FAN6248LCMX [ONSEMI]

Advanced Synchronous Rectifier Controller for LLC Resonant Converter;
FAN6248LCMX
型号: FAN6248LCMX
厂家: ONSEMI    ONSEMI
描述:

Advanced Synchronous Rectifier Controller for LLC Resonant Converter

开关 光电二极管 输出元件
文件: 总15页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FAN6248HC/HD/LC/LD  
Advanced Synchronous  
Rectifier Controller for LLC  
Resonant Converter  
The FAN6248 is an advanced synchronous rectifier (SR) controller  
that is optimized for LLC resonant converter topology with minimum  
external components. It has two driver stages for driving the SR  
MOSFETs which are rectifying the outputs of the secondary  
transformer windings. The two gate driver stages have their own  
sensing inputs and operate independently of each other. The adaptive  
parasitic inductance compensation function minimizes the body diode  
conduction maximizing the efficiency. The advanced control  
algorithm allows stable SR operation over entire load range.  
According to the operating frequency and turn-off threshold voltage,  
FAN6248 has four different versions − FAN6248HCMX,  
FAN6248HDMX, FAN6248LCMX, FAN6248LDMX.  
www.onsemi.com  
SOIC−8  
CASE 751EB  
MARKING DIAGRAM  
ON  
ZXYTT  
Features  
FAN6248UV  
Highly Integrated Self-contained Control of Synchronous Rectifier  
with a Minimum External Component Count  
Optimized for LLC Resonant Converter  
Anti Shoot-through Control for Reliable SR Operation  
Separate 100 V Rated Sense Inputs for Sensing the Drain and Source  
Voltage of each SR MOSFET  
U
V
Z
X
Y
= Frequency, H: High, L: Low  
= V  
Level, C or D  
TH_OFF  
= Assembly Plant Code  
= Year Code  
= Two Week Code  
= Die Run Code  
Adaptive Parasitic Inductance Compensation to Minimize the Body  
Diode Conduction  
TT  
SR Current Inversion Detection under Light Load Condition  
Light Load Detection to Increase Dead Time Target  
PIN CONNECTIONS  
Adaptive Minimum on Time for Noise Immunity  
Operating Voltage Range up to 30 V  
1
2
3
4
8
7
6
5
GATE1  
GND  
VD1  
GATE2  
VDD  
VD2  
Low Start-up and Stand-by Current Consumption  
Operating Frequency Range from 25 kHz up to 700 kHz  
SOIC−8 Package  
VS1  
VS2  
High Driver Output Voltage of 10.5 V to Drive All MOSFET Brands  
(Top View)  
to the Lowest R  
DS_ON  
Low Operating Current in Green Mode (typ. 350 mA)  
These Devices are Pb−Free, Halogen Free and are RoHS Compliant  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 3 of  
this data sheet.  
Applications  
High Power Density Laptop Adapter  
High Power Density Adapter  
Large Screen LCD−TV, PDP−TV, RP−TV Power  
High-efficiency Desktop and Server Power Supplies  
Networking and Telecom Power Supplies  
High Power LED Lighting  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
January, 2018 − Rev. 2  
FAN6248HC/D  
FAN6248HC/HD/LC/LD  
M2  
Optional  
Roffset2  
Bridge  
Diode  
Q1  
Q2  
EMI  
Filter  
PFC  
Stage  
VAC  
Cin  
Cr  
Lr  
VO  
Lp  
RO  
CO  
Optional  
M1  
LLC  
Controller  
Shunt  
Regulator  
Figure 1. Typical Application Schematic of FAN6248  
VDD  
7.2V  
4.5/4.2V  
VD1_HGH  
GREEN  
VD2_HGH  
IOFFSET1  
IOFFSET2  
VTH_HGH  
DLY_EN  
DLY_EN  
VTH_HGH  
D
Q
Q
Q
Q
D
Adaptive  
turn−on  
debounce  
Adaptive  
turn−on  
debounce  
VD1  
VD2  
VS2  
VTH_ON  
VTH_ON  
Turn−on  
Turn−on  
CLR  
CLR  
Turn−off  
Turn−off  
VTH_OFF1,2  
VTH_OFF1,2  
VS1  
Turn−off  
Trigger  
Turn−off  
Trigger  
SRC_INV  
SRC_INV  
Blanking  
Blanking  
GATE2  
GATE1  
GATE1  
GATE2  
VD1_HGH  
SR Current  
Inversion detect  
SRC_INV  
Green Mode  
DLY_EN  
VD1_HGH  
GREEN  
VD2_HGH  
Light Load  
Detection  
IOFFSET1  
GND  
Figure 2. Internal Block Diagram of FAN6248  
www.onsemi.com  
2
 
FAN6248HC/HD/LC/LD  
PIN DESCRIPTION  
Pin Number  
Pin Name  
Description  
1
2
3
GATE1  
GND  
Gate drive output for SR1  
Ground  
VD1  
Synchronous rectifier drain sense input. A I  
current source flows out of the DRAIN pin such  
OFFSET1  
that an external series resistor can be used to adjust the synchronous rectifier turn-off threshold.  
The I current source is turned off when V is under-voltage or when switching is disabled in  
OFFSET1  
DD  
green mode  
4
5
6
VS1  
VS2  
VD2  
Synchronous rectifier source sense input for SR1  
Synchronous rectifier source sense input for SR2  
Synchronous rectifier drain sense input. A I  
current source flows out of the DRAIN pin such  
OFFSET2  
that an external series resistor can be used to adjust the synchronous rectifier turn-off threshold.  
The I current source is turned off when V is under-voltage or when switching is disabled in  
OFFSET2  
DD  
green mode  
7
8
VDD  
Supply Voltage  
GATE2  
Gate drive output for SR2  
ORDERING AND SHIPPING INFORMATION  
Ordering Code  
FAN6248HCMX  
FAN6248HDMX  
FAN6248LCMX  
FAN6248LDMX  
Device Marking  
FAN6248HC  
FAN6248HD  
FAN6248LC  
FAN6248LD  
V
/ V  
Package  
SOIC−8  
SOIC−8  
SOIC−8  
SOIC−8  
Shipping  
TH_OFF1  
TH_OFF2  
25 mV / 50 mV  
0 mV / 25 mV  
25 mV / 50 mV  
0 mV / 25 mV  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
3
FAN6248HC/HD/LC/LD  
MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
−0.3  
−1  
Max  
30  
Unit  
V
V
Power Supply Input Pin Voltage  
Drain Sense Input Pin Voltage  
Gate Drive Output Pin Voltage  
DD  
V
V
100  
30  
V
D1, D2  
V
−0.3  
V
GATE1,  
V
GATE2  
V
V
Source Sense Input Pin Voltage  
−0.4  
0.4  
0.625  
165  
150  
150  
260  
4
V
W
S1, S2  
P
Power Dissipation (T = 25°C)  
D
A
Q
Thermal Resistance (Junction-to-Ambient Thermal)  
Operating Junction Temperature  
°C/W  
°C  
JA  
T
−40  
−60  
J
T
Storage Temperature Range  
°C  
STG  
T
Lead Temperature (Soldering) 10 Seconds  
°C  
L
ESD  
Electrostatic Discharge  
Capability  
Human Body Model, ANSI / ESDA / JEDEC  
JS−001−2012  
kV  
Charged Device Model, JESD22−C101  
1.75  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. All voltage values are with respect to the GND pin.  
THERMAL CHARACTERISTICS  
Symbol  
Rating  
Value  
22  
Unit  
_C/W  
_C/W  
R
Thermal Characteristics  
Thermal Characteristics  
y
JT  
R
165  
q
JA  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Max  
27  
Unit  
V
V
DD  
VDD Pin Supply Voltage to GND (Note 2)  
Drain Sense Input Pin Voltage  
0
V ,V  
D1 D2  
−0.7  
−0.4  
−40  
100  
0.4  
V
V
V
Source Sense Input Pin Voltage  
V
S1 S2  
T
A
Operating Ambient Temperature (Note 3)  
+125  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
2. Allowable operating supply voltage V can be limited by the power dissipation of FAN6248 related to switching frequency, load capacitance  
DD  
and ambient temperature.  
3. Allowable operating ambient temperature can be limited by the power dissipation of FAN6248 related to switching frequency, load  
capacitance on GATE pin and V  
.
DD  
www.onsemi.com  
4
 
FAN6248HC/HD/LC/LD  
ELECTRICAL CHARACTERISTICS (V = 12 V and T = −40°C to +125°C unless otherwise specified)  
DD  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT VOLTAGE  
V
Turn-On Threshold  
V
V
V
rising  
falling  
rising  
4.2  
4.0  
4.5  
4.2  
7.2  
8.5  
4.7  
4.4  
V
DD_ON  
DD  
V
Turn-Off Threshold  
DD_OFF  
DD_GATE_ON  
DD  
*
V
SR Gate Enable Threshold Voltage  
Operating Current  
V
DD  
I
f
= 100 kHz, C = 3.3 nF  
GATE  
7
10  
mA  
mA  
mA  
DD_OP  
DD_SRARTUP  
SW  
I
V
= V  
− 0.1 V  
200  
500  
DD  
DD  
DD_ON  
I
Operating Current in Green Mode  
V
= 12 V (no switching)  
350  
DD_GREEN  
DRAIN VOLTAGE SENSING SECTION (V = V  
)
D1  
D2  
*
V
Comparator Input Offset Voltage  
and I  
−1  
0
1
mV  
OSI  
*
I
I
Maximum of adaptive offset  
112.5  
135  
157.5  
mA  
OFFSET  
OFFSET1  
OFFSET2  
current (15 steps, 9 mA resolution)  
I
=I  
OFFSET OFFSET_STEP15  
V
Turn-On Threshold  
R
= 0 W (includes  
DRAIN  
−290  
−240  
80  
−190  
mV  
ns  
TH_ON  
comparator input offset voltage)  
*
t
Turn on delay for de-bounce time  
when turn-on delay mode is disabled  
by detecting normal SR current  
From V falling below V to  
ON_DLY  
D1  
TH_ON  
(With  
= 0 nF  
V
GATE  
rising above V  
G_HG  
50 mV overdrive), C  
GATE  
*
t
Turn on delay for de-bounce time  
when turn-on delay mode is enabled  
by detecting SR current inversion for  
HC and HD version  
From V falling below V to  
TH_ON  
850  
ns  
ns  
ON_DLY2_H  
D1  
V
rising above V  
(With  
= 0 nF  
GATE  
G_HG  
50 mV overdrive), C  
GATE  
*
t
Turn on delay for de-bounce time  
when turn-on delay mode is enabled  
by detecting SR current inversion for  
LC and LD version  
From V falling below V to  
TH_ON  
1100  
ON_DLY2_L  
D1  
V
GATE  
rising above V  
(With  
G_HG  
50 mV overdrive), C  
= 0 nF  
GATE  
*
V
V
V
V
First Level Turn-Off Threshold  
for HC and LC version  
R
= 0 W (includes  
DRAIN  
25  
50  
0
mV  
mV  
mV  
mV  
ns  
TH_OFF1_C  
TH_OFF2_C  
TH_OFF1_D  
comparator input offset voltage)  
R = 0 W (includes  
DRAIN  
comparator input offset voltage)  
R = 0 W (includes  
DRAIN  
*
*
*
Second Level Turn-Off Threshold  
for HC and LC version  
First Level Turn-Off Threshold  
for HD and LD version  
comparator input offset voltage)  
Second Level Turn-Off Threshold  
for HD and LD version  
R
= 0 W (includes  
25  
50  
TH_OFF2_D  
DRAIN  
comparator input offset voltage)  
From V rising above V to  
TH_OFF  
*
t
Comparator Delay of V  
OFF_DLY  
TH_OFF1  
D1  
V
falling below V  
(With  
= 0 nF  
GATE  
G_LW  
10 mV overdrive), C  
GATE  
V
Drain Voltage High Detect Threshold  
V
D1  
Rising  
0.80  
1
1.20  
V
TH_HGH  
*
t
V
Detection Blanking Time for From V falling below V  
540  
ns  
DB_HGH_H  
TH_HGH  
D1  
TH_ON  
TH_ON  
HC and HD version  
*
t
V
Detection Blanking Time for From V falling below V  
1
1
ms  
DB_HGH_L  
TH_HGH  
D1  
LC and LD version  
*
V
Forced Turn-off Threshold  
V
D1  
> V  
= V  
V
OFF_FORCE  
OFF_FORCE  
TH_HGH_EN  
MINIMUM ON-TIME AND MAXIMUM ON-TIME  
*
K
TON  
Adaptive Minimum On Time Ratio  
Ratio between t  
and SR  
25  
%
ON_MIN  
conduction time of previous  
switching cycle  
*
t
Minimum On-Time Lower Limit  
for HC and HD version  
t
t
< t <  
ON_MIN  
200  
1.2  
ns  
ON_MIN_LH  
ON_MIN_LH  
ON_MIN_UH  
t
Minimum On-Time Upper Limit  
for HC and HD version  
0.96  
1.44  
ms  
ON_MIN_UH  
www.onsemi.com  
5
FAN6248HC/HD/LC/LD  
ELECTRICAL CHARACTERISTICS (V = 12 V and T = −40°C to +125°C unless otherwise specified) (continued)  
DD  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
MINIMUM ON-TIME AND MAXIMUM ON-TIME  
*
t
Minimum On-Time Lower Limit  
for LC and LD version  
t
t
< t <  
ON_MIN  
0.4  
4
ms  
ms  
ns  
ms  
ms  
ms  
ON_MIN_LL  
ON_MIN_LL  
ON_MIN_UL  
t
Minimum On-Time Upper Limit  
for LD and LD version  
3.2  
380  
0.85  
4.8  
820  
1.65  
ON_MIN_UL  
SR_CNDT_H  
t
Minimum SR Conduction Time to  
enable SR for HC and HD version  
The duration from turn-on trigger  
to V rising above V  
600  
1.2  
15  
DS  
TH_HGH  
t
Minimum SR Conduction Time to  
enable SR for LC and LD version  
The duration from turn-on trigger  
to V rising above V  
SR_CNDT_L  
DS  
TH_HGH  
*
t
Maximum SR Turn-on Time  
for HC and HD version  
SR_MAX_H  
*
t
Maximum SR Turn-on Time  
for LC and LD version  
30  
SR_MAX_L  
REGULATED DEAD TIME  
*
t
Dead time regulation target  
for HC and HD version  
From V  
falling below V  
280  
320  
ns  
ns  
DEAD_H  
GATE  
G_LW  
TH_HGH  
to V rising above V  
DS  
*
t
Dead time regulation target under  
light load condition for HC and HD  
version  
From V  
falling below V  
DEAD_H_LIGHT  
GATE  
G_LW  
TH_HGH  
to V rising above V  
DS  
*
t
Dead time regulation target  
for LC and LD version  
From V  
falling below V  
320  
360  
ns  
ns  
DEAD_L  
GATE  
G_LW  
TH_HGH  
to V rising above V  
DS  
*
t
Dead time regulation target under  
light load condition for LC and LD  
version  
From V  
falling below V  
DEAD_L_LIGHT  
GATE  
G_LW  
TH_HGH  
to V rising above V  
DS  
*
t
Too small dead time threshold to  
From V  
falling below V  
50  
ns  
%
TSDT  
GATE  
G_LW  
to V rising above V  
DS TH_HGH  
speed up I  
change  
OFFSET  
(Speed up 2 times)  
*
K
Adaptive SR current inversion  
detection time Ratio between T  
V > V  
GATE  
V
TH_OFF  
and V >  
DS  
6.25  
INV  
G_HG  
INV  
and SR conduction time of previous  
switching cycle  
K
INV  
= 0.25 × K  
TON  
*
h
Normal switching cycles without  
capacitive current spike to exit SR  
current inversion detection state  
31  
cycle  
INV_EXT  
which has t  
ON_DLY2  
GREEN MODE CONTROL  
t
Non-Switching Period to Enter Green  
Mode for HC and HD version  
Non switching cycles between  
burst switching bundles  
60  
120  
130  
240  
30  
80  
160  
180  
320  
40  
100  
200  
230  
400  
50  
ms  
ms  
ms  
ms  
ms  
GRN_ENT_H  
t
Non-Switching Period to Enter Green  
Mode for LC and LD version  
Non switching cycles between  
burst switching bundles  
GRN_ENT_L  
t
De-bounce time to Enter Green Mode De-bounce time after t  
for HC and HD version  
GRN_ENT_DBNC_H  
GRN.ENT_H  
t
De-bounce time to Enter Green Mode De-bounce time after t  
for LC and LD version  
GRN_ENT_DBNC_L  
GRN_ENT_L  
t
Non-Switching Period to Exit Green  
for HC and HD version  
Non switching cycles between  
burst switching bundles  
GRN_EXT_H  
t
Non-Switching Period to Exit Green  
Mode for LC and LD version  
Non switching cycles between  
burst switching bundles  
60  
4
80  
7
100  
10  
ms  
GRN_EXT_L  
h
Continuous switching cycles to exit  
Green Mode for HC, HD, LC and LD  
version  
cycle  
CSW_EXT  
www.onsemi.com  
6
FAN6248HC/HD/LC/LD  
ELECTRICAL CHARACTERISTICS (V = 12 V and T = −40°C to +125°C unless otherwise specified) (continued)  
DD  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
GREEN MODE CONTROL  
t
Switching period to be recognized as  
normal switching for HC and HD  
version  
13  
20  
27  
ms  
S_NORMAL_H  
t
Switching period to be recognized as  
normal switching for LC and LD  
version  
27  
40  
53  
ms  
S_NORMAL_L  
OUTPUT DRIVER SECTION  
Gate Clamping Voltage  
V
12 V < V < 25 V  
V
V
9
7
10.5  
12  
GATE_MAX  
DD  
V
OL  
Output Voltage Low  
V
= 12 V, V = V = 2 V,  
= 50 mA  
1.5  
DD  
D1  
D2  
I
GATE  
V
OH  
Output Voltage High  
V
V
V
= 12 V, I = −50 mA  
GATE  
V
A
DD  
DD  
DD  
DD  
*
I
Peak Source Current for Turning On  
Peak Sink Current for Turning Off  
Rise Time  
= 12 V, V  
= 12 V, V  
= 2 V  
= 7 V  
0.7  
1.4  
50  
SOURCE  
GATE  
GATE  
*
I
A
SINK  
*
t
R
V
V
= 12 V, C = 3.3 nF,  
ns  
L
= 2 V ³ 7 V  
GATE  
*
t
F
Fall Time  
V
V
= 12 V, C = 3.3 nF,  
30  
4
ns  
V
DD  
L
= 7 V ³ 2 V  
GATE  
*
*
V
V
Gate voltage considered as turned off Gate falling  
for adaptive dead time control  
G_LW  
Gate voltage considered as turned on Gate rising  
for adaptive dead time control  
6
V
G_HG  
SWITCHING FREQUENCY  
*
f
Maximum Switching Frequency  
Minimum Switching Frequency  
700  
kHz  
kHz  
MAX  
*
f
25  
MIN  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
*Not tested but guaranteed by design  
KEY DIFFERENT PARAMETERS FOR FAN6248 OPTIONS  
Item  
FAN6248HC  
850 ns  
540 ns  
200 ns  
1.2 ms  
FAN6248HD  
850 ns  
540 ns  
200 ns  
1.2 ms  
FAN6248LC  
1100 ns  
1 ms  
FAN6248LD  
1100 ns  
1 ms  
t
ON_DLY2  
t
DB_HGH  
t
400 ns  
4 ms  
400 ns  
4 ms  
ON_MIN_L  
ON_MIN_U  
t
t
0.6 ms  
0.6 ms  
1.2 ms  
30 ms  
1.2 ms  
30 ms  
SR_CNDT  
t
15 ms  
15 ms  
SR_MAX  
t
280 ns  
320 ns  
80 ms  
280 ns  
320 ns  
80 ms  
320 ns  
360 ns  
160 ms  
80 ms  
320 ns  
360 ns  
160 ms  
80 ms  
DEAD  
DEAD_LIGHT  
t
t
GRN_ENT  
t
40 ms  
40 ms  
GRN_EXT  
t
20 ms  
20 ms  
40 ms  
40 ms  
S_NORMAL  
www.onsemi.com  
7
FAN6248HC/HD/LC/LD  
TYPICAL CHARACTERISTICS  
4.7  
4.5  
5.0  
4.8  
4.6  
4.4  
4.3  
4.1  
4.2  
4.0  
3.9  
3.7  
−40 −30 −15  
0
25  
50  
75  
85 100 125  
85 100 125  
85 100 125  
−40 −30 −15  
0
25  
50  
75  
85 100 125  
Temperature [5C]  
Temperature [5C]  
Figure 3. VDD_ON  
Figure 4. VDD_OFF  
9.0  
8.6  
8.2  
7.8  
7.4  
7.0  
480  
440  
400  
360  
320  
280  
240  
200  
−40 −30 −15  
0
25  
50  
75  
85 100 125  
−40 −30 −15  
0
25  
50  
75  
Temperature [5C]  
Temperature [5C]  
Figure 5. IDD_OP  
Figure 6. IDD_GREEN  
1.3  
1.1  
−200  
−220  
−240  
−260  
−280  
−300  
0.9  
0.7  
0.5  
0.3  
−40 −30 −15  
0
25  
50  
75  
−40 −30 −15  
0
25  
50  
75  
85 100 125  
Temperature [5C]  
Temperature [5C]  
Figure 7. VTH_HIGH  
Figure 8. VTH_ON  
www.onsemi.com  
8
FAN6248HC/HD/LC/LD  
TYPICAL CHARACTERISTICS  
1100  
1050  
1000  
950  
1500  
1400  
1300  
1200  
1100  
1000  
900  
850  
−40 −30 −15  
0
25  
50  
75  
85 100 125  
85 100 125  
85 100 125  
−40 −30 −15  
0
25 50  
75  
85 100 125  
85 100 125  
85 100 125  
Temperature [5C]  
Temperature [5C]  
Figure 10. tON_DLY2_L  
Figure 9. tON_DLY2_H  
700  
620  
540  
1.7  
1.5  
1.3  
460  
380  
1.1  
0.9  
300  
0.7  
−40 −30 −15  
0
25  
50  
75  
−40 −30 −15  
0
25 50  
75  
Temperature [5C]  
Temperature [5C]  
Figure 11. tSR_CNDT_H  
Figure 12. tSR_CNDT_L  
90  
86  
82  
180  
172  
164  
78  
74  
156  
148  
70  
140  
−40 −30 −15  
0
25  
50  
75  
−40 −30 −15  
0
25  
50  
75  
Temperature [5C]  
Temperature [5C]  
Figure 13. tGRN_ENT_H  
Figure 14. tGRN_ENT_L  
www.onsemi.com  
9
FAN6248HC/HD/LC/LD  
TYPICAL CHARACTERISTICS  
48  
44  
40  
90  
86  
82  
36  
32  
78  
74  
28  
70  
−40 −30 −15  
0
25  
50  
75  
85 100 125  
85 100 125  
85 100 125  
−40 −30 −15  
0
25  
50  
75  
85 100 125  
85 100 125  
85 100 125  
Temperature [5C]  
Temperature [5C]  
Figure 15. tGRN_EXT_H  
Figure 16. tGRN_EXT_L  
12  
10  
8
15  
13  
11  
6
4
9
7
2
5
−40 −30 −15  
0
25  
50  
75  
−40 −30 −15  
0
25  
50  
75  
Temperature [5C]  
Temperature [5C]  
Figure 17. hCSW_EXT  
Figure 18. VGATE_MAX  
15  
13  
11  
0.40  
0.32  
0.24  
9
7
0.16  
0.08  
5
0
−40 −30 −15  
0
25  
50  
75  
−40 −30 −15  
0
25  
50  
75  
Temperature [5C]  
Temperature [5C]  
Figure 19. VOH  
Figure 20. VOL  
www.onsemi.com  
10  
FAN6248HC/HD/LC/LD  
APPLICATION INFORMATION  
Present information  
=instantaneous Vdrain type  
Present information+Previous cycle information  
= Mixed type control  
Basic Operation Principle  
FAN6248 controls the SR MOSFET based on the  
instantaneous drain-to-source voltage sensed across DRAIN  
and SOURCE pins. Before SR gate is turned on, SR body  
diode operates as the conventional diode rectifier. Once the  
body diode starts conducting, the drain-to-source voltage  
Gate  
Q
SR on  
SR off  
S
R
VDrain  
VSAW  
S
Voffset  
control  
Voffset  
=Roffset x Ioffset  
Q
VTH_off  
drops below the turn-on threshold voltage V  
triggers the turn-on of the SR gate. Then the drain-to-source  
voltage is determined by the product of turn-on resistance  
which  
TH_ON  
Previous cycle information  
=Prediction type  
R
of SR MOSFET and instantaneous SR current. When  
Figure 21. SR Turn-off Algorithm  
Adaptive Dead Time Control  
ds_on  
the drain-to-source voltage reaches the turn-off threshold  
voltage V as SR MOSFET current decreases to near  
TH_OFF  
The stray inductances of the lead frame of SR MOSFET  
and PCB pattern induce positive voltage offset across  
drain-to-source voltage when SR current decreases. This  
makes drain-to-source voltage of SR MOSFET larger than  
zero, FAN6248 turns off the gate. If a SR dead time is larger  
or smaller than the dead time regulation target t  
FAN6248 adaptively changes internal offset voltage to  
compensate the dead time. In addition, to prevent cross  
conduction SR operation, FAN6248 has 200 ns of turn-on  
blocking time just after alternating SR gate is turned off.  
,
DEAD  
the product of R  
and instantaneous SR current, which  
ds_on  
results in premature turn-off of SR gate. Since the induced  
offset voltage changes as load condition changes, the dead  
time also changes with load variation. To compensate the  
induced offset voltage, FAN6248 has a adaptive virtual  
turn-off threshold voltage as shown in Figure 22 with  
a combination of variable internal turn-off threshold  
SR Turn-off Algorithm  
Since a SR turn-off method determines SR conduction  
time and stable SR operation, the SR turn-off method is one  
of important feature of SR controllers. The SR turn-off  
method can be classified into two methods. The first method  
uses present information by an instantaneous drain voltage.  
This method is widely used and easy to realize, and can  
prevent late turn-off. However, it may show premature  
turn-off by parasitic stray inductances caused by PCB  
pattern and lead frame of SR MOSFET. The second method  
predicts SR conduction time by using previous cycle drain  
voltage information. Since it can prevent the premature  
turn-off, it is good for the system with constant operating  
frequency and turn-on time. However, in case of the  
frequency varying system, it may lead late turn-off so that  
negative current can flow in the secondary side.  
voltages V  
and V  
(2 steps) and modulated  
TH_OFF1  
TH_OFF2  
offset voltage V  
(16 steps). The virtual turn-off  
offset  
threshold voltage can be expressed as:  
Virtual VTH_OFF + VTH_OFF * Voffset  
(eq. 1)  
In FAN6248HC(D) version, if a dead time T  
is larger  
DEAD  
than 280 ns of t  
, as shown in Figure 23, V  
is  
DEAD_H  
offset  
decreased by one step in next switching cycle. As a result,  
the dead time is decreased by increase of virtual V  
,
TH_OFF  
and becomes close to t  
, as shown in Figure 24. If the  
DEAD_H  
dead time is smaller than t  
, the dead time is increased  
DEAD_H  
by the virtual V  
decrease. Thus, the dead time is  
TH_OFF  
maintained at around t  
regardless of parasitic  
DEAD_H  
To achieve both advantages, FAN6248 adopts mixed type  
control method as shown in Figure 21. Basically the  
inductances.  
instantaneous drain voltage V  
is compared with  
Drain  
V
to turn off SR gate. Then, the offset voltage V  
,
TH_OFF  
offset  
V TH_ON  
SR on  
which is determined by the product R  
and I  
, is added  
offset  
offset  
to V  
in order to compensate the stray inductance effect  
Drain  
SR gate  
and maintain 280 ns of t  
regardless of parasitic  
DEAD  
S
R
Q
Q
VDrain  
inductances. R  
is an external resistor in Figure 1 and  
offset  
I
is an internal modulation current in Figure 2.  
offset  
SR off  
Virtual VTH_OFF  
Therefore, FAN6248 can show robust operation with  
minimum dead time.  
=VTH_OFF −Voffset  
Figure 22. Virtual VTH_OFF  
www.onsemi.com  
11  
 
FAN6248HC/HD/LC/LD  
magnetizing inductance of the transformer is smaller than  
ISD_SR  
the reflected output voltage. Thus, the secondary side SR  
body diode conduction is delayed until the magnetizing  
inductor voltage builds up to the reflected output voltage.  
However, the primary side switching transition can cause  
capacitive current spike and turn on the body diode of SR  
MOSFET for a short time as shown in Figure 26, which  
induces SR mis-trigger signal. Finally, the SR mis-trigger  
makes inversion current in the secondary side. If a proper  
algorithm is not provided to prevent the mis-trigger by the  
capacitive current spike, severe SR current inversion can  
happen.  
VDrain  
Virtual VTH_OFF  
VTH_ON  
VGATE_SR  
TDEAD > 280 ns  
To prevent the SR mis-trigger, FAN6248 has a capacitive  
current spike detection method. When SR current inversion  
occurs by the mis-trigger signal, the drain sensing voltage of  
Figure 23. Premature SR Gate Turn-off  
(TDEAD > tDEAD_H  
)
SR MOSFET becomes positive. In this condition, if V  
DS_SR  
ISD_SR  
is higher than V  
for (T × K ), SR current  
SRCOND INV  
TH_OFF  
inversion is detected. After then, FAN6248 turns off SR  
immediately and increases turn-on delay to t  
next  
ON_DLY2  
cycle.  
V Drain  
Virtual VTH_OFF  
VDS_SR  
Turn−off trigger is prohibited  
during TON_MIN  
VTH_HGH  
VTH_OFF  
V TH_ON  
VGATE_SR  
VTH_ON  
TDEAD 280 ns  
9
T
ON_MIN = 25% of TSRCOND of previous cycle  
SR conduction time = TSRCOND  
Figure 24. Dead Time Control to Maintain  
TDEAD 9 tDEAD_H  
tON_DLY  
TDEAD  
VGS.SR  
Minimum Turn-on Time  
IDS_SR  
When SR gate is turned on, there may be severe oscillation  
in drain-to-source voltage of SR MOSFET, which results in  
several mis-triggering turn-off as shown in Figure 25. To  
provide stable SR control without mis-trigger, it is desirable  
to have large turn-off blanking time (= minimum turn-on  
time) until the drain voltage oscillation attenuates. However,  
too large blanking time results in problems at light load  
condition where the SR conduction time is shorter than the  
minimum turn-on time. To solve this issue, FAN6248 has  
adaptive minimum turn-on time where the turn-off blanking  
time changes in accordance with the SR conduction time  
ISD.SR  
Figure 25. Minimum Turn-on Time  
IDS_SR  
Capacitive current spike  
Capacitive current spike  
t
VDS_SR  
T
measured in previous switching cycle. The SR  
SRCOND  
VTH_ON  
VGATE  
conduction time is measured by the time from SR gate rising  
edge to the instant when drain sensing voltage V is  
DS_SR  
VGATE_SR1  
VGATE_SR1  
higher than V  
. From the previous cycle T  
TH_HGH  
SRCOND  
measurement result, the minimum turn-on time is defined by  
25% of T  
Figure 26. Capacitive Current Spike at Light Load  
Condition  
.
SRCOND  
Capacitive Current Spike Detection  
As a result, SR mis-trigger is prevented. To exit the SR  
current inversion detection mode, seven consecutive  
switching cycles without capacitive current spike are  
required.  
At heavy load condition, the body diode of SR MOSFET  
in LLC resonant converter starts conducting right after the  
primary side switching transition takes place. However,  
when the resonance capacitor voltage amplitude is not large  
enough at light load condition, the voltage across the  
www.onsemi.com  
12  
 
FAN6248HC/HD/LC/LD  
Virtual VTH_OFF  
VTH_OFF2  
Light Load Detection (LLD)  
To guarantee stable operation under light load condition,  
FAN6248 adopts a light load detection function. The  
Heavy  
Load  
VTH_OFF2ROFFSET x IOFFSET_STEP1  
VTH_OFF2ROFFSET x IOFFSET_STEP2  
modulation current I  
is mainly used for the adaptive  
OFFSET  
VTH_OFF2  
Range  
dead time control. When the output load is heavy,  
declines due to large di/dt in the secondary  
I
OFFSET_STEP  
VTH_OFF2ROFFSET x IOFFSET_STEP13  
side current to maintain 280 ns of t  
in FAN6248HC(D).  
increases at light load  
DEAD  
VTH_OFF1  
VTH_OFF2ROFFSET x IOFFSET_STEP15  
VTH_OFF1ROFFSET x IOFFSET_STEP2  
On the contrary, I  
OFFSET_STEP  
condition by small di/dt of SR current. FAN6248 can detect  
light load condition by using this I as shown in  
VTH_OFF1  
Range  
OFFSET_STEP  
Figure 27. When SR turn-off threshold voltage is V  
and the modulation current is higher than I  
VTH_OFF1ROFFSET x IOFFSET_STEP8  
LDD Trigger  
TH_OFF1  
, the  
OFFEST_STEP8  
light load detection is triggered. In this mode, dead time  
target becomes to 320 ns of in  
Light  
Load  
VTH_OFF1ROFFSET x IOFFSET_STEP14  
VTH_OFF1ROFFSET x IOFFSET_STEP15  
t
DEAD_LIGHT  
FAN6248HC(D) and 360 ns in FAN6248LC(D) version.  
Figure 27. Light Load Detection  
Green Mode  
When the power supply system operates at very light load  
condition, FAN6248 disables SR operation and enters into  
green mode operation. Once FAN6248 is in the green mode,  
all the major blocks are disabled to minimize the operating  
VGATE1  
Green Exit  
h
= 7 Cycles  
CSW_EXT  
current. When V  
has no switching operation longer  
DS_SR  
than t  
during the burst mode of the primary side  
GRN_ENT  
VDS_SR1  
LLC controller, the green mode is enabled after  
of debounce time. After then, FAN6248  
t
GRN_ENT_DBNC  
exits the green mode when the non−switching time in the  
burst mode is less than t or 7 consecutive  
switching cycles are detected as shown in Figure 28.  
GRN_EXT_H  
ISD_SR1  
Figure 28. Green Mode Exit  
www.onsemi.com  
13  
 
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8  
CASE 751EB  
ISSUE A  
DATE 24 AUG 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13735G  
SOIC8  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY