV  
Negative VBUS Slew Rate during VBUS Short Circuit,  
MID < 4.7 µF, see VBUS Short While Charging  
BUS  
V/µs  
C
dt  
TA  
TJ  
2
Ambient Temperature  
Junction Temperature (see Thermal Regulation and Protection section)  
–30  
–30  
+85  
+120  
°C  
°C  
Thermal Properties  
Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured w ith four-layer  
2s2p boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature  
TJ( max) at a given ambient temperature TA. For measured data, see Table 18.  
Symbol  
Parameter  
Junction-to-Ambient Thermal Resistance (see also Figure 18)  
Junction-to-PCB Thermal Resistance  
Typical  
Unit  
°C/W  
°C/W  
50  
20  
θJA  
θJB  
www.onsemi.com  
5
 
 
Electrical Specifications  
Unless otherw ise specified: according to the circuit of Figure 1; recommended operating temperature range for TJ and TA;  
VBUS=5.0 V; HZ_MODE; OPA _MODE=0; (Charge Mode); SCL, SDA=0 or 1.8 V; and typical values are for TJ=25°C.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Power Supplies  
VBUS > VBUS(min), PWM Sw itching  
10  
mA  
mA  
VBUS > VBUS(min); VBAT > VOREG  
IBUSLIM=100 mA  
2.5  
IVBUS  
VBUS Current  
0°C < TJ < 85°C, HZ_MODE=1  
VBAT < VLOWV, 32S Mode, IREG=0  
280  
10  
µA  
µA  
µA  
Battery Discharge Current in High-  
Impedance Mode  
DIS=1, or HZ_MODE=1,  
IBAT_HZ  
IBUS_HZ  
<1  
V
BUS=0, 5 V or Floating, VBAT=4.2 V  
Battery Leakage Current to VBUS in  
High-Impedance Mode  
DIS=1, or HZ_MODE=1,  
VBUS Shorted to Ground, VBAT=4.2 V  
-5.0  
-0.2  
Charger Voltage Regulation  
Charge Voltage Range  
3.5  
–0.5  
–1  
4.4  
+0.5  
+1  
V
VOREG  
TA=25°C  
%
%
Charge Voltage Accuracy  
Charging Current Regulation  
Output Charge Current Range  
TJ=0 to 125°C  
IO_LEV EL =0  
VLOWV < VBAT < VOREG  
IO_LEV EL =1  
550  
290  
–5  
1550  
390  
+5  
mA  
mA  
%
IOCHRG  
340  
Charge Current Accuracy  
Weak Battery Detection  
Weak Battery Threshold Range  
IO_LEV EL =0  
3.4  
–5  
3.7  
+5  
V
%
VLOWV  
Weak Battery Threshold Accuracy  
Weak Battery Deglitch Time  
Rising Voltage, 2 mV Overdrive  
Input Tied to GND or VBUS  
30  
ms  
Logic Levels : DIS, SDA, SCL  
VIH  
VIL  
High-Level Input Voltage  
1.05  
V
V
Low -LevelInput Voltage  
Input Bias Current  
0.4  
I
IN  
0.01  
1.00  
µA  
Charge Termination Detection  
Termination Current Range  
VBAT > VOREG – VRCH, VBUS > VSLP  
ITERM Setting < 100 mA  
50  
–15  
–5  
400  
+15  
+5  
mA  
%
I
Termination Current Accuracy  
(TERM)  
ITERM Setting > 200 mA  
Termination Current Deglitch Time  
30  
ms  
Power Path (Q4) Control  
IO_LEV EL =1  
290  
400  
340  
450  
390  
510  
mA  
mA  
IBUSLIM > 01,  
IO_LEV EL =0  
ILIN  
Pow er Path Max. Charge Current  
IOCHARGE < 02  
IBUSLIM > 01,  
IO_LEV EL =0  
650  
725  
800  
mA  
IOCHARGE > 02  
(SYS-VBAT) Falling  
(SYS-VBAT) Rising  
–6  
-1  
–5  
+1  
–3  
2
mV  
mV  
VBAT to SYS Threshold for Q4 and  
Gate Transition While Charging  
VTHSYS  
Production Test Mode  
VBAT(PTM) Production Test Output Voltage  
IBAT(PTM) Production Test Output Current  
1 mA < IBAT < 2 A, VBUS=5.5 V  
4.116 4.200  
2.3  
4.284  
V
A
20% Duty w ith Max. Period 10 ms  
Continued onthe following page…  
www.onsemi.com  
6
Electrical Specifications (Continued)  
Unless otherw ise specified: according to the circuit of Figure 1; recommended operating temperature range for TJ and TA;  
VBUS=5.0 V; HZ_MODE; OPA _MODE=0; (Charge Mode); SCL, SDA=0 or 1.8 V; and typical values are for TJ=25°C.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Input Power Source Detection  
T1  
T2  
T3  
T4  
T1 (0°C) Temperature Threshold  
71.9  
62.6  
31.9  
21.3  
73.9  
64.6  
32.9  
23.3  
75.9  
66.6  
34.9  
25.3  
T1 (10°C) Temperature Threshold  
T1 (45°C) Temperature Threshold  
T1 (60°C) Temperature Threshold  
% of  
VREF  
Input Power Source Detection  
VIN(MIN)1 VBUS Input Voltage Rising  
VIN(MIN)2 Minimu m VBUS during Charge  
To Initiate and Pass VBUS Validation  
During Charging  
4.29  
3.71  
30  
4.42  
3.94  
V
V
tVBUS_VALID VBUS Validation Time  
ms  
VBUS Control Loop  
VBUSLIM  
VBUS Loop Setpoint Accuracy  
–3  
+3  
%
Input Current Limit  
IBUSLIM Set to 100 mA  
IBUSLIM Set to 500 mA  
88  
93  
98  
Charger Input Current Limit  
Threshold  
IBUSLIM  
mA  
450  
475  
500  
VREF Bias Generator  
Bias Regulator Voltage  
Short-Circuit Current Limit  
VBUS > VIN(MIN)  
1.8  
2.5  
V
VREF  
mA  
Battery Recharge Threshold  
Recharge Threshold  
Below V(OREG)  
100  
120  
130  
150  
mV  
ms  
VRCH  
Deglitch Time  
VBAT Falling Below VRCH Threshold  
STAT, POK_B Output  
VSTAT(OL)  
ISTAT(OH)  
STAT Output Low  
ISTAT=10 mA  
VSTAT=5 V  
0.4  
1
V
STAT High Leakage Current  
µA  
Battery Detection  
Battery Detection Current before  
IDETECT  
tDETECT  
–0.8  
262  
mA  
ms  
Charge Done (Sink Current)(5)  
Battery Detection Time  
Begins after Termination Detected  
and VBAT < VOREG –VRCH  
Sleep Comparator  
Sleep-Mode Entry Threshold,  
VBUS – VBAT  
Power Switches (see Figure 2)  
Q3 On Resistance (VBUS to PMID)  
VSLP  
2.3 V < VBAT < VOREG, VBUS Falling  
0
0.04  
0.10  
V
IIN(LIMIT)=500 mA  
180  
130  
150  
70  
250  
225  
225  
100  
Q1 On Resistance (PMID to SW)  
Q2 On Resistance (SW to GND)  
Q4 On Resistance (SYS to VBAT)  
mΩ  
RDS(ON)  
VBAT=4.2 V  
mΩ  
Synchronous to Non-Synchronous  
Current Cut-Off Threshold(6)  
Low -Side MOSFET (Q2) Cycle-by-  
Cycle Current Limit  
ISYNC  
140  
mA  
Continued onthe following page…  
www.onsemi.com  
7
Electrical Specifications (Continued)  
Unless otherw ise specified: according to the circuit of Figure 1; recommended operating temperature range for TJ and TA;  
VBUS=5.0 V; HZ_MODE; OPA _MODE=0; (Charge Mode); SCL, SDA=0 or 1.8 V; and typical values are for TJ=25°C.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Charger PWM Modulator  
fSW  
DMAX  
DMIN  
Oscillator Frequency  
Maximum Duty Cycle  
Minimu m Duty Cycle  
2.7  
3.0  
0
3.3  
MHz  
%
100  
%
Boost Mode Operation (OPA_MODE=1, HZ_MODE=0)  
2.5 V < VBAT < 4.5 V, ILOAD from 0 to  
200 mA  
4.80  
4.77  
5.07  
5.07  
5.20  
5.20  
VBOOST  
Boost Output Voltage at VBUS  
V
3.0 V < VBAT < 4.5 V, ILOAD from 0 to  
500 mA  
IBAT(BOOST) Boost Mode Quiescent Current  
PFM Mode, VBAT=3.6 V, ILOAD=0  
250  
1550  
2.32  
2.48  
350  
µA  
ILIMPK(BST)  
Q2 Peak Current Limit  
1350  
1950  
mA  
While Boost Active  
Minimu m Battery Voltage for Boost  
Operation  
UVLOBST  
V
To Start Boost Regulator  
2.70  
VBUS Load Resistance  
Normal Operation  
VBUS Validation  
500  
100  
kΩ  
RVBUS  
VBUS to PGND Resistance  
Protection and Timers  
VBUS Over-Voltage Shutdow n  
VBUS Rising  
VBUS Falling  
6.09  
1.95  
6.29  
100  
6.49  
2.05  
V
VBUSOVP  
ILIMPK(CHG)  
VSHORT  
Hysteresis  
mV  
Q1 Cycle-by-Cycle Peak Current  
Limit  
Charge Mode  
VBAT Rising  
3
A
Battery Short-Circuit Threshold  
Hysteresis  
2.00  
100  
13  
V
mV  
Pow er Path  
VBAT < VSHORT  
ISHORT  
Linear Charging Current  
mA  
°C  
Linear  
30  
Thermal Shutdow n Threshold(7  
TJ Rising  
145  
25  
)
TSHUTDWN  
)
Hysteresis(7  
TJ Falling  
)
TCF  
tINT  
Thermal Regulation Threshold(7  
Charge Current Reduction Begins  
120  
2.1  
°C  
s
Detection Interval  
32-Second Timer(8)  
Charger Enabled  
Charger Disabled  
20.5  
18.0  
25.2  
25.2  
28.0  
34.0  
t32S  
s
15-Minute Mode (FAN54040,  
FAN54042, FAN54046, FAN54047)  
t15MIN  
15-Minute Timer  
12.0  
–25  
13.5  
15.0  
25  
min  
%
tLF  
Low -Frequency Timer Accuracy  
Charger Inactive  
Note s:  
5. Negative current is current flow ing from the battery to VBUS (discharging the battery).  
6. Q2 alw ays turns on for 60 ns, then turns off if current is below ISYNC  
7. Guaranteed by design; not tested in production.  
.
8. This tolerance (%) applies to all timers on the IC, including soft-start and deglitching timers.  
www.onsemi.com  
8
 
 
 
 
I2C Timing Specifications  
Guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max.  
Unit  
Standard Mode  
100  
400  
1000  
3400  
1700  
4.7  
Fast Mode  
fSCL  
SCL Clock Frequency  
Fast Mode Plus  
kHz  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
BUS-free Time betw een STOP and  
START Conditions  
tBUF  
Fast Mode  
1.3  
µs  
Fast Mode Plus  
0.5  
Standard Mode  
4
µs  
ns  
ns  
ns  
µs  
µs  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
Fast Mode  
600  
260  
160  
4.7  
START or Repeated START Hold  
Time  
tHD;STA  
Fast Mode Plus  
High-Speed Mode  
Standard Mode  
Fast Mode  
1.3  
tLOW  
SCL LOW Period  
Fast Mode Plus  
0.5  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
160  
320  
4
Fast Mode  
600  
260  
60  
tHIGH  
SCL HIGH Period  
Fast Mode Plus  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
120  
4.7  
Fast Mode  
600  
260  
160  
250  
100  
50  
tSU;STA  
Repeated START Setup Time  
Fast Mode Plus  
High-Speed Mode  
Standard Mode  
Fast Mode  
tSU;DAT Data Setup Time  
ns  
Fast Mode Plus  
High-Speed Mode  
Standard Mode  
10  
0
0
0
0
0
3.45  
900  
450  
70  
µs  
ns  
ns  
ns  
ns  
Fast Mode  
tHD;DAT Data Hold Time  
Fast Mode Plus  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
150  
20+0.1CB  
20+0.1CB  
20+0.1CB  
10  
20  
1000  
300  
120  
80  
Fast Mode  
tRCL  
SCL Rise Time  
Fast Mode Plus  
ns  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
160  
Continued onthe following page…  
www.onsemi.com  
9
I2C Timing Specifications (Continued)  
Guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max.  
Unit  
Standard Mode  
20+0.1CB  
20+0.1CB  
20+0.1CB  
10  
300  
300  
120  
40  
Fast Mode  
tFCL  
SCL Fall Time  
Fast Mode Plus  
ns  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
20  
10  
20  
80  
80  
Rise Time of SCL after a Repeated  
START Condition and after ACK Bit  
tRCL1  
ns  
ns  
160  
1000  
300  
120  
80  
20+0.1CB  
Fast Mode  
20+0.1CB  
20+0.1CB  
tRDA  
SDA Rise Time  
SDA Fall Time  
Fast Mode Plus  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
10  
20  
20+0.1CB  
160  
300  
300  
120  
80  
Fast Mode  
20+0.1CB  
20+0.1CB  
tFDA  
Fast Mode Plus  
ns  
High-Speed Mode, CB < 100 pF  
High-Speed Mode, CB < 400 pF  
Standard Mode  
10  
20  
4
160  
µs  
ns  
ns  
ns  
pF  
Fast Mode  
600  
120  
160  
tSU;STO Stop Condition Setup Time  
Fast Mode Plus  
High-Speed Mode  
CB  
Capacitive Load for SDA and SCL  
400  
www.onsemi.com  
10  
Timing Diagrams  
tF  
tSU;STA  
tBUF  
SDA  
tR  
TSU;DAT  
tHD;STO  
tHIGH  
tHD;DAT  
SCL  
tLOW  
tHD;STA  
tHD;STA  
REPEATED  
START  
START  
STOP  
START  
Figure 5. I2C Interface Timing for Fast and Slow Modes  
REPEATED  
START  
STOP  
tFDA  
tRDA  
tSU;DAT  
SDAH  
tSU;STA  
tRCL1  
tFCL  
tHIGH  
tHD;DAT  
note A  
tRCL  
tSU;STO  
SCLH  
tLOW  
tHD;STA  
REPEATED  
START  
= MCS Current Source Pull-up  
= RP Resistor Pull-up  
Note A: First rising edge of SCLH after Repeated Start and after each ACK bit.  
Figure 6. I2C Interface Timing for High-Speed Mode  
www.onsemi.com  
11  
Charge Mode Typical Characteristics  
Unless otherw ise specified, circuit of Figure 1, VOREG=4.2 V, VBUS=5.0 V, and TA=25°C.  
800  
700  
600  
500  
400  
300  
200  
140  
130  
120  
110  
100  
90  
4.5 VBUS  
5.0 VBUS  
5.5 VBUS  
4.5 VBUS  
5.0 VBUS  
5.5 VBUS  
80  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
Battery Voltage VBAT (V)  
Battery Voltage VBAT (V)  
Figure 7. Battery Charge Current vs. VBUS with  
IBUSLIM=100 mA  
Figure 8. Battery Charge Current vs. VBUS with  
IBUSLIM=500 mA  
95  
90  
85  
80  
75  
90  
88  
86  
84  
82  
4.5VBUS, 3.9VBAT  
4.5 VBUS  
5.0 VBUS  
5.5 VBUS  
5.0VBUS, 3.54VBAT  
80  
70  
65  
5.0VBUS, 4.2VBAT  
5.5VBUS, 3.9VBAT  
78  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
550  
750  
950  
1150  
1350  
1550  
Battery Voltage VBAT (V)  
Battery Charge Current IBAT (mA)  
Figure 10. Efficiency vs. Charging Current,  
IBUSLIM=No Limit  
Figure 9. Efficiency vs. VBUS, IBUSLIM=500 mA, ISYS=0  
www.onsemi.com  
12  
Charge Mode Typical Characteristics  
Unless otherw ise specified, circuit of Figure 1, VOREG=4.2 V, VBUS=5.0 V, and TA=25°C.  
Figure 11. Charger Startup at VBUS Plug-In, 100 mA  
Figure 12. Charger Startup at VBUS Plug-In, 500 mA  
IBUSLIM, 3.2 VBAT, 100 Ω SYS Load  
IINBUSLIM, 3.2 VBAT, 100 Ω SYS Load  
Figure 13. Charger Startup at VBUS Plug-In Using  
Figure 14. Charger Startup with HZ Bit Reset, 500 mA  
300 mA Current Limited Source, 500 mA IBUSLIM  
,
IBUSLIM, 950 mA ICHARGE, 50 SYS Load  
3.2 VBAT, 50 SYS Load  
www.onsemi.com  
13  
Charge Mode Typical Characteristics  
Unless otherw ise specified, circuit of Figure 1, VOREG=4.2 V, VBUS=5.0 V, and TA=25°C.  
Figure 15. Battery Removal / Insertion while Charging,  
TE=0, 3.9 VBAT, ICHRG=950 mA, IBUSLIM=No Limit, 50 Ω  
SYS Load  
Figure 16. Battery Removal / Insertion when  
Charging, TE=1, 3.9 VBAT, ICHRG=950 mA, IBUSLIM=No  
Limit, 50 Ω SYS Load  
Figure 17. No Battery at VBUS Power-Up, FAN54040, 100 Ω  
SYS Load, 1 kΩ VBAT Load  
Figure 18. No Battery at VBUS Power-Up, FAN54042,  
100 Ω SYS Load, 1 kΩ VBAT Load  
www.onsemi.com  
14  
 
Charge Mode Typical Characteristics  
Unless otherw ise specified, circuit of Figure 1, VOREG=4.2 V, VBUS=5.0 V, and TA=25°C.  
1,000  
800  
600  
400  
200  
0
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
-30C  
+25C  
+85C  
-30C  
+25C  
+85C  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
0
1
2
3
4
5
VBUS Input Voltage (V)  
VREF Load Current (mA)  
Figure 19. HZ Mode VBUS Current vs. Temperature,  
3.7 VBAT  
Figure 20. VREF vs. Load Current, Over-Temperature,  
5.0 VBUS  
Figure 21. Charging vs. Temperature (NTC), +30°C to -10°CFigure 22 Charging vs. Temperature (NTC), +30°C to +70°C  
3.7 VBAT, ICHRG=950 mA, No IBUSLIM, 100 Ω SYS Load 3.7 VBAT, ICHRG=950 mA, No IBUSLIM, 100 Ω SYS Load  
www.onsemi.com  
15  
GSM Typical Characteristics  
A 2.0 A GSM pulse applied at VBAT w ith 5 µs rise / fall time. Simultaneous to GSM pulse, 50 Ω additional load applied at SYS.  
Figure 23. 2.0 A GSM Pulse Response, IBUSLIM=500 mA  
Control, ICHRG=950 mA, 3.7 VBAT, OREG=4.2 V  
Figure 24. 2.0 A GSM Pulse Response, IBUSLIM=500 mA,  
ICHRG=950 mA, 3.7 VBAT, OREG=4.2 V, 200 mA Source  
Current Limit  
www.onsemi.com  
16  
Boost Mode Typical Characteristics  
Unless otherw ise specified, using circuit of Figure 1, VBAT=3.6 V, TA=25°C.  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
-10C, 3.6VBAT  
+25C, 3.6VBAT  
+85C, 3.6VBAT  
2.7VBAT  
3.6VBAT  
4.2VBAT  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
VBUS Load Current (mA)  
VBUS Load Current (mA)  
Figure 25. Efficiency vs. IBUS Over VBAT  
Figure 26. Efficiency vs. IBUS Over-Temperature, 3.6 VBAT  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
30  
25  
20  
15  
2.7VBAT  
3.6VBAT  
4.2VBAT  
10  
2.7VBAT  
5
3.6VBAT  
4.2VBAT  
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
VBUS Load Current (mA)  
VBUS Load Current (mA)  
Figure 27. Regulation vs. IBUS Over VBAT  
Figure 28. Output Ripple vs. IBUS Over VBAT  
350  
300  
250  
200  
150  
100  
10  
-30C  
+25C  
+85C  
8
6
4
2
0
-30C  
+25C  
+85C  
2
2.5  
3
3.5  
4
4.5  
5
2
2.5  
3
3.5  
4
4.5  
5
Battery Voltage, VBAT (V)  
Battery Voltage, VBAT (V)  
Figure 29. Quiescent Current (IQ) vs. VBAT Over-  
Temperature  
Figure 30. Battery Discharge Current vs. VBAT, HZ /  
Sleep Mode  
www.onsemi.com  
17  
Boost Mode Typical Characteristics  
Unless otherw ise specified, using circuit of Figure 1, VBAT=3.6 V, TA=25°C.  
Figure 31. OTG Startup, 50 Ω Load, 3.6 VBAT  
Figure 32. OTG VBUS Overload Response  
External / Additional 10 µf on VBUS  
Figure 33. Load Transient, 20-200-20 mA IBUS  
,
Figure 34. Line Transient, 50 Ω Load, 3.9-3.3-  
tRISE/FALL=100 ns  
3.9 VBAT, tRISE/FALL=10 µs  
www.onsemi.com  
18  
 
Circuit Description / Overview  
When charging batteries w ith a current-limited input source,  
such as USB, a sw itching charger’s high efficiency over a  
w ide range of output voltages minimizes charging time.  
Battery Charging Curve  
If the battery voltage is below VSHORT, a linear current source  
pre-charges the battery until VBAT reaches VSHORT. The PWM  
charging circuit is then started and the battery is charged  
w ith a constant current if sufficient input pow er is available.  
The current slew rate is limited to prevent overshoot.  
FAN5404X combines a highly integrated synchronous buck  
regulator for charging w ith a synchronous boost regulator,  
w hich can supply 5 V to USB On-The-Go (OTG) peripherals.  
The FAN5404X employs synchronous rectification for both  
the charger and boost regulators to maintain high efficiency  
over a w ide range of battery voltages and charge states.  
The FAN5404X is designed to w ork w ith a current-limited  
input source at VBUS. During the current regulation phase of  
charging, IBUSLIM or the programmed charging current limits  
the amount of current available to charge the battery and  
pow er the system. The effect of IBUSLIM on ICHARGE can be  
seen in Figure 36.  
The FAN5404X has four operating modes:  
1. Charge Mode:  
Charges a single-cell Li-ion or Li-polymer battery.  
2. Boost Mode:  
VBAT  
VFLOAT  
Provides 5 V pow er to USB-OTG w ith an integrated  
synchronous rectification boost regulator, using the  
battery as input.  
IBAT  
ICHARGE  
IO_LEVEL  
VBATMIN  
3. High-Impedance Mode:  
Both the boost and charging circuits are OFF in this  
mode. Current flow from VBUS to the battery or from the  
battery to VBUS is blocked in this mode. This mode  
consumes very little current from VBUS or the battery.  
ITERM  
VSHORT  
ISHORT  
4. Production Test Mode  
This mode provides 4.2 V output on VBAT and supplies  
a load current of up to 2.3 A.  
ISHORT  
CHARGE  
CONSTANT  
VOLTAGE (CV)  
PRE-  
CONSTANT  
CHARGE CURRENT (CC)  
RE-  
CHARGE  
ICHARGE Current Charging  
Charge Mode  
Figure 35. Charge Curve, ICHARGE Not Limited by IINLIM  
In Charge Mode, FAN5404X employs six regulation loops:  
1. Input Current: Limits the amount of current draw n from  
VBUS. This current is sensed internally and can be  
programmed through the I2C interface.  
VBAT  
VFLOAT  
ICHARGE  
2. Charging Current: Limits the maximum charging current.  
This current is sensed using an internal sense  
MOSFET.  
IBAT  
IO_LEVEL  
VBATMIN  
ITERM  
3. VBUS Voltage: This loop is designed to prevent the  
input supply from being dragged below VBUSLIM (typically  
4.5 V) w hen the input pow er source is current limited.  
An example of this w ould be a travel charger. This loop  
cuts back the current w hen VBUS approaches VBUSLIM,  
allow ing the input source to run in current limit.  
VSHORT  
ISHORT  
ISHORT  
CHARGE  
CONSTANT  
VOLTAGE (CV)  
PRE-  
CONSTANT  
CHARGE CURRENT (CC)  
RE-  
CHARGE  
Input Current Limited Charging  
4. Charge Voltage: The regulator is restricted from  
exceeding this voltage. As the internal battery voltage  
rises, the battery’s internal impedance w orks in  
conjunction w ith the charge voltage regulation to  
decrease the amount of current flow ing to the battery.  
Battery charging is completed w hen the current through  
Q4 drops below the ITERM threshold.  
Figure 36. Charge Curve, IBUSLIM Limits ICHARGE  
Assuming that VOREG is programmed to the cell’s fully  
charged “float” voltage, the current that the battery accepts  
w ith the PWM regulator limiting its output (sensed at VBAT)  
to VOREG declines and the charger enters the voltage  
regulation phase of charging. When the current declines to  
the programmed ITERM value, the charge cycle is complete.  
Charge current termination can be disabled by resetting the  
TE bit (REG1[3]).  
5. Pow er Path: When VBAT is below VBATMIN, Q4 operates  
as a linear current source and modulates its current to  
ensure that the voltage on SYS stays above 3.4 V.  
6. Temperature: If the IC’s junction temperature reaches  
120°C, charge current is reduced until the IC’s  
temperature is below 120°C.  
The charger output or “float” voltage can be programmed by  
the OREG bits from 3.5 V to 4.44 V in 20 mV increments, as  
show n in Table 4.  
www.onsemi.com  
19  
 
The follow ing charging parameters can be programmed by  
the host through I2C:  
Charge Current Limit (IOCHARGE  
)
Table 5. IOCHARGE Current asFunctionof IOCHARGE  
Bits (REG4 [6:3])  
Table 3. Programmable Charging Parameters  
Parameter  
Output Voltage Regulation  
Battery Charging Current Limit  
Input Current Limit  
Name  
VOREG  
IOCHRG  
Register  
REG2[7:2]  
REG4[6:3]  
REG1[7:6]  
REG4[2:0]  
REG1[5:4]  
DEC  
BIN  
0000  
HEX  
I
OCHARGE (mA)  
550  
0
0
1
1
0001  
650  
I
INLIM  
2
0010  
2
750  
Charge Termination Limit  
Weak Battery Voltage  
ITERM  
3
0011  
3
850  
VLOWV  
4
0100  
4
950  
5
0101  
5
1,050  
1,150  
1,250  
1,350  
1,450  
1,550  
Table 4. OREG Bits (OREG[7:2]) vs. Charger VOUT  
(VOREG) Float Voltage  
6
0110  
6
Decimal Hex VOREG  
Decimal Hex VOREG  
7
8
0111  
7
1000  
8
0
1
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
3.50  
3.52  
3.54  
3.56  
3.58  
3.60  
3.62  
3.64  
3.66  
3.68  
3.70  
3.72  
3.74  
3.76  
3.78  
3.80  
3.82  
3.84  
3.86  
3.88  
3.90  
3.92  
3.94  
3.96  
24  
25  
18  
19  
3.98  
4.00  
4.02  
4.04  
4.06  
4.08  
4.10  
4.12  
4.14  
4.16  
4.18  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
4.38  
4.40  
4.42  
4.44  
9
1001  
9
2
26  
1A  
1B  
1C  
1D  
1E  
1F  
20  
10-15  
1010-1111  
A-F  
3
27  
When the IO_LEVEL bit is set (default), the IOCHARGE bits are  
ignored and charge current is set to 340 mA.  
4
28  
5
29  
PWM Controller in Charge Mode  
6
30  
The IC uses a current-mode PWM controller to regulate the  
output voltage and battery charge currents. The synchronous  
rectifier (Q2) has a negative current limit that turns off Q2 at  
140 mA to prevent current flow from the battery.  
7
31  
8
32  
9
33  
21  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
34  
22  
Termination Current Limit  
35  
23  
Current charge termination is enabled w hen TE (REG1[3])=1.  
Typical termination current values are given in Table 6.  
36  
24  
37  
25  
Table 6. Termination Current asFunction of ITERM  
Bits (REG4[2:0]) or PC_IT Bits(REG7[2:0]  
38  
26  
Termination Current  
39  
27  
ITERM Bits or PC_IT Bits  
(mA)  
40  
28  
0
1
2
3
4
5
6
7
50  
41  
29  
100  
150  
200  
250  
300  
350  
400  
42  
2A  
2B  
2C  
2D  
2E  
2F-3F  
43  
44  
45  
46  
47 - 63  
Note:  
When the charge current falls below ITERM; PWM charging  
stops, but the STAT pin remains LOW. The STAT pin then  
goes HIGH and the STATUS bits change to CHARGE DONE  
(10), provided the battery and charger are still connected.  
9. Default settings are denoted by bold typeface.  
Provided DIS, CE# and HZ_MODE are LOW, a new charge  
cycle begins w hen one of the follow ing occurs:  
1. The battery voltage falls below VOREG - VRCH after  
charge termination has occurred.  
2. Any I2C w rite occurs causing the T32 s timer to run.  
A post-charging feature, “top-off” charging, is available to  
continue the battery charging to a low er charge current to  
maximize battery capacity. The PC_EN bit must be set to 1  
before the battery charging current reaches the termination  
current ITERM for normal charging. The post-charging  
termination current is set by the PC_IT[2:0] bits, as show n in  
Table 6. If PC_EN is set to 1; right after the normal charging  
is ended as described above, post charging is started w ith  
PC_ON monitor bit set to 1. Once the current reaches the  
Products that include the auto-charge feature also begin  
charging if:  
3. VBUS Pow er-on-Reset (POR) occurs and the battery  
voltage is below the w eak battery threshold (VLOWV).  
www.onsemi.com  
20  
 
 
 
threshold for post-charging completion, PWM charging stops  
and PC_ON bit changes back to 0.  
time, POK_B is HIGH. If VBAT < VSHORT, Q4’s current is  
further reduced to about 13 mA (ISHORT) w hen IBUSLIM is set to  
100 or 500 mA . For all other input current limits, ISHORT  
current is approximately 30 mA.  
During post-charging, the STAT pin is HIGH, indicating that  
the charge current is below the ITERM level. To exit post-  
charging, one of the follow ing must occur: a VBUS POR, the  
POK_B cycled w hen VBAT <3.0 V, or the CE# or HZ_Mode  
bit cycled.  
The POK_B signal can be used to keep the system in a low -  
pow er state, preventing excessive loading from the system  
w hile attempting to charge a depleted battery.  
Table 7. VBATMIN Thresholdsto Exit Power Path  
Mode  
SafetyTimer  
At the beginning of charging, the IC starts a 15-minute timer  
(t15MIN ). When this timer times out, charging is terminated.  
Writing to any register through I2C stops and resets the t15MIN  
timer, w hich in turn starts a 32-second timer (t32S). Setting  
the TMR_RST bit (REG0[7]) resets the t32S timer. If the t32S  
timer times out; charging is terminated, the registers are set  
to their default values, and charging resumes using the  
default values w ith the t15MIN timer running.  
IBUSLIM (mA)  
VBATMIN (V)  
100  
500  
3.4  
3.3  
3.2  
3.2  
800  
No Limit  
After VBAT reaches VBATMIN, Q4 closes and is used as a  
current-sense element to limit ICHARGE per the I2C register  
settings by limiting the PWM modulator’s current (Full PWM  
Mode). During PWM Mode, if SYS drops more than 5 mV  
(VTHSYS) below VBAT, Q4 and Q5 are turned on (GATE is  
Normal charging is controlled by the host w ith the t32S timer  
running to ensure that the host is alive. Charging w ith the  
t15MIN timer running is used for charging unattended by the  
host. If the t15MIN timer expires, the IC turns off the charger  
and indicates  
a timer fault (110) on the FAULT bits  
pulled LOW). Once SYS voltage becomes higher than VBAT  
Q5 is turned off and Q4 again serves as the current-sense  
element to limit IOCHARGE  
,
(REG0[2:0]). This sequence prevents overcharge if the host  
fails to reset the t32S timer.  
.
Q4 and Q5 are both turned on w hen the IC enters SLEEP  
Mode (VBUS < VBAT).  
VBUS POR / Non-CompliantCharger Rejection  
256 ms after VBUS is connected, the IC pulses the STAT pin  
and sets the VBUS_CON bit. Before starting to supply  
current, the IC applies a 110 load from VBUS to GND.  
VBUS must remain above VIN(MIN)1 and below VBUSOVP for  
tVBUS_VALID (32 ms) before the IC initiates charging or  
supplies pow er to SYS. The VBUS validation sequence  
alw ays occurs before significant current is draw n from VBUS  
(for example, after a VBUS OVP fault or a VRCH recharge  
initiation). tVBUS_VALID ensures that unfiltered 50/60 Hz  
chargers and other non-compliant chargers are rejected.  
POK_B pulls LOW once VBAT reaches VLOWV, and remains  
LOW as long as the IC is in Full PWM Mode. The IC remains  
in Full PWM Mode as long as VBAT > 3.0 V, at w hich point,  
the IC enters Pow er Path Charging Mode.  
Startup with a Dead Battery  
At VBUS POR, a 2 kload is applied to VBAT for 256 ms to  
discharge any residual system capacitance in case the  
battery is absent or its discharge protection sw itch is open.  
USB-FriendlyBoot Sequence  
If VBAT < VLOWV, all registers are reset to default values and  
the IC charges in T15Min Mode. If VBAT < VSHORT, the  
SAFETY register is reset to its default value and the Battery  
Detection test below is performed.  
At VBUS POR, w hen the battery voltage is above the w eak  
battery threshold (VLOWV); the IC operates in accordance w ith  
its I2C register settings. If VBAT < VLOWV and t32s is not  
running, the IC sets all registers to their default values and  
begins to deliver pow er to SYS.  
Battery Detection  
If VBAT is below VSHORT w hen charging is enabled, the  
DBAT_B bit is reset and the IC (except FAN54045 and  
FAN54046) performs an addition battery detection test.  
FAN54040, FAN54042, and FAN54047 feature auto-charge,  
w hich allow these parts to deliver charge to the battery prior  
to receiving host commands.  
After VBAT rises above VSHORT, PWM charging begins (w hen  
CE# = 0) w ith the float voltage (VOREG) temporarily set to 4 V.  
If the battery voltage exceeds 3.7 V w ithin 32 ms of the  
beginning of PWM charging, the battery is absent. If battery  
absence is detected:  
FAN54041 does not automatically initiate charging at VBUS  
POR. Instead, it w aits in IDLE state for the host to initiate  
charging through I2C commands. While in IDLE state, Q4  
and Q5 are on. This allow s the system to run through a  
separate pow er path w ithout requiring an additional  
disconnection MOSFET.  
1. STAT pulses, w ith FAULT bits set to 111, and the  
NOBAT bit is set.  
2. For FAN54040 only; the t15MIN timer is disabled until  
VBUS is removed, IDLE state is entered, and POK_B  
remains HIGH.  
Power Path Operation  
As long as VBAT < VBATMIN, Q4 operates as a linear current  
source, (Pow er Path Mode) w ith its current limited to  
340 mA . The IC then regulates SYS to 3.54 V and attempts  
to charge the battery w ith as much current as possible w ith  
the available IBUSLIM input current, w ithout allow ing SYS to  
drop below 3.4 V. This ensures that system pow er alw ays  
receives first priority from a limited input supply. During this  
3. The IC bypasses the protection sw itch close test below ,  
since no battery is present.  
The FAN54042 and FAN54047 continue to charge.  
If VBAT remained below 3.7 V during the initial 32 ms period,  
Pow er Path Mode charging continues to ensure that the  
www.onsemi.com  
21  
 
 
battery’s discharge protection sw itch has closed before  
exiting Pow er Path Mode:  
Once the host processor begins w riting to the IC, charge  
parameters are set by the host, w hich must continually reset  
the t32S timer to continue charging using the programmed  
charging parameters.  
1. If VBAT is less than 3.4 V, VSYS is set to 4 V, and Pow er  
Path charging continues until VBAT has exceeded 3.4 V  
for at least 128 ms. Charging continues until:  
If t32S times out; the register defaults are loaded, the FAULT  
bits are set to 110, STAT is pulsed, and charging continues  
w ith default charge parameters in T15MIN Mode for the  
FAN54040, FAN54042, and FAN54047.  
2. VBAT has dropped below 3.2 V for at least 32 ms. Once  
this occurs, VSYS returns to the OREG register setting  
(default 3.54 V).  
POK_B (see Table 8)  
3. VBAT has again risen above VBATMIN for at least 4 ms.  
The POK_B pin and bit are intended to provide feedback to  
the baseband processor that the battery is strong enough to  
allow the device to fully function. Whenever the IC is  
operating in Pow er Path Mode, POK_B is HIGH. On exiting  
After these three events, PWM Mode is entered and the IC  
sets the DBAT_B bit. If the host sets the DBAT_B bit  
(Reg2[1]), events 1 and 2 above are skipped and PWM  
Mode is entered once VBAT rises above VBATMIN  
.
Pow er Path Mode, POK_B remains HIGH until VBAT > VLOWV  
.
In a typical application, as soon as the host processor has  
cleared its UVLO threshold (typically 3.3 V), the host’s low  
level softw are w ould set the IBUSLIM and IOCHARGE  
registers to charge the battery more rapidly above VBATMIN as  
soon as the host determines that more than 100 mA is  
available through VBUS (see Figure 37).  
Reg1[5:4] sets the VLOWV threshold.  
The STAT pin pulses any time the POK_B pin changes.  
Table 8. Q4, Q5, POK_B, andGATE Operation vs. ChargingMode  
Q4 CC-CV Control  
VBUS  
VBAT  
VSYS  
Q4 Q5 GATE POK_B  
Pow er Path Mode: Maintain VSYS > 3.4 V  
Pow er Path Mode: Limit ICHARGE < 340 mA  
Valid  
Valid  
< VBATMIN  
< VBATMIN  
<3.4  
Linear OFF HIGH  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
> 3.4 Linear OFF HIGH  
> VBATMIN and < VLOWV  
> VLOWV  
PWM Mode. Q4 Senses Current for ICHARGE  
Valid  
X
X
ON OFF HIGH  
ON ON LOW  
OFF  
<VBAT  
X
Note:  
10. POK_B remains LOW until Q4 returns to Pow er Path Mode. Q4 and Q5 are both ON if VSYS < VBAT and CE# = 0.  
If CE# = 1 and VSYS < VBAT, Q5 is OFF and Q4 blocks current flow from VBAT to SYS.  
Table 9. Q4, Q5 Operation as a Function of Relationship between VBUS and VBAT  
PWM  
Charger  
CE#  
VBUS  
VBAT  
Q4  
Q5  
GATE  
< VSYS  
>VBATMIN  
,
ON  
PWM Mode  
0
Valid  
ON  
OFF  
HIGH  
> VSYS  
>VBATMIN  
,
ON  
ON  
PWM Mode  
Disabled  
0
1
Valid  
Valid  
ON  
ON  
LOW  
HIGH  
X
OFF  
OFF  
2 V < VBAT  
VBATMIN  
<
ON  
Pow er Path Charging  
30 mA Linear Charging  
OFF  
0
X
X
Valid  
Valid  
X
Linear  
ON  
OFF  
ON  
ON  
HIGH  
LOW  
LOW  
OFF  
OFF  
< 2 VBAT  
X
ON  
www.onsemi.com  
22  
 
System Wake-up  
Load Low-level  
software  
Determine USB  
power available  
Battery  
Installed?  
NO  
HALT  
YES  
Set Safety  
Register  
Set IINLIM per USB  
power available,  
reset IO_LEVEL and  
set IOCHARGE bits  
NO  
Set TMR_RST bit  
every 10 sec.  
DEADBAT  
bit SET?  
2 minutes  
elapsed?  
NO  
YES  
YES  
Set all charge  
parameters  
SET  
DEADBAT bit  
YES  
NO  
Load full  
functionality  
POK_B = 0?  
YES  
Figure 37. Recommended Host Software Sequence when Booting with Dead Battery  
www.onsemi.com  
23  
 
Battery Temperature (NTC) Monitor  
The host processor can disable temperature-driven control  
of charging parameters by w riting 1 to the TEMP_DIS bit.  
Since TEMP_DIS is reset w henever the IC resets its  
registers, the temperature controls are enforced w henever  
the IC is auto-charging, since auto-charge is alw ays  
preceeded by a reset of registers.  
The FAN5404X reduces the maximum charge current and  
termination voltage if an NTC measuring battery temperature  
(TBAT) indicates that it is outside the fast-charging limits (T2  
to T3), as described in the JEITA specification1. There are  
four temperature thresholds that change battery charger  
operation: T1, T2, T3, and T4, show n in Table 10.  
To disable the thermistor circuit, tie the NTC pin to GND.  
Before enabling the charger, the IC tests to see if NTC is  
shorted to GND. If NTC is shorted to GND, no thermistor  
readings occur and the NTC_OK and NTC1-NTC4 is reset.  
Table 10. Battery Temperature Thresholds  
For use w ith 10 NTC, β = 3380, and RREF = 10 kΩ.  
The IC first measures the NTC immediately prior to entering  
any PWM charging state, then measures the NTC once per  
second, updating the result in NTC1-NTC4 bits (Reg  
12H[3:0]).  
Threshold  
Temperature  
% of VREF  
73.9  
T1  
T2  
T3  
T4  
0°C  
10°C  
45°C  
60°C  
64.6  
32.9  
Table 13. NTC1-NTC4 Decoding  
23.3  
TBAT (°C)  
NTC4 NTC3 NTC2 NTC1  
Above T4  
1
0
0
0
0
1
1
0
0
0
1
1
1
0
0
1
1
1
1
0
Table 11. Charge Parametersvs. TBAT  
TBAT (°C) ICHARGE  
Betw een T3 and T4  
Betw een T2 and T3  
Betw een T1 and T2  
Below T1  
VFLOAT  
Below T1  
Charging to VBAT Disabled  
IOCHARGE / 2(11)  
Betw een T1 and T2  
Betw een T2 and T3  
Betw een T3 and T4  
Above T4  
4.0 V  
VOREG  
4.0 V  
IOCHARGE  
IOCHARGE / 2(11)  
Charging to VBAT Disabled  
Note:  
11. If IOCHARGE is programmed to less than 650 mA, the  
charge current is limited to 340 mA.  
Thermistors w ith other β values can be used, w ith some shift  
in the corresponding temperature threshold, as show n in  
Table 12.  
Table 12. Thermistor Temperature Thresholds  
RREF = RTHRM at 25°C  
Parameter  
Various Thermistors  
RTHRM(25°C)  
10 kΩ  
3380  
0°C  
10 kΩ  
3940  
3°C  
47 kΩ  
4050  
6
100 kΩ  
4250  
8
β
T1  
T2  
T3  
T4  
10°C  
45°C  
60°C  
12°C  
42°C  
55°C  
13  
14  
41  
40  
53  
51  
1
Japan Electronics and Information Technology Industries  
Association (JEITA) and Battery Association of Japan. “A Guide to  
the Safe Use of Secondary Lithium Ion Batteries in Notebook-type  
Personal Computers,” April 28, 2007.  
www.onsemi.com  
24  
 
 
 
 
 
Flow Charts  
VBUS POR  
HZ or  
DISABLE Pin  
set?  
T32Sec  
Armed?  
YES  
NO  
YES  
VBAT > VLOWV  
NO  
NO  
YES  
Ready State  
HZ, or  
DISABLE Pin  
set?  
YES  
HZ State  
T32Sec  
Armed?  
NO  
YES  
Charge State  
Reset all registers  
Start T32SEC  
NO  
Figure 38. Charger VBUS POR Flow Chart  
PWM = OFF  
Ready State  
Q4, Q5 = ON  
RUN  
T32Sec  
NO  
VBAT > VLOWV?  
YES  
HZ or  
DISABLE Pin  
set?  
YES  
HZ_STATE  
NO  
T32Sec  
Armed?  
NO  
Charge State  
YES  
Figure 39. Ready State Flow Chart  
www.onsemi.com  
25  
NO  
CHARGE STATE  
FIRST TIME?  
YES  
NO  
YES  
Linear Charging  
Reset Safety reg  
YES  
VBAT < VSHORT  
VBAT < VSHORT  
Enable PWM  
Battery  
YES  
NO  
Present?  
YES  
NO  
NO  
Timer  
Enable PWM  
YES  
YES  
CE# = 1  
NO  
CE# = 1  
Enunciate  
battery absent  
fault  
Running?  
NO  
IDLE State  
Battery absent  
behavior?  
NO  
ON  
VBAT < VBATMIN  
OFF  
YES  
Protection  
switch closed?  
YES  
NO  
IDLE State  
Enable PWM  
charging  
Enable PowerPath  
charging  
NO  
Battery Removed  
Battery  
NO  
Reset charge  
parameters &  
Safety Regs  
Present?  
T15MIN T.O. or  
[T32S T.O. and  
FAN54041] ?  
IOUT < ITERM  
and TE = 1  
NO  
YES  
YES  
Indicate Charge  
Complete  
YES  
YES  
PWM ON  
VBUS OK?  
NO  
EOC = 1  
Q4 and Q5 OFF  
Indicate timer fault  
NO  
VBAT  
<
NO  
VOREG–VRCH  
?
Indicate VBUS  
Fault  
Disable PWM for  
2 seconds  
IDLE State  
YES  
YES  
CHARGE  
STATE  
Figure 40. Charge State Flow Chart  
www.onsemi.com  
26  
PWM = OFF  
Q4, Q5 = ON  
HZ State  
DIS  
PIN  
Reset T15min  
if running  
HIGH  
LOW  
Stop T32Sec  
Run T32Sec  
NO  
HZ_MODE or  
DIS pin set?  
YES  
VBAT > VLOWV?  
YES  
NO  
Timer  
Armed?  
NO  
IDLE STATE  
YES  
Start timer and GOTO  
Charge State  
Figure 41. HZ State  
PWM = OFF  
Q4, Q5 = ON  
IDLE State  
T32Sec  
Armed?  
NO  
YES  
HZ or  
DISABLE Pin  
set?  
Charge State  
NO  
YES  
HZ STATE  
Figure 42. IDLE State  
www.onsemi.com  
27  
Charge Start  
Start T15MIN  
Reset Registers  
YES  
T32SEC  
Expired?  
NO  
Start T32SEC  
Stop T15MIN  
YES  
NO  
T15MIN  
Active?  
I2C Write  
Received?  
T15MIN  
Continue  
Charging  
YES  
NO  
NO  
Expired?  
Timer Fault  
PWM = OFF  
YES  
Figure 43. Timer Flow Chart for FAN54040, FAN54042, FAN54047  
Charge Start  
from Host control  
Timer Fault  
Stop PWM and  
Reset Registers  
T32SEC  
Expired?  
Reset  
T32SEC  
Charge  
NO  
YES  
NO  
TMR_RST  
Bit Set?  
YES  
Figure 44. Timer Flow Chart for FAN54041  
Input Current Limiting  
For the FAN54041, no charging occurs automatically at  
VBUS POR, so the input current limit is established by the  
IBUSLIM bits.  
To minimize charging time w ithout overloading VBUS current  
limitations, the IC’s input current limit can be programmed by  
the IBUSLIM bits (REG1[7:6]).  
VBUS Control loop  
Table 14. Input Current Limit  
The IC includes a control loop that limits input current in  
case a current-limited source is supplying VBUS  
.
IBUSLIM REG1[7:6]  
Input Current Limit  
100 mA  
The control increases the charging current until either:  
00  
01  
10  
11  
500 mA  
.
.
I
BUSLIM or IOCHARGE is reached OR  
V
BUS=VBUSLIM  
.
800 mA  
No Limit  
If VBUS collapses to VBUSLIM, the VBUS loop reduces its  
current to keep VBUS=VBUSLIM. When the VBUS control loop  
is limiting the charge current, the VLIM bit (REG5[3]) is set.  
www.onsemi.com  
28  
 
Table 15. VBUS Limit as Functionof VBUSLIM Bits  
(REG5[2:0])  
Table 17. VSAFE (VOREG Limit) asFunction of VSAFE  
Bits (REG6[3:0])  
VBUSLIM (REG5[2:0])  
VSAFE (REG6[3:0])  
DEC  
BIN  
HEX  
VBUSLIM  
OREG Max. VOREG  
DEC  
BIN  
HEX  
(REG2[7:2])  
Max.  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
4.38  
4.40  
4.42  
4.44  
0
1
2
3
4
5
6
7
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
4.213  
4.293  
4.373  
4.453  
4.533  
4.613  
4.693  
4.773  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
0
1
100011  
100100  
2
2
100101  
3
3
100110  
4
4
100111  
5
5
101000  
6
6
101001  
7
7
101010  
8
8
101011  
SafetySettings  
9
9
101100  
The IC contains a SAFETY register (REG6) that prevents  
the values in OREG (REG2[7:2]) and IOCHARGE  
(REG4[7:4]) from exceeding the values of the VSAFE and  
ISAFE values.  
10  
11  
A
B
C-F  
101101  
101110  
12-15 1100-1111  
101111-110010  
After VBAT rises above VSHORT, the SAFETY register is  
loaded w ith its default value and may be w ritten to only  
before w riting to any other register. The same 8-bit value  
should be w ritten to the Safety register tw ice to set the  
register value. After w riting to any other register, the  
Thermal Regulation and Protection  
When the IC’s junction temperature reaches TCF (about 120°C),  
the charger reduces its output current to 550 mA to prevent  
overheating. If the temperature increases beyond TSHUTDOWN  
SAFETY register is locked until VBAT falls below VSHORT  
.
;
The ISAFE (REG6[7:4]) and VSAFE (REG6[3:0]) registers  
establish values that limit the maximum values of IOCHARGE  
and VOREG used by the control logic. If the host attempts to  
w rite a value higher than VSAFE or ISAFE to OREG or  
IOCHARGE, respectively; the VSAFE, ISAFE value appears  
as the OREG, IOCHARGE register value, respectively.  
charging is suspended, the FAULT bits are set to 101, and  
STAT is pulsed HIGH. In Suspend Mode, all timers stop and the  
state of the IC’s logic is preserved. Charging resumes at  
programmed current after the die cools to about 120°C.  
Additional θJA data points, measured using the FAN54040  
evaluation board, are given in Table 18 (measured w ith  
TA=25°C). Note that as pow er dissipation increases, the  
effective θJA decreases due to the larger difference betw een  
the die temperature and ambient.  
Table 16. Maximum IOCHARGE as Function of ISAFE  
Bits (REG6[7:4])  
DEC  
BIN  
HEX  
IOCHARGE(MAX) (mA)  
Table 18. Evaluation Board Measured θJA  
0
0000  
0001  
0
1
550  
650  
Power (W)  
θJA  
1
0.504  
54°C/W  
50°C/W  
46°C/W  
2
0010  
2
750  
0.844  
3
0011  
3
850  
1.506  
4
0100  
4
950  
5
0101  
5
1,050  
1,150  
1,250  
1,350  
1,450  
1,550  
6
0110  
6
7
8
0111  
7
1000  
8
9
1001  
9
10-15  
1010-1111  
A-F  
www.onsemi.com  
29  
 
 
 
 
 
Battery Detection DuringCharging  
Charge Mode Input SupplyProtection  
SleepMode  
When VBUS falls below VBAT + VSLP and VBUS is above VIN(MIN),  
the IC enters Sleep Mode to prevent the battery from  
draining into VBUS. During Sleep Mode, reverse current is  
disabled by body sw itching Q1.  
The IC can detect the presence, absence, or removal of a  
battery if the termination bit (TE) is set and CE# = 0. During  
normal charging, once VBAT is close to VOREG and the charge  
current falls below ITERM; the PWM charger continues to  
provide pow er to SYS and Q4 is turned off. It then turns on a  
discharge current, IDETECT, for tDETECT. If VBAT is still above  
VOREG – VRCH, the battery is present and the IC sets the  
STATUS bits to 10 (Charge Done). If VBAT is below VOREG  
VRCH, the battery is absent and the IC:  
Input Supply Low-Voltage Detection  
The IC continuously monitors VBUS during charging. If VBUS  
falls below VIN(MIN), the IC:  
1. Sets the charging parameters to their default values.  
1. Terminates charging  
2. Sets the FAULT bits to 111 (Battery Absent) and sets  
the NOBAT bit.  
2. Pulses the STAT pin, sets the STATUS bits to 11, and  
sets the FAULT bits to 011.  
3. If EOC=0, the IC turns off the PWM for tINT, then  
resumes charging. If the battery is still absent, the  
If VBUS recovers above the VIN(MIN) rising threshold after time  
tINT (about tw o seconds), the charging process is repeated.  
This function prevents the USB pow er bus from collapsing or  
oscillating w hen the IC is connected to a suspended USB  
port or a low -current-capable OTG device.  
battery absent fault is then re-enunciated every tINT  
.
4. If EOC = 1, the PWM remains on to provide pow er to  
SYS, but charge termination and the battery absent test  
are performed every tINT  
.
Input Over-Voltage Detection  
When the VBUS exceeds VBUSOVP, the IC:  
Linear Charging  
If the battery voltage is below the short-circuit threshold  
(VSHORT); a linear current source, ISHORT, charges VBAT until  
1. Turns off Q3  
VBAT > VSHORT  
.
2. Suspends charging  
For IBUSLIM settings of 100 mA or 500 mA, the linear charging  
current is typically 13 mA. For higher IBUSLIM settings, the  
linear charging current is increased to 30 mA.  
3. Sets the FAULT bits to 001, sets the STATUS bits to  
11, and pulses the STAT pin.  
When VBUS falls about 100 mV below VBUSOVP, the fault is  
cleared and charging resumes after VBUS is revalidated  
(see VBUS POR / Non-Compliant Charger Rejection).  
Charger Status / Fault Status  
The STAT pin indicates the operating condition of the IC and  
provides a fault indicator for interrupt driven systems.  
VBUS Short While Charging  
Table 19. STAT Pin Function  
If VBUS is shorted w ith a very low impedance w hile the IC is  
charging w ith IBUSLIMIT=100 mA, the IC may not meet  
datasheet specifications until pow er is removed. To trigger  
this condition, VBUS must be driven from 5 V to GND w ith a  
high slew rate. Achieving this slew rate requires a 0 short  
to the USB cable less than 10 cm from the connector.  
EN_STAT  
Charge State  
STAT Pin  
0
X
1
X
OPEN  
OPEN  
LOW  
Normal Conditions  
Charging  
128 µs Pulse,  
then OPEN  
SYS Short During Discharge / Supplemental Mode  
Caution should be taken to ensure the SYS pin is not  
shorted w hen connected to a battery. This condition can  
induce high current flow through the BATFET (Q4) until the  
battery’s ow n safety circuit trips. The resulting high current  
can damage the IC.  
X
Fault (Charging or Boost)  
The FAULT bits (R0[2:0]) indicate the type of fault in Charge  
Mode (see Table 28).  
Production Test Mode (PTM)  
Charge Mode BatteryDetection & Protection  
VBAT Over-Voltage Protection  
PTM provides 4.2 V at up to 2.3 A to VBAT w hen VBUS  
5.5 V ±5%.  
=
The OREG voltage regulation loop prevents VBAT f rom  
overshooting VOREG by more than 50 mV w hen the battery is  
removed. When the PWM charger runs w ith no battery, the  
TE bit is not set and a battery is inserted that is charged to a  
voltage higher than VOREG; PWM pulses stop. If no further  
pulses occur for 30 ms, the IC sets the FAULT bits to 100,  
sets the STATUS bits to 11, and pulses the STAT pin.  
The IC enters PTM w hen the PROD bit is set and the  
NOBAT bit is HIGH, indicating that the IC has detected  
battery absence. A battery absence detection test after  
VBUS POR is performed automatically for FAN54040,  
FAN54042, and FAN54047 only.  
A battery-absent detection test can be performed at any time  
by setting the TE bit, setting VOREG to at least 4.0 V, then  
resetting the CE# bit. If no battery is present; charge  
termination occurs, follow ed by a battery absent test, w hich  
sets the NOBAT bit. Battery-absence detection is completed  
w ithin 500 ms from the time that CE# is set.  
www.onsemi.com  
30  
 
In PTM, GA TE is LOW, Q4 and Q5 are on, and all auxiliary  
control loops are disabled. Only the OREG loop is active,  
w hich controls VBAT to 4.2 V, regardless of the OREG  
register setting. Thermal shutdow n remains active.  
The “droop” caused by the output resistance w hen a load is  
applied allow s the regulator to respond smoothly to load  
transients w ith no undershoot from the load line. This can be  
seen in Figure 33 and Figure 45.  
400  
360  
320  
280  
240  
200  
During PTM, high current pulses (load currents greater than  
1.5 A) must be limited to 20% duty cycle w ith a minimum  
period of 10 ms.  
Charge Mode Control Bits  
Setting either HZ_MODE through I2C or DIS pin to HIGH  
disables the charger, puts the IC into High-Impedance Mode,  
and stops t32S. If VBAT < VLOWV w hile in High-Impedance  
Mode, t32S begins running and, w hen it overflow s, all  
registers (except SAFETY) reset, w hich enables t15MIN  
charging on versions w ith the 15-minute timer if DIS=0.  
When t15MIN overflow s, the IC enters High-Impedance Mode  
(IDLE). A new charge cycle can only be initiated through I2C  
or VBUS POR.  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Battery Voltage, VBAT (V)  
Setting the RESET bit clears all registers. If HZ_MODE bit  
w as set w hen the RESET bit is set, this bit is also cleared,  
but the t32S timer is not started and the IC remains in High-  
Impedance Mode.  
Figure 45. Output Resistance (ROUT  
)
VBUS as a function of ILOAD can be computed w hen the  
regulator is in PWM Mode (continuous conduction) as:  
VOUT = 5.07 ROUT ILOAD  
EQ. 1  
EQ. 2  
EQ. 3  
Table 20. DIS Pin andHZ_MODE Bit Functionality  
Charging  
ENA BLE  
DIS Pin  
HZ_MODE  
At VBAT=3.0 V and ILOAD=300 mA, V BUS drops to:  
VOUT = 5.07 0.30 0.3 = 4.98V  
0
X
1
0
1
X
DISABLE  
DISABLE  
At VBAT=3.6 V and ILOAD=500 mA, V BUS drops to:  
VOUT = 5.07 0.24 0.5 = 4.95V  
Raising the DIS pin stops t32S from advancing, but does not  
reset it. If the DIS pin is raised during t15MIN charging, the  
t15MIN timer is reset. CE# determines w hether charging to  
VBAT is enabled or not.  
PFM Mode  
If VBUS > V REFBOOST (nominally 5.07 V) w hen the minimum  
off-time ends, the regulator enters PFM Mode. Boost pulses  
are inhibited until VBUS < V REFBOOST. The minimum on-time  
is increased to enable the output to pump up sufficiently w ith  
each PFM boost pulse. Therefore, the regulator behaves like  
a constant on-time regulator, w ith the bottom of its output  
voltage ripple at 5.07 V in PFM Mode.  
Boost Mode  
Boost Mode can be enabled if the IC is in 32-Second Mode  
by setting the OPA _MODE bit HIGH and clearing the  
HZ_MODE bit.  
Table 21. Enabling Boost  
HZ_MODE  
OPA_MODE  
BOOST  
Enabled  
Disabled  
Disabled  
Table 22. Boost PWM Operating States  
0
1
1
X
0
Mode  
LIN  
Description  
Linear Startup  
Boost Soft-Start  
Invoked When  
VBAT > VBUS  
X
SS  
VBUS < VBST  
VBAT > UVLOBST and  
SS Completed  
To remain in Boost Mode, the TMR_RST must be set by the  
host before the t32S timer times out. If t32S times out in Boost  
Mode; the IC resets all registers, pulses the STAT pin, sets  
the FAULT bits to 110, and resets the BOOST bit. VBUS  
POR or reading R0 clears the fault condition.  
BST  
Boost Operating Mode  
Startup  
When the boost regulator is shut dow n, current flow is  
prevented from VBAT to VBUS, as w ell as reverse flow from  
Boost PWM Control  
VBUS to VBAT  
.
The IC uses a minimum on-time and computed minimum off-  
time to regulate VBUS. The regulator achieves excellent  
transient response by employing current-mode modulation.  
This technique causes the regulator to exhibit a load line.  
During PWM Mode, the output voltage drops slightly as the  
input current rises. With a constant VBAT, this appears as a  
constant output resistance.  
www.onsemi.com  
31  
 
 
LIN State  
Monitor Registers (Reg10H, Reg11H)  
When EN rises, if VBAT > UVLOBST; the regulator first  
attempts to bring PMID w ithin 400 mV of VBAT using an  
internal 450 mA current source from VBAT (LIN State). If  
PMID has not achieved VBAT – 400 mV after 560 µs, a  
FAULT state is initiated.  
Additional status monitoring bits enable the host processor  
to have more visibility into the status of the IC. The monitor  
bits are real-time status indicators and are not internally  
debounced or otherw ise time qualified.  
The state of the MONITOR register bits listed in High-  
Impedance Mode is valid only w hen VBUS is valid.  
SS State  
When PMID > VBAT – 400 mV , the boost regulator begins  
sw itching w ith a reduced peak current limit of about 50% of  
its normal current limit. The output slew s up until VBUS is  
w ithin 5% of its setpoint; at w hich time, the regulation loop is  
closed and the current limit is set to 100%.  
I2C Interface  
The FAN5404X’s serial interface is compatible w ith  
Standard, Fast, Fast Plus, and High-Speed Mode I2C bus  
specifications. The FAN5404X SCL line is an input and the  
SDA line is a bi-directional open-drain output; it can only pull  
dow n the bus w hen active. The SDA line only pulls LOW  
during data reads and w hen signaling ACK. All data is  
shifted in MSB (bit 7) first.  
If the output fails to achieve 95% of its setpoint (VBST) w ithin  
128 µs, the current limit is increased to 100%. If the output  
fails to achieve 95% of its setpoint after this second 384 µs  
period, a fault state is initiated.  
Slave Address  
Table 24. I2C Slave AddressByte  
BST State  
This is the normal operating mode of the regulator. The  
7
6
5
4
3
2
1
0
regulator uses  
a minimum tOFF-minimum tON modulation  
V
IN  
1
1
0
1
0
1
1
scheme. The minimum tOFF is proportional to  
, w hich  
R/W  
V
OUT  
keeps the regulator’s sw itching frequency reasonably  
constant in CCM. tON(MIN) is proportional to VBAT and is a  
higher value if the inductor current reached 0 before tOFF(MIN)  
in the prior cycle.  
In hex notation, the slave address assumes a 0 LSB. The  
hex slave address is D6H for all parts in the family. Other  
slave addresses can be accommodated upon request.  
Contact an ON Semiconductor representative.  
To ensure VBUS does not overshoot the regulation point, the  
Bus Timing  
boost sw itch remains off as long as VFB > VREF(BST)  
.
As show n in Figure 46, data is normally transferred w hen  
SCL is LOW. Data is clocked in on the rising edge of SCL.  
Typically, data transitions shortly at or after the falling edge  
of SCL to allow ample time for the data to set up before the  
next SCL rising edge.  
Boost Faults  
If a BOOST fault occurs:  
1. The STAT pin pulses.  
2. OPA_MODE bit is reset.  
Data change allowed  
3. The pow er stage is in High-Impedance Mode.  
4. The FAULT bits (REG0[2:0]) are set per Table 23.  
SDA  
Restart After Boost Faults  
tH  
OPA_MODE is reset on boost faults. Boost Mode can only  
be re-enabled by setting the OPA_MODE bit.  
tSU  
SCL  
Table 23. Fault Bits During Boost Mode  
Figure 46. Data Transfer Timing  
Fault Bit  
Fault Description  
B2 B1 B0  
Each bus transaction begins and ends w ith SDA and SCL  
HIGH. A transaction begins w ith a START condition, w hich is  
defined as SDA transitioning from 1 to 0 w ith SCL HIGH, as  
show n in Figure 47  
0
0
0
0
0
1
Normal (no fault)  
VBUS > VBUSOVP  
VBUS fails to achieve the voltage required to  
advance to the next state during soft-start  
or sustained (>50 µs) current limit during the  
tHD;STA  
Slave Address  
MS Bit  
SDA  
SCL  
0
1
0
BST state.  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
VBAT < UVLOBST  
NA: This code does not appear.  
Thermal shutdow n  
Figure 47. Start Bit  
Timer fault; all registers reset.  
NA: This code does not appear.  
www.onsemi.com  
32  
 
 
 
Transactions end w ith a STOP condition, w hich is SDA  
transitioning from 0 to 1 w ith SCL HIGH, as show n in Figure 48.  
Read and Write Transactions  
The figures below outline the sequences for data read and  
w rite. Bus control is signified by the shading of the packet,  
Slave Releases  
Master Drives  
tHD;STO  
Slave Drives Bus  
ACK(0) or  
NACK(1)  
defined as  
All addresses and data are MSB first.  
and  
.
SDA  
SCL  
Table 25. Bit Definitionsfor Figure 50 - Figure 53  
Symbol  
Definition  
S
START, see Figure 47  
Figure 48. Stop Bit  
ACK. The slave drives SDA to 0 to acknow ledge  
the preceding packet.  
During a read from the FAN5404X (Figure 51), the master  
issues a Repeated Start after sending the register address  
and before resending the slave address. The Repeated Start  
is a 1-to-0 transition on SDA w hile SCL is HIGH, as show n in  
Figure 49.  
A
A
NACK. The slave sends a 1 to NACK the  
preceding packet.  
R
P
Repeated START, see Figure 49  
STOP, see Figure 48  
High-Speed (HS) Mode  
The protocols for High-Speed (HS), Low -Speed (LS), and  
Fast-Speed (FS) Modes are identical except the bus speed  
f or HS Mode is 3.4 MHz. HS Mode is entered w hen the bus  
master sends the HS master code 00001XXX after a start  
condition. The master code is sent in Fast or Fast Plus Mode  
(less than 1 MHz clock); slaves do not ACK the  
transmission.  
Multi-Byte (Sequential) Read and Write  
Transactions  
Sequential Write (Figure 52)  
The Slave Address, Reg Addr address, and the first data  
byte are transmitted to the FAN5404x in the same w ay as in  
a byte w rite (Figure 50). How ever, instead of generating a  
Stop condition, the master transmits additional bytes that are  
w ritten to consecutive sequential registers after the falling  
edge of the eighth bit. After the last byte w ritten and its ACK  
bit received, the master issues a STOP bit. The IC contains  
an 8-bit counter that increments the address pointer after  
each byte is w ritten.  
The master then generates  
a repeated start condition  
(Figure 49) that causes all slaves on the bus to sw itch to HS  
Mode. The master then sends I2C packets, as described  
above, using the HS Mode clock rate and timing.  
The bus remains in HS Mode until a stop bit (Figure 48) is  
sent by the master. While in HS Mode, packets are  
separated by repeated start conditions (Figure 49).  
Sequential Read(Figure 53)  
Slave Releases  
tSU;STA  
tHD;STA  
Sequential reads are initiated in the same w ay as a single-  
byte read (Figure 51), except that once the slave transmits  
the first data byte, the master issues an acknow ledge  
instead of a STOP condition. This directs the slave’s I2C  
logic to transmit the next sequentially addressed 8-bit w ord.  
The FAN5404x contains an 8-bit counter that increments the  
address pointer after each byte is read, w hich allow s the entire  
memory contents to be read during one I2C transaction.  
ACK(0) or  
NACK(1)  
SLADDR  
MS Bit  
SDA  
SCL  
Figure 49. Repeated Start Timing  
Figure 50. Single-Byte Write Transaction  
Figure 51. Single-Byte Read Transaction  
Figure 52. Multi-Byte (Sequential) Write Transaction  
Figure 53. Multi-Byte (Sequential) Read Transaction  
www.onsemi.com  
33  
 
 
 
 
 
 
Register Descriptions  
The eight user-accessible IC registers are defined in Table 26.  
Table 26. I2C Register Address  
Register  
Address Bits  
Name  
REG#  
7
6
5
4
3
2
1
0
CONTROL0  
CONTROL1  
OREG  
0H  
1H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
0
2H  
IC_INFO  
3H  
IBAT  
4H  
VBUS_CONTROL  
SAFETY  
5H  
6H  
POST_CHARGING  
MONITOR0  
MONITOR1  
NTC  
7H  
10H  
11H  
12H  
13H  
WD_CONTROL  
Table 27. Register Bit Definitions  
This table defines the operation of each register bit for all IC versions. Default values are in bold text.  
Bit  
Name  
Value Type  
Description  
Register Address: 00  
CONTROL0  
Default Value=0100 0000  
Writing a 1 resets the t32S timer; w riting a 0 has no effect.  
Reading this bit alw ays returns 0  
7
6
TMR_RST  
EN_STA T  
0
W
Prevents STAT pin from going LOW during charging; STAT pin still pulses to  
enunciate faults  
0
R/W  
1
00  
01  
10  
11  
0
Enables STAT pin to be LOW w hen IC is charging  
R
Ready  
PWM Enabled. Charging is occurring if CE# = 0.  
5:4  
STAT  
Charge done  
Fault  
R
R
IC is not in Boost Mode  
IC is in Boost Mode  
3
BOOST  
FAULT  
1
2:0  
Table 28. Charger Mode Faults  
Fault Bit  
Fault Description  
2
1
0
0
0
0
Normal (No Fault)  
VBUS OVP  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
Sleep Mode  
Poor Input Source  
Battery OVP  
Thermal Shutdow n  
Timer Fault  
No Battery  
For Boost Mode faults, see Table 23  
www.onsemi.com  
34  
 
 
Bit  
Name  
Value Type  
Description  
CONTROL1  
Register Address:01  
Default Value=0011 0X00  
7:6  
IBUSLIM  
R/W Input current limit; defaults to 00 (100 mA), see Table 14  
00  
01  
10  
11  
0
R/W 3.4 V  
3.5 V  
5:4  
VLOWV  
Weak battery voltage threshold  
3.6 V  
3.7 V  
R/W Disable charge current termination  
Enable charge current termination  
3
2
TE  
1
0
R/W Charging enabled. Default for FAN54040, FAN54042, FAN54047.  
Charging disabled. Default for FAN54041, FAN54045 , FAN54046.  
R/W Not High-Impedance Mode  
CE#  
1
0
1
0
HZ_MODE  
1
High-Impedance Mode  
See Table 21  
R/W Charge Mode  
0
OPA_MODE  
1
Boost Mode  
OREG  
Register Address:02  
Default Value=0000 1000 (08H)  
Charger output “float” voltage; programmable from 3.5 to 4.44 V in 20 mV  
increments; defaults to 000010 (3.54 V), see Table 4.  
7:2  
OREG  
R/W  
R/W  
Indicates that the IC detected a dead battery after VBUS_POR and that the charger  
has not yet completed the three steps to ensure that the battery’s protection sw itch  
is closed if a battery is present, as described in the Dead Battery section on page  
21. Writing a 0 to this bit is ignored.  
0
The IC sets this bit to 1 if any of the follow ing are true:  
1
DBAT_B  
1. Dead Battery (VBAT < VSHORT) w as not detected at VBUS_POR.  
2. The IC has completed the three steps to ensure that if the battery is  
present, the battery’s protection sw itch has closed, as described in the  
Dead Battery section on page 21.  
1
If the host sets this bit w hile the IC is charging the battery and DBAT_B is LOW,  
the three steps are aborted and normal Pow er Path or PWM charging proceeds.  
If no battery is detected w hen a full battery (end of charge) is reached, PWM stops,  
R/W Q4 and Q5 remain on, and the charger automatically restarts after tw o seconds w ith  
0
TE and CE# bits unchanged.  
0
EOC  
If no battery is detected w hen a full battery (end of charge) is reached, the PWM  
charger stays on, allow ing the host processor to continue to run w ith no battery.  
1
IC_INFO  
7:6  
Register Address:03  
Default Value=100X XXXX  
Vendor Code  
10  
R
R
R
Identifies ON Semiconductor as the IC supplier  
5:3  
PN  
Part number bits, see the Ordering Info on page 2  
2:0  
REV  
IC Revision, revision 1.X, w here X is the decimal of these three bits  
IBAT  
Register Address:04  
Default Value=1000 0001 (81H)  
Writing a 1 resets all registers, except the Safety register (Reg6), to their defaults:  
w riting a 0 has no effect; read returns 1  
7
RESET  
1
W
6:3  
2:0  
IOCHARGE  
ITERM  
Table 5  
Table 6  
R/W Programs the maximum charge current, see Table 5  
R/W Sets the current used for charging termination, see Table 6  
www.onsemi.com  
35  
Bit  
Name  
Value Type  
Description  
VBUS_CONT ROL  
Register Address:05  
Default Value=001X X100  
7
Reserved  
0
0
1
0
1
R
This bit alw ays returns 0  
R/W Charger operates in Normal Mode.  
Charger operates in Production Test Mode.  
6
PROD  
R/W Battery current is controlled by IOCHARGE bits.  
Battery current control is set to 340 mA.  
5
4
3
IO_LEV EL  
1 Indicates that VBUS is above 4.4 V (rising) or 3.8 V (falling). When VBUS_CON  
changes from 0 to 1, a STAT pulse occurs.  
VBUS_CON  
R
0
1
R
VBUS control loop is not active (VBUS is able to stay above VBUSLIM  
VBUS control loop is active and VBUS is being regulated to VBUSLIM  
)
SP  
2:0  
SAFETY  
7:4  
VBUSLIM  
Table 15 R/W VBUS control voltage reference, see Table 15  
Register Address:06  
Default Value=0100 0000 (40H)  
ISAFE  
Table 16 R/W Sets the maximum IOCHARGE value used by the control circuit, see Table 16  
Table 17 R/W Sets the maximum VOREG used by the control circuit, see Table 17  
3:0  
VSAFE  
POST_CHARGING  
Register Address:07  
Default Value=0000 0001 (01H)  
These bits determine w hether a battery absent detection w ill be performed w hen  
the NTC reading indicates out-of-range w hen charging.  
[7:6]  
When NTC goes out-of-range  
00  
01  
10  
Always do battery absent detection  
7:6  
BDET  
R/W  
Disable detection in Normal Mode  
Disable detection w hen Reg FA = B5 (PWM running after charge  
done.  
11  
NTC out-of-range in charge done does not cause battery absent  
detection.  
After charger termination, in the charge done state, these bits control VBUS loading  
to improve detection of AC pow er removal from the AC adapter.  
[5:4]  
VBUS loading in Charge Done State:  
5:4  
VBUS_LOAD  
0
R/W  
00  
01  
10  
11  
None  
Load VBUS for 4 ms every tw o seconds  
Load VBUS for 131 ms every tw o seconds  
Load VBUS for 135 ms every tw o seconds  
0
1
R/W Post charging or background charging feature is disabled  
Post charging or background charging feature is enabled  
3
PC_EN  
PC_IT  
2:0  
Table 6  
R/W Sets the termination current for post or underground charging, see Table 6  
MONITOR0  
Register Address:10H (16)  
Default Value=XXX0 XXXX (XXH)  
7
6
5
ITERM_CMP  
R
R
R
ITERM comparator output, 1 w hen ICHARGE > ITERM reference  
Output of VBAT comparator, 1 w hen VBAT < VBUS  
VBAT_CMP  
LINCHG  
1 w hen 30 mA linear charger ON (VBAT < VSHORT  
)
Thermal regulation comparator, 1 w hen the die temperature is greater than 120°C.  
During this condition, charge current is limited to 340 mA.  
4
T_120  
R
3
2
1
ICHG  
IBUS  
R
R
R
0 indicates the ICHARGE loop is controlling the battery charge current.  
0 indicates the IBUS (input current) loop is controlling the battery charge current.  
1 indicates VBUS has passed validation and is capable of charging.  
VBUS_VALID  
1 indicates the constant-voltage loop (OREG) is controlling the charger and all  
current limiting loops have released.  
0
CV  
R
www.onsemi.com  
36  
Bit  
Name  
Value Type  
Description  
MONITOR1  
Register Address:11H (17)  
GATE pin is LOW, Q5 is driven on.  
GATE pin is HIGH, Q5 is off.  
Default Value=XX1X XXXX  
0
1
0
1
0
1
0
1
1
0
1
0
0
R
R
7
GATE  
VBAT  
POK_B  
VBAT < VBATMIN in PP charging, VBAT < VLOW in PWM charging  
VBAT > VBATMIN in PP charging, VBAT > VLOW in PWM charging  
POK_B Pin is LOW.  
6
5
R/W  
R
POK_B Pin is HIGH. Writing to this bit sets the POK_B pin.  
DIS pin is LOW.  
4
3
2
DIS_LEV EL  
NOBAT  
DIS pin is HIGH.  
R
R
R
R
Battery absence  
Battery presence  
Post charging (background charging) is under progress.  
Post charging (background charging) is not under progress.  
These bits alw ays return 0.  
PC_ON  
1:0  
NTC  
7:6  
Reserved  
Register Address:12H (18)  
Default Value=000X XXXX  
Reserved  
TEMP_ DIS  
00  
These bits alw ays return 0.  
0
R/W NTC Temperature measurement results affect charge parameters.  
5
NTC Temperature measurement results do not affect charge. Temperature  
measurements continue to be updated every second in the NTC1-4 monitor bits.  
1
4
3
2
1
0
NTC_OK  
NTC4  
R
R
R
R
R
0 if NTC is either shorted to GND, open, or shorted to REF.  
1 indicates that NTC is above the T4 threshold.  
1 indicates that NTC is above the T3 threshold.  
NTC3  
See Table 10 Table 13  
NTC2  
1 indicates that NTC is above the T2 threshold.  
1 indicates that NTC is above the T1 threshold.  
Register Address:13H (19)  
NTC1  
WD_CONTROL  
Default Value = 0110 1100  
7
6:5  
4
Reserved  
0
11  
0
R/W These bits do not change the function of the IC.  
R/W These bits do not change the function of the IC.  
R/W These bits do not change the function of the IC.  
R/W These bits do not change the function of the IC.  
Reserved  
Reserved  
Reserved  
3
1
0
V REG is of f  
R/W  
2
1
EN_VREG  
1
V REG is on  
0
Watchdog timer (T32S) operation normal  
WD_DIS  
R/W  
1
Watchdog timer (T32S) disabled.  
0
Reserved  
0
R
This bit alw ays returns 0  
RESTART  
Register Address:FAH (250)  
Default Value = 1111 1111  
Writing B5H restarts charging w hen the IC is in the charge done state. This register  
reads back FF.  
7:0  
RESTA RT  
W
www.onsemi.com  
37  
PCB Layout Recommendation  
Bypass capacitors should be placed as close to the IC as  
possible. In particular, the total loop length for CMID should  
be minimized to reduce overshoot and ringing on the SW,  
PMID, and VBUS pins. Pow er and ground pins should be  
routed directly to their bypass capacitors using the top  
copper layer. The copper area connecting to the IC should  
be maximized to improve thermal performance. See the  
layout recommendations in Figure 54.  
Figure 54. PCB Layout Recommendation  
Product-Specific Dimensions  
Product  
D
E
X
Y
FAN5404XUCX  
2.40 ±0.030  
2.00 ±0.030  
0.180  
0.380  
www.onsemi.com  
38  
 
Physical Dimensions  
0.03 C  
2X  
F
E
A
1.60  
0.40  
B
(Ø0.200)  
Cu Pad  
A1  
BALL A1  
INDEX AREA  
(Ø0.300)  
Solder Mask  
1.60  
D
0.40  
0.03 C  
RECOMMENDED LAND PATTERN  
(NSMD PAD TYPE)  
2X  
TOP VIEW  
0.06 C  
0.625  
0.378±0.018  
0.208±0.021  
0.547  
0.05 C  
E
C
SEATING PLANE  
D
SIDE VIEWS  
NOTES:  
A. NO JEDEC REGISTRATION APPLIES.  
B. DIMENSIONS ARE IN MILLIMETERS.  
1.60  
0.40  
0.005  
C A B  
Ø0.260±0.02  
25X  
C. DIMENSIONS AND TOLERANCE  
PER ASMEY14.5M, 1994.  
E
D
C
B
D. DATUM C IS DEFINED BY THE SPHERICAL  
CROWNS OF THE BALLS.  
1.60  
0.40  
(Y) ±0.018  
F
A
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS  
±39 MICRONS (547-625 MICRONS).  
2
3
5
4
1
(X) ±0.018  
F. FOR DIMENSIONS D, E, X, AND Y SEE  
TABLE BELOW.  
BOTTOM VIEW  
G. DRAWING FILNAME: MKT-UC025AArev2.  
Figure 55. 25-Ball WLCSP, 5X5 Array, 0.4 mm Pitch, 250 µm Ball  
www.onsemi.com  
39  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States  
and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON  
Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further  
notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON  
Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special,  
consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and  
safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON  
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”  
must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON  
Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with  
a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any  
such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against  
all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Eur ope, Middle East and Afr ica Technical Support:  
N. Amer ican Technical Support: 800-282-9855 Toll Free  
USA/Canada.  
ON Semiconductor Website: www.onsemi.com  
Or der Literature: http://www.onsemi.com/orderlit  
Fax : 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81-3-5817-1050  
For additional information, please contact your local  
Sales Representative  
www.onsemi.com  
40  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY