FAN6390D [ONSEMI]

Highly Integrated Secondary-Side Adaptive USB Type-C Charging Controller with USB-PD with SR Embedded;
FAN6390D
型号: FAN6390D
厂家: ONSEMI    ONSEMI
描述:

Highly Integrated Secondary-Side Adaptive USB Type-C Charging Controller with USB-PD with SR Embedded

光电二极管
文件: 总25页 (文件大小:635K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Highly Integrated Secondary-  
Side Adaptive USB Type-C  
Charging Controller with  
USB-PD with SR Embedded  
FAN6390MPX  
www.onsemi.com  
The FAN6390MPX is a highly integrated, secondaryside power  
adaptor controller supporting USB TypeC and USB Power Delivery  
2.0/3.0. It includes a fully autonomous USB PD state machine which  
is fully compliant with the latest USB PD 3.0 specification,  
minimizing design time and cost. Support for the latest Programmable  
Power Supply (PPS) rules allows for control of voltages from 3.3 V to  
21 V and current limits from 1 A to 3 A to meet a wide range of  
applications and power levels.  
WQFN24  
MLP, QUAD  
CASE 510BE  
To minimize BOM count, the FAN6390MPX includes internal  
synchronous rectifier control, an NMOS gate driver for VBUS load  
switch control, as well as Constant Voltage (CV) and Constant Current  
(CC) control blocks with adjustable internal references. To ensure  
proper operation of the adaptor, various protections are integrated into  
the controller including output overvoltage protection, under−  
voltage protection, external overtemperature protection via NTC,  
internal overtemperature protection, CC over voltage protection and  
Cable Fault Protection.  
PIN CONNECTIONS  
1
CSP  
GND  
NC  
NC  
LPC  
GND  
LGATE  
CC1  
CC2  
GND  
BLD  
NC  
Features  
USB TypeC Rev 1.3 Compatible  
Support 60 W Output Profile  
(PDO: 5 V, 9 V, 15 V, 20 V. APDO: 9 V, 15 V, 20 V)  
NC  
Constant Voltage (CV) and Constant Current (CC) Regulation with  
Two Operational Amplifiers of OpenDrain Type for DualLoop  
CV/CC Control  
(Bottom View)  
Charge Pump Circuit to Enhance SR Driving Voltage for High  
Efficiency  
MARKING DIAGRAM  
Small Current Sensing Resistor (5 mW) for High Efficiency  
1
6390  
NChannel Back to Back MOSFET Control as a Load Switch  
Builtin Output Capacitor Bleeding Function for Fast Discharging  
FFFB  
ALYWG  
G
Precise Voltage & Current Control for Minimum Step Size via 10bit  
6390FFFB = Specific Device Code  
DAC’s  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
10bit ADC for Monitoring Voltage, Current and Temperature  
Auto Restart Protection Mode Option to Disable Load Switch for 2  
seconds  
Support Protections; Output OverVoltage Protection, UnderVoltage  
Protection, External Over Temperature Protection via NTC, Internal  
Over Temperature Protection, Cable Fault Protection, and CC Lines  
Over Voltage Protection  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
Typical Applications  
Battery Chargers for Smart Phones, Feature Phones, and Tablet PCs  
ACDC Adapters for Portable Devices that Require CV/CC Control  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
November, 2019 Rev. 1  
FAN6390/D  
FAN6390MPX  
Transformer  
COUT  
VBUS  
USB TypeC  
RSENSE  
GND  
GND  
RX1+  
RX1  
VBUS  
SBU2  
D−  
SR  
TX1+  
TX1−  
VBUS  
CC1  
D+  
1
2
4
3
5
6
7
MOSFET  
RBLD  
9
10  
8
VBUS  
CC1  
VBUS  
VIN  
GATE  
NC  
NC  
NC LGATE BLD  
CSN  
RLPCH  
CP  
CP  
CSP  
VREF  
IREF  
NC  
D−  
D+  
SBU1  
VBUS  
RX2−  
RX2+  
GND  
CC2  
VBUS  
TX2−  
TX2+  
GND  
Primary block  
CC2  
VDD  
LPC  
NC  
FAN6390  
QFN4x4  
CVDD  
VBUS  
VBUS  
RLPCL  
GND  
SFB  
GND  
GND  
NC  
CC1  
CC2  
NTC  
Secondary block  
Figure 1. Application Schematic  
VDD  
VIN  
LGATE  
BLD Block  
EN_BLD  
VDD  
Load switch  
driver  
RVIN  
BLD  
VOUT  
IOUT  
VIN.INT  
LGATE_EN Protection  
VCS.AMP  
Bleeding Function  
Block  
ADC  
DAC  
EXT_TEMP  
VINON / VINOFF  
VNTC.EXT  
VDD/LGATE Block  
Protection Block  
VREF  
CC1  
CC2  
Mode_change VUVP VOVPVCOMR  
OVP/UVP/OCP  
VCS.AMP  
RESET  
FAULT  
Protection  
Trigger_BLD  
VCVR  
9R  
R
IREF  
KUVP  
VIN.INT  
VCCR  
TypeC & PD  
State machines  
VOVP  
VUVP  
VCDC  
KOVP  
KCDC  
VDD  
INTC  
Protection  
Prt_states  
Protections  
processing  
block  
Cable fault  
Prt_mode  
FAULT  
VNTC.EXT  
NTC  
FAULT  
RESET  
LGATE_EN  
Mode_change  
Trigger_BLD  
CC_state  
CV/CC Control Block  
CC_gate  
CV_gate  
CV_CC_mode  
CV_CC_mode  
AC_OFF  
IREF  
Prt_states  
Digital Block  
VDD  
CSN  
CSP  
CC_gate  
X AVCCR  
SR Block  
VLPC−  
EN  
Calculate  
VLPC−  
EN  
LGATE_EN  
Green Mode  
SR GATE  
Driver  
VCCR  
VDD  
S
R
Q
PWM  
CV_gate  
Block  
VREF  
LPC  
VCT  
VLPC−  
TH  
Line  
Detection  
Function  
VCVR  
Enable  
iCHR  
VIN  
VRES  
iDISCHR  
En_RBLD−  
Protection  
BUS  
EN_BLD  
AC_OFF  
CT  
RatioLPC  
RatioRES  
(1μA/V)  
(0.4μA/V)  
Cable Fault  
Detection  
Cable fault  
Charge Pump block  
CC_state  
GND  
GND  
CP  
GATE  
SFB  
BLD  
Figure 2. Block Diagram  
ORDERING INFORMATION  
Part Number  
Operating Temperature Range  
Package  
Packing Method  
FAN6390MPXMPX  
40°C to +125°C  
24Lead, MLP, QUAD, JEDEC MO220,  
4 mm × 4 mm, 0.5 mm Pitch, Single DAP  
Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
2
FAN6390MPX  
1
CSP  
GND  
NC  
NC  
LPC  
GND  
LGATE  
CC1  
CC2  
GND  
BLD  
NC  
NC  
Figure 3. Pin Connections (Bottom View)  
Table 1. PIN FUNCTION DESCRIPTION(MLP44)  
Pin #  
Pin Name  
NC  
Description  
1
2
No connection  
LPC  
SR control input signal. This pin is used to detect the voltage on the secondary winding during the on time  
period of the primary MOSFET  
3
4
5
GND  
LGATE  
CC1  
Ground  
Load switch gate drive signal. This pin is tied to the gate of the load switch  
Configuration Channel 1. This pin is used to detect USB TypeC devices and communicate over USB PD  
when applicable.  
6
7
CC2  
VIN  
Configuration Channel 2. This pin is used to detect USB TypeC devices and communicate over USB PD  
when applicable.  
Output voltage (Input voltage to the FAN6390MPX). This pin is tied to the output of the adapter to monitor  
its output voltage and supply internal bias.  
8
NC  
VDD  
GATE  
CP  
No connection  
9
Internal supply voltage. This pin is connected to an external capacitor.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Gate drive output. Totempole output to drive the external SR MOSFET.  
SR gate charge pump  
GND  
NC  
Ground  
No connection  
NC  
No connection  
BLD  
NC  
Bleeder pin. This pin is tied to VBUS after the load switch to discharge VBUS.  
No connection  
Ground  
GND  
CSP  
Current sensing amplifier positive terminal. Connect this pin directly to the positive end of the current sense  
resistor with a short PCB trace.  
19  
CSN  
Current sensing amplifier negative terminal. Connect this pin directly to the negative end of the current  
sense resistor with a short PCB trace.  
20  
21  
NTC  
SFB  
This pin is used for external temperature detection and protection  
Secondary Feedback. Common output of the dual OTA open drain operation amplifiers. Typically an opto−  
coupler is connected to this pin to provide feedback signal to the primary side PWM controller  
22  
23  
24  
IREF  
VREF  
NC  
Constant Current Amplifying Signal. The voltage level on this point is the amplified current sense signal. This  
pin is tied to the internal CC loop amplifier’s noninverting input terminal  
Output Voltage Sensing Voltage. This pin is used for CV regulation, and it is tied to the internal CV loop am-  
plifier noninverting input terminal. It is tied to the output voltage resistor divider.  
No connection  
www.onsemi.com  
3
FAN6390MPX  
Table 2. MAXIMUM RATINGS (Notes 1, 2)  
Rating  
Symbol  
Value  
0.3 to 26  
0.3 to 26  
0.3 to 26  
0.3 to 31  
0.3 to 6  
0.3 to 6  
0.3 to 6  
0.3 to 6  
0.3 to 6  
0.3 to 6.5  
0.3 to 6.5  
0.3 to 6  
0.3 to 6  
0.3 to 6  
0.3 to 6.5  
0.8644  
Unit  
V
VIN Pin Input Voltage  
SFB Pin Input Voltage  
BLD Pin Input Voltage  
LGATE Pin Input Voltage  
VDD Pin Input Voltage  
IREF Pin Input Voltage  
VREF Pin Input Voltage  
CSP Pin Input Voltage  
CSN Pin Input Voltage  
LPC pin Input Voltage  
GATE Pin Input Voltage  
NTC Pin Input Voltage  
CC1 Pin Input Voltage  
CC2 Pin Input Voltage  
CP Pin Input Voltage  
V
IN  
V
SFB  
V
BLD  
V
V
V
LGATE  
V
V
DD  
V
V
IREF  
V
V
VREF  
V
V
CSP  
V
V
CSN  
V
V
LPC  
V
V
GATE  
V
V
V
NTC  
CC1  
CC2  
V
V
V
V
V
CP  
V
Power Dissipation (T = 25°C)  
P
D
W
°C  
°C  
°C  
kV  
kV  
A
Operating Junction Temperature  
T
J
40 to 150  
40 to 150  
260  
Storage Temperature Range  
T
STG  
Lead Temperature, (Soldering, 10 Seconds)  
Human Body Model, ANSI/ESDA/JEDEC JS0012012 (Note 3)  
Charged Device Model, JESD22C101 (Note 3)  
TL  
ESD  
2
HBM  
CDM  
ESD  
0.5  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. All voltage values, except differential voltages, are given with respect to the GND pin.  
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
3. Meets JEDEC standards JS0012012 and JESD 22C101.  
Table 3. THERMAL CHARACTERISTICS (Note 4)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics,  
°C/W  
Thermal Resistance, JunctiontoAir  
Thermal Reference, JunctiontoTop  
R
122  
5
q
JA  
JT  
R
q
4. T = 25°C unless otherwise specified.  
A
Table 4. RECOMMENDED OPERATING RANGES  
Rating  
Symbol  
Min  
Max  
20  
5
Unit  
V
Input Voltage  
V
in  
Output Current  
I
A
out  
Adjustable Output Voltage (Adjustable Version Only)  
Ambient Temperature  
V
20  
80  
V
out  
T
°C  
A
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
4
 
FAN6390MPX  
Table 5. ELECTRICAL CHARACTERISTICS  
V
IN  
= 5 V, LPC = 1.25 V, LPC width = 2 ms at T = 40~125°C, F  
= 100 kHz, unless otherwise specified.  
J
LPC  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
VDD SECTION  
TurnOn Valid Threshold Voltage  
VIN Operating Voltage at 20V  
VDD Source Current  
VIN SECTION  
V
2.6  
4.750  
10  
V
V
DDvalid  
V
V
= 20 V, I  
= 0 mA  
V
DD  
5.125  
5.500  
IN  
VDD  
= 3.3 V, V = 2.9 V  
I
mA  
IN  
DD  
DD  
Continuous Operating Voltage  
(Note 5)  
V
22.5  
10  
V
INOP  
Operating Supply Current at 5 V  
V
V
= 5 V, V = 25 mV, Rcs = 5 mW  
I
INOP5V  
mA  
mA  
IN  
CS  
Operating Supply Current at 20 V  
(Note 5)  
= 20 V, V = 25 mV, Rcs = 5 mW  
I
8
IN  
CS  
INOP20V  
TurnOn Threshold Voltage  
V
V
V
Increases  
V
2.9  
3.2  
3.4  
3.005  
1.3  
V
IN  
IN  
IN  
INON  
TurnOff Threshold Voltage  
Decreases after V = V  
V
2.805  
2.875  
V
IN  
INON  
INOFF  
Green Mode Operating Supply Current  
= 5.2 V (default), V = 0 mV  
I
mA  
CS  
INGreen  
excluding I  
and I  
PCC1  
PCC2  
VINUVP SECTION  
Ratio V UnderVoltageProtection to Whole output mode, V = 0 mV  
IN  
K
INUVP  
65  
70  
75  
%
IN  
CS  
V
CC Mode UVP Debounce Time  
t
45  
60  
75  
ms  
ms  
DVINUVP  
UVP Blanking Time during Mode  
Change from Lower Vout to Higher  
Vout  
Whenever does mode change from  
lower Vout to higher Vout  
t
160  
200  
240  
BNKUVP  
VINOVP SECTION  
Ratio V OverVoltageProtection to Whole output mode, V = 0 mV  
IN  
K
INOVP  
116.0  
23.5  
19  
121.5  
24.5  
127.0  
25.5  
43  
%
V
IN  
CS  
V
V
IN  
Maximum  
V
INOVPMAX  
OverVoltageProtection  
OVP Debounce Time  
t
31  
7
ms  
DOVP  
OVP Blanking Time during Mode  
Change from Higher Vout to Lower  
Vout (Note 5)  
Vstep v 0.5 V, Vbus w 13  
Disabling OVP & SR Gate.  
t
t
t
t
ms  
BNKOVP  
BNKOVP  
BNKOVP  
BNKOVP  
OVP Blanking Time during Mode  
Change from Higher Vout to Lower  
Vout (Note 5)  
Vstep v 0.5 V, Vbus < 13  
Disabling OVP & SR Gate.  
19  
56  
ms  
ms  
ms  
OVP Blanking Time during Mode  
Change from Higher Vout to Lower  
Vout (Note 5)  
Disabling OVP & SR Gate.  
Vstep > 0.5 V, Vbus w 13  
OVP Blanking Time during Mode  
Change from Higher Vout to Lower  
Vout  
Disabling OVP & SR Gate.  
Vstep > 0.5 V, Vbus < 13  
200  
CONSTANT CURRENT SENSING SECTION (100% CC)  
CurrentSense Amplifier Gain  
R
= 5 mW  
A
40  
V/V  
A
CS  
VCCR  
(Note 5)  
Current threshold on sensing resistor  
between CSP and CSN at  
VIN = 3.3 V, 5 V, 20 V  
I
0.86  
1.00  
1.14  
CS1.00A  
I
= 1.00 A  
OUT.CC  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Guaranteed by Design  
www.onsemi.com  
5
 
FAN6390MPX  
Table 5. ELECTRICAL CHARACTERISTICS (continued)  
= 5 V, LPC = 1.25 V, LPC width = 2 ms at T = 40~125°C, F  
V
IN  
= 100 kHz, unless otherwise specified.  
J
LPC  
Parameter  
Test Conditions  
Symbol  
CS3.00A  
CSSTEP  
Min  
Typ  
Max  
Unit  
CONSTANT CURRENT SENSING SECTION (100% CC)  
Current threshold on sensing resistor  
between CSP and CSN at  
VIN = 3.3 V, 5 V, 20 V  
I
I
2.88  
3.00  
3.12  
A
I
= 3.00 A  
OUT.CC  
Current threshold on sensing resistor  
between CSP and CSN at  
DI  
OTYP  
= 50 mA  
48  
50  
52  
mA  
DI  
= 50 mA (Note 5)  
OUT.CC  
CONSTANT CURRENT SENSING SECTION (107% CC)  
CurrentSense Amplifier Gain (Note 5)  
R
= 5 mW  
A
40  
V/V  
A
CS  
VCCR  
Current threshold on sensing resistor  
between CSP and CSN at  
VIN = 5 V  
I
3.09  
3.21  
3.33  
3.72  
CS3.00A  
I
= 3.21 A  
OUT.CC  
CONSTANT CURRENT SENSING SECTION (120% OCP)  
CurrentSense Amplifier Gain (Note 5)  
R
= 5 mW  
A
40  
V/V  
A
CS  
VCCR  
Current threshold on sensing resistor  
between CSP and CSN at  
VIN = 3.3 V, 5 V, 20 V  
I
3.48  
50  
3.60  
CS3.0A  
I
= 3.60 A  
OUT.CC  
OCP Debounce Time  
T
60  
70  
ms  
OCPDebounce  
OUTPUT CURRENT SENSING SECTION  
Current threshold on sensing resistor  
between CSP and CSN for enabling  
bleeding during mode change  
I
450  
mA  
CSENBLD  
Debounce time for enabling bleeding  
during mode change  
T
1.0  
ms  
CSENBLD  
CONSTANT VOLTAGE SENSING SECTION  
Reference Voltage at 3.3 V  
V
= 3.3 V, V = 0 V  
V
V
0.320  
0.485  
0.330  
0.500  
0.340  
0.515  
V
V
IN  
IN  
CS  
CVR3.3V  
Reference Voltage at 5.0 V  
(Poweron reset, default)  
V
= 5.0 V, V = 0 V  
CS  
CVR5.0V  
Reference Voltage at 9 V  
V
V
V
= 9 V, V = 0 V  
V
0.873  
1.455  
1.940  
1.940  
0.900  
1.500  
2.000  
2.000  
0.927  
1.545  
2.060  
2.060  
V
V
IN  
IN  
IN  
CS  
CVR9V  
CVR15V  
CVR20V  
Reference Voltage at 15 V  
Reference Voltage at 20 V  
Reference Voltage of 20 mV step  
= 15 V, V = 0 V  
V
V
CS  
= 20 V, V = 0 V  
V
CS  
DV = 20 mV, V = 0 V  
V
CVRSTEP20mV  
mV  
IN  
CS  
CABLE DROP COMPENSATION SECTION  
Cable Compensation Voltage on V  
R
= 5 mW, V = 5 mV  
V
COMRCDC  
13.5  
2
15.0  
16.5  
mV  
mA  
CVR  
CS  
CS  
for V  
= 150 mV/A  
or R = 10 mW, V = 10 mV  
OUT  
CS  
CS  
FEEDBACK SECTION  
SFB Pin Maximum Sink Current  
BLEEDER SECTION  
I
SFBSinkMAX  
VBUS Leakage Impedance (Note 5)  
R
100  
300  
171  
242  
kW  
BLDBUS  
VIN Pin Sink Current when Bleeding  
(Note 5)  
Bleeding current on VIN at VIN = 20 V  
Bleeding current on BLD at VIN = 20 V  
I
mA  
VIN –Sink  
BLD Pin Sink Current when Bleeding  
(Note 5)  
I
250  
mA  
ms  
BLD –Sink  
Enable Bleeder Time (Note 5)  
Disabling OVP & SR Gate.  
Vstep 0.5 V, Vbus 13  
t
7
BLD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Guaranteed by Design  
www.onsemi.com  
6
FAN6390MPX  
Table 5. ELECTRICAL CHARACTERISTICS (continued)  
= 5 V, LPC = 1.25 V, LPC width = 2 ms at T = 40~125°C, F  
V
IN  
= 100 kHz, unless otherwise specified.  
J
LPC  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
BLEEDER SECTION  
Enable Bleeder Time (Note 5)  
Disabling OVP & SR Gate.  
t
t
t
19  
56  
ms  
ms  
ms  
BLD  
BLD  
BLD  
Vstep 0.5 V, Vbus < 13  
Enable Bleeder Time (Note 5)  
Enable Bleeder Time  
Disabling OVP & SR Gate.  
Vstep > 0.5 V, Vbus 13  
Disabling OVP & SR Gate.  
Vstep > 0.5 V, Vbus < 13  
160  
55  
200  
240  
65  
OVER TEMPERATURE PROTECTION SECTION  
Current Source on NTC pin  
R
= 3.293 kW  
I
60  
mA  
par_110  
NTC  
Debounce Time for Over Temperature  
Protection (Note 5)  
T
77.5  
ms  
NTCDebounce  
CABLE PROTECTION SECTION  
Delay Time Enabling Pollution  
t
9
10  
11  
ms  
POLENDelay  
Detection after Rd is Detached or after  
Load Switch is Disabled (Note 5)  
Debounce Time for Pollution Detection  
(Note 5)  
V
> V  
t
45  
9
50  
10  
55  
11  
ms  
ms  
mA  
V
BLD  
POLTH  
POLDebounce  
Bleeder Enable Time for Pollution  
Detection (Note 5)  
t
BLDPOL  
Pollution Detection Current on BLD  
Pin (Note 5)  
I
350  
0.67  
0.50  
390  
0.74  
0.60  
450  
0.80  
0.65  
2
POLDET  
Supply Voltage of Pollution Detection  
Current (Note 5)  
V
SUPPOLDET  
Pollution Detection Threshold Level  
(Note 5)  
During t  
BLD  
with opencircuited on  
V
V
POLEN  
POLTH  
Guaranteed Pollution Impedance  
(Note 5)  
R
kW  
POL  
PROTECTION OPERATION SPECIFICATION SECTION  
Output Voltage Releasing Latch Mode  
(Note 5)  
V
IN  
< V , at 5°C and 85°C  
LATCHOFF  
V
1.55  
V
s
LATCHOFF  
Time Duration Disabling Load Switch  
(Note 5)  
t
2
TwoSecondAR.  
TYPEC SECTION  
330 mA Source Current on CC1 Pin  
330 mA Source Current on CC2 Pin  
Input Impedance on CC1 Pin  
Input Impedance on CC2 Pin  
V
V
V
V
V
= 5 V, V  
= 5 V, V  
= 0 V  
I
I
302  
302  
126  
126  
2.45  
330  
330  
358  
358  
mA  
mA  
kW  
kW  
V
IN  
IN  
IN  
IN  
IN  
CC1  
PCC1330  
= 0 V  
CC2  
PCC2330  
= 0 V, Sourcing 330 mA on CC1  
= 0 V, Sourcing 330 mA on CC2  
Z
Z
OPENCC1  
OPENCC2  
Rd Impedance Detection Threshold on  
CC1 Pin  
= 5 V, V  
= 0 V, Increasing V  
= 0 V, Increasing V  
= 0 V, Increasing V  
V
2.60  
2.60  
150  
2.75  
2.75  
200  
CC2  
CC1  
CC2  
CC1  
CC2  
CC1  
RDCC1  
RDCC2  
Rd Impedance Detection Threshold on  
CC2 Pin  
V
IN  
= 5 V, V  
V
2.45  
V
UFP Attachment Debounce Time  
Gate High Voltage at 3.3 V  
Gate High Voltage at 20 V  
V
IN  
V
IN  
V
IN  
V
IN  
= 5 V, V  
= 3.3 V  
= 20 V  
t
100  
5.3  
ms  
V
CCDebounce  
V
LGATE3.3V  
V
23.5  
V
LGATE-20V  
LGATEOVPMax  
Gate High Voltage at V  
= V  
V
31  
V
INOVPMax  
INOVPMax  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Guaranteed by Design  
www.onsemi.com  
7
FAN6390MPX  
Table 5. ELECTRICAL CHARACTERISTICS (continued)  
V
IN  
= 5 V, LPC = 1.25 V, LPC width = 2 ms at T = 40~125°C, F  
= 100 kHz, unless otherwise specified.  
J
LPC  
Parameter  
TYPEC SECTION  
CC Pin OverVoltage Protection  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
V
5.5  
5.5  
5.75  
5.75  
6
6
V
V
1
CC1OVP  
V
CC2OVP  
CC Pin OverVoltage Protection  
2
CC /CC OVP Debounce Time  
t
CC-OVPDebounce  
100  
0.80  
ms  
V
1
2
Safe Operating Voltage at 0 V  
OUTPUT DRIVER SECTION  
Output Voltage Low  
V
safe0V  
0.66  
4.0  
0.73  
V
V
= 5 V, I  
= 100 mA  
V
OL  
0.25  
V
V
V
IN  
GATE  
Output Voltage High  
= 3.3 V, C = 4.7 nF, C = 4.7 nF  
V
OH  
IN  
iss  
p
VIN Threshold to Enable Charge  
Pump (Note 5)  
V
4.2  
63  
63  
44  
30  
1.4  
CPEN  
Rising Time (Note 5)  
V
IN  
= 5 V, C = 4.7 nF, C = 4.7 nF  
t
R
ns  
ns  
ns  
ns  
ms  
iss  
p
GATE = 1 V ~ 4 V  
Falling Time (Note 5)  
V
IN  
= 5 V, C = 4.7 nF, C = 4.7 nF  
t
F
iss  
p
GATE = 4 V~ 1 V  
Propagation Delay to OUT High  
(LPC Trigger (Note 5)  
V
=5 V, GATE=1 V  
t
PDHIGHLPC  
IN  
IN  
Propagation Delay to OUT Low  
(LPC Trigger (Note 5)  
V
= 5 V, GATE = 4 V  
t
PDLOWLPC  
Gate Inhibit Time (Note 5)  
INTERNAL RES SECTION  
Internal RES Ratio (Note 5)  
t
INHIBIT  
V
IN  
= V  
~20 V (N = 6.5~7.5)  
K
RES  
0.110  
70  
V/V  
%
INOFF  
VIN Dropping Protection Ratio with  
Two Cycle  
LPC Width = 5 ms, V =5 V to 3.5 V  
K
60  
1
80  
3
IN  
VINDROP  
Debounce time for noise immunity on  
VIN (Note 5)  
t
2
ms  
VINDebounce  
Debounce Time for Disable SR when  
VIN Dropping Protection  
t
0
6.5  
13  
ms  
SR_OFF  
LPC SECTION  
Linear Operation Range of LPC Pin  
Voltage (Note 5)  
V
< V v 5 V  
V
LPC  
0.4  
3.6  
V
IN –OFF  
IN  
SR Enabled Threshold Voltage  
V
V
=
V
0.942  
1.061  
1.245  
1.397  
0.442  
0.561  
0.741  
1.069  
1.196  
1.433  
1.554  
0.496  
0.584  
0.817  
1.197  
1.332  
1.541  
1.712  
0.550  
0.685  
0.893  
LPCHIGHH5V  
LPCTHH5V  
LPCHIGHH5V  
V
LPCHIGHH9V  
V
V
V
V
V
V
V
@HighLine  
/ 0.875  
SR Enabled Threshold Voltage  
@HighLine  
V
V
=
LPCHIGHH9V  
LPCTHH9V  
/ 0.875  
SR Enabled Threshold Voltage  
@HighLine  
V
= V  
= V  
V
V
LPCHIGHH15V  
LPCTH−  
LPCHIGHH15V  
LPCHIGHH20V  
/ 0.875  
H15V  
SR Enabled Threshold Voltage  
@HighLine  
V
LPCHIGHH20V  
LPCTH−  
/ 0.875  
H20V  
SR Enabled Threshold Voltage @  
LowLine  
V
= V  
= V  
V
LPCHIGHL5V  
LPCTH−  
LPCHIGHL5V  
LPCHIGHL9V  
V
LPCHIGHL15V  
/ 0.875  
L5V  
SR Enabled Threshold Voltage @  
LowLine  
V
V
LPCHIGHL9V  
LPCTH−  
/ 0.875  
L9V  
SR Enabled Threshold Voltage @  
LowLine  
V
= V  
LPCHIGHL15V  
LPCTH−  
/ 0.875  
L15V  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Guaranteed by Design  
www.onsemi.com  
8
FAN6390MPX  
Table 5. ELECTRICAL CHARACTERISTICS (continued)  
V
IN  
= 5 V, LPC = 1.25 V, LPC width = 2 ms at T = 40~125°C, F  
= 100 kHz, unless otherwise specified.  
J
LPC  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
LPC SECTION  
SR Enabled Threshold Voltage @  
V
L12V  
= V  
V
0.897  
1.46  
1.37  
0.981  
1.60  
1.50  
0.1  
1.065  
1.74  
1.63  
LPCHIGHL12V  
LPCTH−  
LPCHIGHL20V  
V
V
LowLine  
/ 0.875  
LowtoHigh Line Threshold Voltage  
on LPC Pin  
Spec. = (0.70 + 0.02 * V ) * 2,  
V
LINEH5V  
IN  
V
IN  
= 5 V  
HightoLow Line Threshold Voltage  
on LPC Pin  
Spec. = (0.65 + 0.02 * V ) * 2,  
V
LINEL5V  
IN  
V
V
V
IN  
= 5 V  
Line Change Threshold Hysteresis  
(Note 5)  
V
V
=
– V  
V
LINEHYS5V  
LINEHYS5V  
LINEH5V  
LINEL5V  
LowtoHigh Line Threshold Voltage  
Spec. = (0.70 + 0.02 * V ) * 2,  
IN  
V
1.62  
1.53  
1.76  
1.66  
0.1  
1.90  
1.79  
V
V
V
V
V
V
V
V
V
IN  
LINEH9V  
V
LINEL9V  
on LPC Pin  
V
= 9 V  
HightoLow Line Threshold Voltage  
on LPC Pin  
Spec. = (0.65 + 0.02 * V ) * 2,  
IN  
V
IN  
= 9 V  
Line Change Threshold Hysteresis  
(Note 5)  
V
V
=
V
LINEHYS9V  
LINEHYS9V  
LINEH9V  
– V  
LINEL9V  
Low–toHigh Line Threshold Voltage  
on LPC Pin  
Spec. = (0.70 + 0.02 * V ) * 2,  
V
1.85  
1.76  
2.00  
1.90  
0.1  
2.15  
2.04  
IN  
LINEH15V  
V
IN  
= 15 V  
HightoLow Line Threshold Voltage  
on LPC Pin  
Spec. = (0.65 + 0.02 * V ) * 2,  
V
LINEL15V  
IN  
V
IN  
= 15 V  
Line Change Threshold Hysteresis  
(Note 5)  
V
V
=
V
LINEHYS15V  
LINEHYS15V  
LINEH15V  
– V  
LINEL15V  
Low–toHigh Line Threshold Voltage  
on LPC Pin  
Spec. = (0.70 + 0.02 * V ) * 2,  
V
2.06  
1.97  
2.20  
2.10  
0.1  
2.34  
2.23  
IN  
LINEH20V  
V
IN  
= 20 V  
HightoLow Line Threshold Voltage  
on LPC Pin  
Spec. = (0.65 + 0.02 * V ) * 2,  
V
LINEL20V  
IN  
V
IN  
= 20 V  
Line Change Threshold Hysteresis  
(Note 5)  
V
V
=
V
V
LINEHYS12V  
LINEH20V  
LINEHYS20V  
– V  
LINEL20V  
Higher Clamp Voltage  
5.4  
6.2  
7.0  
29  
V
V
LPCCLAMPH  
LPC Threshold Voltage to Disable SR  
Gate Switching  
V
IN  
= 5 V. LPC = 3 V°  
V
V
LPCDIS  
IN  
0.6  
Line Change Debounce Time from  
LowLine to HighLine  
Counts for LPC falling < V  
t
t
13  
21  
15  
ms  
LPCTHL5V  
LPCLHdebounce  
time  
Line Change Debounce from  
HighLine to LowLine (Note 5)  
ms  
LPCHLdebounce  
INTERNAL TIMING SECTION  
Ratio between V  
& V  
V
= 5 V, F  
= 50 kHz, K  
= 0.11  
Ratio  
5.40  
210  
5.68  
285  
5.96  
360  
LPC  
RES  
IN  
LPC  
RES  
LPCRES  
Minimum LPC Time to Enable the SR  
Gate @ HighLine  
V
= 2.5 V  
t
ns  
ns  
LPC  
LPCENH  
Minimum LPC Time to Enable the SR  
Gate @ LowLine  
V
LPC  
= 1.25 V  
t
540  
705  
870  
LPCENL  
REVERSE CURRENT MODE SECTION  
Reverse Current Mode Entry  
Debounce Time  
V
V
= 5 V, V  
= 5 V, V  
= 0 V  
= 0 V  
T
270  
400  
530  
2.4  
ms  
IN  
LPC  
reversedebounce  
Operating Current during Reverse  
Current Mode  
I
mA  
IN  
LPC  
OP.reverse  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Guaranteed by Design  
www.onsemi.com  
9
FAN6390MPX  
Table 5. ELECTRICAL CHARACTERISTICS (continued)  
= 5 V, LPC = 1.25 V, LPC width = 2 ms at T = 40~125°C, F  
V
IN  
= 100 kHz, unless otherwise specified.  
J
LPC  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
BMC TRANSMITTER NORMATIVE REQUIREMENTS  
Unit Internal  
1/fBitRate  
t
3.03  
300  
300  
33  
3.33  
500  
500  
3.70  
700  
700  
75  
ms  
ns  
ns  
W
UI  
t
RiseTX  
Rise Time  
C
C
= 4.7 F  
VDD  
VDD  
Fall Time  
= 4.7 mF  
t
FallTX  
Transmitter Output Impedance  
Transmitter output impedance at  
Niquist frequency of USB2.0 low speed  
(750 kHz) while Source driving the CC  
line  
zDriver  
Transitions for Signal Detect  
n
3
TransitionCount  
Time Window for Detecting Nonidle  
t
12  
20  
ms  
TransitionWindow  
Rx bandwidth Limiting Filter  
(Digital or Analog)  
t
100  
ns  
RxFilter  
Receiver Input Impedance  
zBmcRx  
1
MW  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Guaranteed by Design  
www.onsemi.com  
10  
FAN6390MPX  
TYPICAL CHARACTERISTICS  
Figure 4. VCVR3.3V vs. Temperature  
Figure 5. VCVR5V vs. Temperature  
Figure 7. VCVR15V vs. Temperature  
Figure 9. VCVRSTEP20mV vs. Temperature  
Figure 6. VCVR9V vs. Temperature  
Figure 8. VCVR20V vs. Temperature  
www.onsemi.com  
11  
FAN6390MPX  
TYPICAL CHARACTERISTICS (Continued)  
Figure 10. IINOP5V vs. Temperature  
Figure 11. VINOFF vs. Temperature  
Figure 13. KINUVP vs. Temperature  
Figure 15. VINOVPMAX vs. Temperature  
Figure 12. IINGreen vs. Temperature  
Figure 14. KINOVP vs. Temperature  
www.onsemi.com  
12  
FAN6390MPX  
TYPICAL CHARACTERISTICS (Continued)  
Figure 16. VDD vs. Temperature  
Figure 17. VLGATE3.3V vs. Temperature  
Figure 18. ICS1.00A at VIN = 20 V vs.  
Temperature  
Figure 19. ICS3.00A at VIN = 20 V vs.  
Temperature  
Figure 20. ICS1.00A at VIN = 3.3 V vs.  
Temperature  
Figure 21. ICS3.00A at VIN = 3.3 V vs.  
Temperature  
www.onsemi.com  
13  
FAN6390MPX  
TYPICAL CHARACTERISTICS (Continued)  
Figure 22. VCC1OVP vs. Temperature  
Figure 23. VCC2OVP vs. Temperature  
Figure 24. tCCOVPDebounce vs. Temperature  
Figure 25. Vsafe0V vs. Temperature  
www.onsemi.com  
14  
FAN6390MPX  
APPLICATIONS INFORMATION  
FAN6390MPX state machine based offers several kinds of trim option to enhance design flexibility as Table 6 shows.  
Table 6. SUMMARY TABLE OF ALL KINDS OF TRIM FUNCTION  
Function  
All Trims  
FAN6390MPXMPX Trim  
Cable Fault (Note 6)  
0: Disabled  
1: Enabled  
“1” is selected.  
“0” is for compliance box test.  
Internal RES  
ratio= 1/Ratio  
00: 0.14 (for N /N = 7.5~10)  
P S  
“10” is selected.  
01: 0.18 (for N /N = 9.5~13)  
RRES  
P S  
10: 0.11 (for N /N = 6.5~7.5)  
P
S
11: 0.10 (for N /N = 5~6.5)  
P
S
Note: N and N are primary and  
P
S
secondary transformer turns  
Cable Compensation  
for PDO  
00: 150 mV/A  
01: 50 mV/A  
10: 100 mV/A  
11: Disabled  
“00” is selected.  
“11” is used for PD compliance box test that additional cable  
compensation on DFP is no need.  
Current Sensing  
1: 10 mW  
0: 5 mW  
“0” is selected. (Smaller current sensing resistor has better  
efficiency but could be more expensive. In order to trade off  
cost and efficiency for flexible design, two kinds of popular  
current sensing resistors are provided. )  
Support PD2.0 or 3.0  
Default 5 V Adjustment  
0: Enable PD2.0  
1: Enable PD3.0  
“1” is selected. (FAN6390MPX series support only PDO  
power profile via PD2.0 trim and PDO plus APDO(PPS)  
power profile via PD3.0 trim.)  
0: 5.0 V  
1: 5.2 V  
“0” is selected. (Two kinds of default 5 V adjustment for  
flexible design)  
Adjustable Output  
Profile  
8 kinds of output power profile can be se-  
lectable as list1.  
“000” is selected.  
“0” is selected.  
“00” is selected.  
Protection Modes  
(Note 6)  
0: Autorestart after 2sec  
1: Latch protection. System restart up  
Output OVP  
PDO case and PPS case  
00: 120%  
01: 125%  
10: 130%  
11: 115%  
Output UVP (Note 7)  
PDO case:  
00: 65%  
“10” is selected.  
01: 60%  
10: 70%  
11: Disable  
PPS case:  
disable  
PDO Current Mode  
(Note 8)  
00: 5 V (107% CC), 9/15/20 V (120 % CC)  
01: 5/9/15/20 V (107% CC)  
10: 5/9/15/20 V (120% CC)  
“00” is selected.  
“10” is used for PD compliance box test.  
Output Power  
Output power range from 15 W~60 W  
“111111” is selected.  
000000: 15 W  
000001: 16 W  
...  
111111: 60 W  
6. Function explanation refers to FAN6390MPX application note.  
7. Based on compliance spec PPS case is current limit. Output voltage could be lower than the requested PPS voltage command during current  
limit. In order to operate at current limit region, FAN6390MPX series disable UVP and operates until V  
8. Except of PDO, all APDO power profiles are 100% CC.  
.
INOFF  
www.onsemi.com  
15  
 
FAN6390MPX  
Table 7. UP TO 8 KINDS OF OUTPUT POWER PROFILES SELECTED BY TRIM  
Output Profile Trim  
15 W 3 P 3 27 W  
27 W < P 3 45 W  
45 W < P 3 60 W  
Power Profile Trim  
000  
5 V  
9 V  
5 V  
9 V  
5 V  
9 V  
12 V (Note 9)  
If PD3.0 trim activated  
PPS 5 V  
12 V  
15 V  
If PD3.0 trim activated  
PPS 5 V  
15 V  
20 V  
If PD3.0 trim activated  
PPS 9 V  
PPS 9 V  
PPS 9 V  
PPS 15 V  
PPS 15 V  
PPS 20 V  
001  
010  
5 V  
5 V  
5 V  
5.5 V  
6.0 V  
7.0 V  
8.0 V  
9 V  
5.5 V  
6.0 V  
7.0 V  
8.0 V  
9 V  
5.5 V  
6.0 V  
7.0 V  
9 V  
15 V  
20 V  
10.0 V  
15 V  
5 V  
5 V  
5 V  
6.0 V  
7.0 V  
8.0 V  
9 V  
6.0 V  
7.0 V  
9 V  
6.0 V  
9 V  
15 V  
20 V  
15 V  
If PD3.0 trim activated  
PPS 5 V  
PPS 9 V  
If PD3.0 trim activated  
PPS 9 V  
PPS 15 V  
If PD3.0 trim activated  
PPS 15 V  
PPS 20 V  
011  
100  
5 V  
5 V  
5 V  
5.5 V  
6.0 V  
6.5 V  
7.0 V  
8.0 V  
9 V  
5.5 V  
6.0 V  
6.5 V  
7.0 V  
9 V  
5.5 V  
6.0 V  
6.5 V  
9 V  
15 V  
20 V  
15 V  
5 V  
5 V  
5 V  
5.6 V  
9 V  
11 V  
5.6 V  
9 V  
11 V  
15 V  
5.6 V  
9 V  
11 V  
15 V  
20 V  
101  
110  
111  
5 V  
9 V  
14.5 V  
5 V  
9 V  
14.5 V  
15 V  
5 V  
9 V  
14.5 V  
15 V  
20 V  
5 V  
9 V  
11 V  
5 V  
9 V  
11 V  
15 V  
5 V  
9 V  
11 V  
15 V  
20 V  
5 V  
9 V  
15 V  
20 V  
9. 12 V can be possible to enable or disable by trim.  
www.onsemi.com  
16  
 
FAN6390MPX  
USB TypeC Support  
The USB TypeC specification defines CC lines (CC1  
and CC2) to detect the orientation and roles of a USB Port  
pair (Source and Sink roles). A source device will provide  
pullup currents on the CC lines and the sink will provide a  
pulldown resistance in order to allow detection of the other  
when the two are attached. When there is no device attached  
to either the source or sink device, VBUS must not be  
powered and should be under 0.8 V (Max). The  
FAN6390MPX operates as a sourceonly device and  
provides control of an NMOS load switch to isolate VIN  
from VBUS to ensure that VBUS can be discharged  
completely when required.  
Load switch  
USB TypeC cable  
VBUS  
Sink device  
VBUS  
DC power  
VIN  
BLD  
LGATE  
VDD  
VDD  
Sink cotroller  
ICC 1  
CC1  
CC2  
CC1  
CC2  
CC1  
CC2  
CC1  
TypeC & PD  
State machines  
Rd  
Rd  
Sink CC detection  
ICC 2  
CC2  
Source cotroller  
GND  
GND  
Figure 26. Source Only Device Connecting to Sink Device through Type C Cable  
IPCC1 & IPCC2  
Figure 26 shows a USB Source connected to a USB Sink  
with a USB TypeC cable. Since there is only one CC signal  
in a standard USB TypeC cable, one of pullups in the USB  
t
t
t
t
t
t
CC1  
VDD  
VRd  
FAN 6390 attaches to  
sink via typeC cable  
Source (I  
and I  
) will be terminated with the Rd  
pCC1  
pCC2  
to ground in the USB Sink, causing a fixed voltage to be  
developed across the 5.1 kW pulldown. The  
FAN6390MPX monitors the CC line voltages to decide if a  
Sink is attached or not and the orientation of the USB  
CC2  
VDD  
VRd  
TypeC cable. If the V voltage is within the attach  
Rd  
LGATE  
threshold for t  
according to the thresholds  
CCDebounce  
tCCDebounce  
defined in Table 8, the load switch will be enabled to provide  
vSafe5V on VBUS. The FAN6390MPX advertises support  
for 3 A current at the vSafe5V output voltage level.  
VBUS  
5V  
0V  
VIN  
Table 8. CC VOLTAGES ON SOURCE SIDE –  
3.0 A @ 5 V  
5V  
Detection  
Min Voltage  
0.85 V  
Max Voltage  
Threshold  
Figure 27. Attach to Sink Device via USB TypeC  
Sink (vRd)  
2.45 V  
2.60 V  
Cable  
No Connect  
(vOPEN)  
2.75 V  
USB PD Support  
USB Power Delivery (PD) provides a way for a Source  
and Sink device to negotiate output power settings, allowing  
for increased power delivery up to 100W. USB PD uses the  
CC signal that is passed through the USB cable to provide  
the link between a Source device and a Sink device. In order  
to communicate properly over the CC signal, all USB  
PDcapable devices include four major communication  
components, the Physical Layer, Protocol Layer, Policy  
Engine and Device Policy Manager as shown in Figure 28.  
Figure 27 shows the signal levels and timing for a typical  
USB TypeC attach on CC1. The Source pullup currents  
are enabled on both CC1 and CC2 and the USB cable  
connects the Rd resistor on the CC1 signal in the Sink device  
which pulls down the CC1 voltage into the vRd range. Once  
the FAN6390MPX detects the voltage on CC1 within the  
vRd range for t  
, the load switch is enabled and  
CCDebounce  
vSafe5V is applied on VBUS.  
www.onsemi.com  
17  
 
FAN6390MPX  
Source  
Sink  
be programmatically adjusted over the advertised voltage  
Device Policy  
Device Policy  
Manager  
range (Programmable Power Supply or PPS). A Source can  
advertise a combination of PDO’s and APDO’s, up to  
a maximum of 7 total Data Objects. In order to provide  
a consistent experience across Source devices with the same  
power rating (PDP), a set of Power Rules was introduced  
into the USB PD 3.0 specification. The Power Rules provide  
a set of minimum requirements (PDO’s and APDO’s) that  
must be met for a Source device based on the advertised  
PDP.  
Manager  
Policy Engine  
Policy Engine  
Protocol Layer  
Physical Layer  
Protocol Layer  
Physical Layer  
The FAN6390MPX can be configured to meet a variety of  
different USB PD Power Profiles, depending on the  
application requirements. The default power profile option  
for the FAN6390MPX is the standard 60W option as shown  
in Table 9.  
CC Signal  
Figure 28. USB PD Communications Stack  
The Physical Layer handles the transmission and  
reception of the bits on the CC signal. All data is first  
encoded using a 4b5b line code and then transmitted across  
the CC signal using Biphase Mark Coding (BMC). A 32bit  
CRC is also used to protect the data integrity of the data  
payload.  
The Protocol Layer defines how USB PD messages are  
constructed and used between a Source device and a Sink  
device. All USB PD messages must follow a strict packet  
definition and may also include timing requirements based  
on the type of message. The Protocol Layer is responsible  
for verifying the timing parameters and handling any  
communication errors as they arise.  
Table 9. FAN6390MPX DEFAULT POWER PROFILE  
Max  
Data  
Output  
Current  
Current  
Object  
Voltage  
Mode  
w/3 A Cable  
PDO1  
PDO2  
PDO3  
PDO4  
APDO1  
5 V  
9 V  
3.21 A  
3.6 A  
3.6 A  
3.6 A  
3 A  
OC  
OCP  
OCP  
OCP  
CC  
15 V  
20 V  
9 V  
(3.3~11 V)  
The Policy Engine is responsible for executing the device  
Local Policy to control its power delivery behavior. The  
Policy Engine defines a set of message sequences that must  
be followed for proper operation. All power negotiations are  
handled by the Policy Engine.  
APDO2  
APDO3  
15 V  
3 A  
3 A  
CC  
CC  
(3.3~16 V)  
20 V  
(3.3~21 V)  
The Device Policy Manager is responsible for overseeing  
the power supply and managing changes to the Local Policy,  
including handling of alert and fault conditions. It is also  
responsible for the Discover Identity messaging to  
determine the full capabilities of the cabling.  
The FAN6390MPX implements all four components of  
the Source communication stack in hardware to provide  
a USB PD 3.0 fullycompliant solution without the need for  
firmware interaction. Control of the Constant Voltage and  
Constant Current DAC’s is integrated into the Policy Engine  
to provide seamless power transitions between different  
contracts.  
Constant Voltage Control  
In order to regulate adaptive output voltages, the constant  
voltage control (CV) is implemented. The output voltage is  
sensed through an external resistor divider. The sensed  
output voltage is connected to the VREF pin, and it is input  
the noninverting input terminal of the internal operational  
amplifier. The inverting input terminal is connected to the  
internal voltage reference (V  
) which can be adjusted  
CVR  
according to the requested output voltage. The amplifier and  
an internal switch operate as a shunt regulator, and the output  
of the shunt regulator is connected to the external  
optocoupler via SFB pin. To compensate output voltage  
regulation, typically, two capacitors and one resistor are  
connected between SFB and VREF pins as Figure 29. The  
output voltage can be derived as calculated by the  
Equation 1, and the ratio of the resistor divider is 10. The  
reference (VCVR) for the output voltage is generated by  
a 10bit DAC. The minimum resolution is 20 mV to meet  
PD3.0 compliance spec.  
USB PD Power Profiles  
The USB PD 3.0 specification defines Power Data  
Objects (PDO) and Augmented Power Data Objects  
(APDO) as a way for the Source device to advertise its’  
power capabilities. Power Data Objects are used to describe  
wellregulated fixed voltage supplies, poorly regulated  
power supplies and battery supplies that can be directly  
connected to VBUS. Augmented Power Data Objects are  
used to describe a power supply whose output voltage can  
R
F1 ) RF2  
V
O + VCVR  
@
(eq. 1)  
RF2  
www.onsemi.com  
18  
 
FAN6390MPX  
Output OverCurrent Protection  
+
OverCurrent Protection (OCP) is enabled during USB  
PD contracts. When OCP mode is enabled the supply will  
regulate the output voltage until the load current exceeds the  
OCP threshold, at which point it will cause a fault condition  
and disable the output voltage as shown in Figure 31. Same  
as Constant Current Limit Mode, the FAN6390MPX detects  
Vbus  
RCS  
CSN  
CSP  
FB  
0
1
PDO or APDO  
LGATE  
IREF  
the output current via the currentsense resistor R , with  
CS  
0:OCP/ 1:CC  
the difference being the output of the CC amplifier  
disconnected from the SFB signal. When the load current  
SFB  
exceeds the OCP threshold for longer than t  
OverCurrent Protection is triggered and the  
, Output  
DOCP  
VCCR  
RF1  
VREF  
FAN6390MPX enters Auto Restart Mode.  
RF2  
OCP  
debounce  
VCVR  
VBUS  
ß
OCP “HIGH”  
Figure 29. Voltage and Current Sensing Circuits  
à
Point A  
OCP  
PDO  
Voltage  
Constant Current Control  
Constant current (CC) control is enabled during USB PD  
contracts. When CC mode is enabled, the supply will  
foldback the output voltage as the load increases in order to  
maintain a fixed output current as shown in Figure 30.  
Output current is sensed via a currentsense resistor RCS,  
which is connected between the CSP and CSN pins. The  
sensed signal is internally amplified, and this amplified  
voltage is connected to the noninverting input of the  
internal operational amplifier. Similar to the constant  
voltage amplifier circuit, it also plays a role as a shunt  
regulator to regulate the constant output current. In order to  
compensate output current regulation, one capacitor and one  
resistor are connected between the IREF and SFB pins as  
shown in Figure 29. The constant output current can be  
calculated using Equation 2. 5mW is typically used for the  
sense resistor.  
I
IA = 120% Max PDO Current  
Figure 31. PDO OCP Operation Example  
Green Mode Operation  
The FAN6390MPX implements green mode operation in  
order to reduce power consumption during lightload  
conditions. Green Mode is enabled when there is no valid  
Sink attached to the TypeC port. During Green Mode  
operation the Synchronous Rectifier and other block are  
disabled, reducing the operating current to I  
. Green  
INGreen  
Mode operation is disabled when there is valid TypeC Sink  
device attached.  
VCCR  
RCS  
1
AV*CCR  
IO_CC  
+
 
(eq. 2)  
Since the voltage across the CSP and CSN pins is small,  
the sensing resistor should be positioned as close as possible  
to the pins. An RC filter can be added to the pins to reduce  
the noise seen on the circuit.  
VBUS  
APDO  
Voltage  
à
Point A Enter CC  
à
Point B UVP  
VINOFF  
I
IA=100% APDO Current  
Figure 30. APDO CC Operation  
www.onsemi.com  
19  
 
FAN6390MPX  
Device Protections and Auto Restart Operation  
Normal Operation  
The FAN6390MPX provides Output OverVoltage  
Protection, UnderVoltage Protection, Output Over Current  
Protection, External Over Temperature Protection via NTC,  
internal Over Temperature Protection, Cable Fault  
Protection and CC line Over Voltage Protection. When  
a protection mode is triggered, the load switch is disabled  
and the VIN and BLD bleeder circuits are enabled to protect  
the Sink device. During this time, the CC pullup currents  
N
Cable  
detached  
Y
(I  
and I  
) are disabled to indicate to the Sink  
pcc1330  
pcc2330  
device that the Source is not ready to provide power. The  
functionality described is shown in Figure 33. Once the fault  
conditions are removed, the FAN6390MPX will reenable  
the VIN bleeder circuit and begin the autorestart timer  
Enter Green Mode  
Cable  
attached  
N
Y
(t  
). After the autorestart timer expires, the CC  
TwoSecondAR  
pullup currents will be enabled to allow a Sink device to  
attach as shown in Figure 34.  
Exist Green Mode  
Figure 32. Green Mode Operation  
Bleeder Functionality  
COUT  
Cbus  
VBUS  
RCS  
Bleeder circuits are implemented on the VIN and BLD  
pins to discharge the output capacitors quickly during mode  
transitions and to fully discharge VBUS when required. The  
bleeder circuits in the FAN6390MPX are sized to meet the  
timing requirements in the USB PD 3.0 specification. Since  
the output load can discharge the load sufficiently during  
heavy loads, the bleeder circuits are only enabled during  
BLD  
LGATE  
VIN  
VDD  
Ipcc1  
CC1  
CC2  
VDD  
Ipcc2  
Protection  
control  
block  
light load conditions (I < I  
), The operation of  
OVP/UVP/OTP/NTC/OCP/CCOVP/CFP  
CS  
CS-EN-BLD  
the bleeder circuits is shown in Tables 10, 11 and 12.  
Figure 33. Protection Block Diagram  
Table 10. MODE TRANSITION BLEEDER OPERATION  
Step  
Size  
New  
VBUS  
t
BLD  
VIN  
BLD  
Protection  
(typ)  
Bleeder Bleeder  
LGATE  
Trigger  
Release  
0.5V  
13V  
<13V  
13V  
<13V  
7ms  
Enabled Disabled Enabled  
Load  
SW  
tCCDebounce  
19ms  
56ms  
224ms  
>0.5V  
IPCC1&IPCC2  
Bleeder  
@VBUS  
tTwoSecondAR  
Table 11. DETACH & HARD RESET BLEEDER  
OPERATION  
tBLD  
tBLD  
Bleeder  
@VIN  
tBLD  
tBLD  
While  
VBUS  
Final  
VBUS  
t
BLD  
bleed  
VIN  
bleed  
BLD  
(typ)  
LGATE  
time  
Figure 34. Auto Restart Mode Operation  
>vSafe5V vSafe5V 224ms Enabled Disabled Enabled  
vSafe5V vSafe0V Enabled Disabled  
Output OverVoltage Protection  
Over Voltage Protection (OVP) protects the system of any  
unexpected high voltage on the VBUS terminals. An OVP  
fault is triggered when the output voltage exceeds the OVP  
Table 12. PROTECTION MODE BLEEDER OPERATION  
Final  
t
BLD  
VIN  
BLD  
VBUS  
(typ)  
bleed  
bleed  
Condition  
LGATE  
threshold for longer than t . Since the output voltage  
DOVP  
can change with different USB PD requests, the OVP  
thresholds will move with the selected contact as shown in  
Standard vSafe0V 224ms Enabled Enabled Disabled  
Protection  
www.onsemi.com  
20  
 
FAN6390MPX  
VBUS short and keep  
short  
VBUS  
Table 13. In order to avoid mistriggering an OVP condition  
during voltage transitions, the OVP circuitry is blanked for  
VIN  
VVIN_UVP  
VIN_OFF  
t
V
. The maximum OVP threshold is limited to  
regardless of the settings in the table to  
BLKOVP  
VLATCH _OFF  
LoadSW  
INOVPMAX  
ensure the voltages stay within the operating range of the  
FAN6390MPX.  
tCCDebounce  
ICC1 or ICC2  
Bleeder  
@VBUS  
Table 13. OVERVOLTAGE PROTECTION  
THRESHOLD  
Bleeder  
@VIN  
Protocol  
PD2.0  
PDO or APDO  
All PDOs  
OVP Threshold  
VIN bleeding until touch  
Pri V DD  
to V LATCH  
_OFF  
VDD_OFF  
VDD_HV_ON  
K
*PDO  
INOVP  
After  
2 times repeat  
PD3.0  
All APDOs  
K
*APDO  
Pri  
switching  
INOVP  
Trigger UVP @ primary  
time  
Figure 36. Under Voltage Lockout(UVLO)  
External Over Temperature Protection  
CVIN  
Cbus  
VBUS  
RCS  
Higher current charging schemes require hot spot  
monitoring of the adapter and the TypeC connector  
temperature. The FAN6390MPX includes an NTC pin to  
measure the temperature with an external NTC resistor  
strategically placed on the PCB. Using only a single pin, the  
FAN6390MPX outputs a known current onto the NTC pin  
which is terminated to ground through an NTC resistor in  
parallel with a standard 20kW resistor as shown in Figure  
37. The resulting voltage on the NTC pin is then converted  
to a temperature using the internal ADC and is used to report  
the current temperature via USB PD messaging as well as  
compare the temperature against an overtemperature  
warning and fault thresholds. When the temperature exceeds  
the Warning threshold, a USB PD Alert message will be sent  
to the Sink to indicate that the temperature is close to causing  
a fault as shown in Figure 38. If the temperature exceeds the  
Primary  
FB  
LGATE  
BLD  
VIN  
VDD  
Ip  
cc1  
CC1  
VDD  
Ip−  
cc2  
Protection  
control  
OVP  
block  
CC2  
SFB  
OVP Detection Circuit  
9RVIN  
Debounce  
time  
RVIN  
OVP  
tBLKOVP  
OVP Threshold  
VIN−  
OVPMAX  
Fault threshold for longer than T  
, a USB PD  
NTCDebounce  
Figure 35. Output Over Voltage Sense Block  
Alert message will be sent indicating a Fault and the device  
will enter Auto Restart Mode. Table 14 shows the warning  
and protection thresholds which may vary slightly according  
Under Voltage Lockout Protection  
Under Voltage Lockout (UVLO) protects the system  
when the output is shortcircuited with small impedance.  
to tolerance of R , R  
and I  
.
p
NTC  
NTC  
When VIN falls below  
V
INOFF  
threshold, the  
FAN6390MPX will enter UVLO protection by disabling the  
load switch, enabling the VIN bleeder and pulling SFB low  
VDD  
INTC  
NTC  
until VIN falls below V . Figure 36 illustrates the  
LATCHOFF  
ADC  
Converter  
operation during a UVLO event. The primary side controller  
restarts switching once VIN falls below V , but  
LATCHOFF  
Rp  
RNTC  
the operation causes a restart due to the voltage being too  
low on the VS pin on the primary side controller.  
Figure 37. NTC Circuit Diagram  
www.onsemi.com  
21  
 
FAN6390MPX  
VNTC pin  
GND  
TX1+  
TX1  
VBUS  
CC1  
GND  
RX1+  
RX1−  
VBUS  
SBU 2  
D−  
Warning  
Fault  
Zpollute CC  
D+  
D−  
D+  
SBU1  
VBUS  
RX2−  
RX2+  
GND  
CC2  
VBUS  
TX2−  
TX2+  
GND  
100  
110  
Tempature  
VBUS  
Zpollute CC  
Figure 38. NTC vs. Temperature  
Table 14. EXTERNAL OVER TEMPERATURE  
PROTECTION THRESHOLD  
USB Type C  
Message  
Threshold  
Setting  
Figure 39. CC1/CC2 Shortcircuited with Impedance  
Warning  
100°C  
R =20k W@25°C  
p
R
=100k W 1%@25°C  
25/50  
NTC  
(B  
Fault  
110°C  
=4300 k 1%)  
CVIN  
Cbus  
VBUS  
RCS  
Internal Over Temperature Protection  
The FAN6390MPX also implements internal over  
temperature protection through an internal temperature  
sensing circuit. Once the internal temperature exceeds the  
fault protection threshold of 140, the FAN6390MPX  
sends an Alert indicating an Fault and the device will enter  
Auto Restart Mode.  
Primary  
FB  
BLD  
LGATE  
VIN  
VDD  
Ip−  
cc 1  
CC1  
Cable Fault Protection  
In order to avoid the cable line melting caused by the  
pollution such as low impedance across ground to BUS.  
FAN6390MPX implements USB BUS line impedance  
VDD  
Ip−  
cc2  
Protection  
control  
block  
CC OVP  
CC 2  
SFB  
detection. Before t  
which is debonce time  
CCDebounce  
detecting cable attach status, load switch is not turned on and  
FAN6390MPX start Bus line impedance detecting. If output  
is low impedance under 2 kW, FAN6390MPX will enter  
Auto Restart Mode so the load switch will not turn on. No  
power deliver to output ensure system safety.  
CC lines OVP Sense Block  
VCC1  
OVP  
tCC  
OVP  
CC OVP  
CC Signal OverVoltage Protection  
VCC2−  
OVP  
The USB TypeC CC pins are located physically close to  
VBUS on the connector and could be shorted to VBUS via  
conductive materials as shown in Figure 39. This not only  
impacts PD protocol communication, but possibly damages  
the CC pins because of high VBUS voltages. The  
FAN6390MPX attempts to protect against damaging the CC  
pins by implementing OverVoltageProtection on the CC  
pins. The voltage on the CC1 and CC2 pins is continuously  
Figure 40. CC OVP Sensing Block Diagram  
Charge Pump for Synchronous Rectifier (SR)  
Generally, TA SR driving voltage is powered from V  
DD  
derived from system V  
which drives internal circuits and  
BUS  
SR MOSFET through GATE pin. The GATE driving voltage  
can’t be higher than V . In order to achieve adapter  
BUS  
monitored, if the voltage increases above V  
or  
charging high efficiency at low output voltage and high  
output current application, a new way to boosting GATE pin  
voltage for Low Side SR is as .  
CC1OVP  
V
for longer than V  
, the CC  
CC2OVP  
CCOVPDebounce  
OverVoltage Protection is triggered and the device enters  
Auto Restart Mode.  
www.onsemi.com  
22  
 
FAN6390MPX  
Charge Pump  
Control Circuit  
system efficiency. This capacitance value should be less  
than 10 nF and should be adjusted depending on the  
MOSFET input capacitance which is needed to considered  
as well. The design guideline can be refer to FAN6390MPX  
application note.  
switch  
VDD  
CP  
CP  
Low side SR  
MOSFET  
SR Driving  
Circuit  
GATE  
GATE  
Cgate  
driver signal  
t
Figure 41. Charge Pump Control Circuit  
V
OH  
While V < 4.2 V (typ.), FAN6390MPX enable charge  
IN  
Gate clamp level  
pump circuit to have higher driving voltage V  
for  
OH  
efficiency. During t  
the switch in side Charge Pump  
BNK  
Control Circuit will switch to GND in order to have CP be  
charged via SR Driving Circuit. After blanking time, the  
Blanking time  
switch will connect to V to boost V  
The V will be  
DD  
OH.  
OH  
t
clamped to ensure the voltage no higher than pin maximum  
rating to ensure driving circuit safe operation as Figure 42.  
Basically, proper CP capacitance is needed to achieve better  
Figure 42. Timing Flow of Charge Pump  
Protections Threshold Summary  
Table 15 gives an overview of the available protections.  
Table 15. OVERVIEW OF PROTECTIONS  
Protection  
PDO Threshold  
APDO Threshold  
Under Voltage Lockout(UVLO)  
V
INOFF  
Output OverVoltage Protection(OVP)  
Output UnderVoltage Protection(UVP)  
Output OverCurrent Protection(OCP)  
CC Lines OverVoltage Protection(CCOVP)  
External Over Temperature Protection  
120% (typ.)  
70% (typ.)  
V
INOFF  
120% (typ.)  
Non (Note 10)  
5.75 V (typ.)  
Warning:100°C (typ.) (Note 11)  
Fault:110°C (typ.) (Note 11)  
Internal Over Temperature Protection  
10.APDO always works in CC mode  
Fault:140°C (typ.) (Note 11)  
11. Based on the external components R = 20 kW @ 25°C and R  
= 100 kW 1% @ 25°C (B  
= 4300 k 1%) and I  
= 60 mA (typ.)  
p
NTC  
25/50  
NTC  
www.onsemi.com  
23  
 
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WQFN24, 4x4, 0.5P  
CASE 510BE  
ISSUE O  
DATE 02 OCT 2013  
SCALE 2:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM  
FROM THE TERMINAL TIP.  
A
B
A3  
D
EXPOSED Cu  
MOLD CMPD  
PIN ONE  
REFERENCE  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
A1  
E
DETAIL B  
MILLIMETERS  
ALTERNATE  
DIM MIN  
MAX  
0.80  
0.05  
CONSTRUCTIONS  
2X  
0.10  
C
A
A1  
A3  
b
0.70  
0.00  
2X  
0.10  
C
0.20 REF  
TOP VIEW  
0.20  
0.30  
L
L
D
4.00 BSC  
D2  
E
2.60  
2.80  
(A3)  
DETAIL B  
4.00 BSC  
A
L1  
E2  
e
2.60  
2.80  
0.10  
0.08  
C
0.50 BSC  
L
0.35  
0.00  
0.45  
0.15  
DETAIL A  
L1  
C
ALTERNATE  
CONSTRUCTIONS  
SEATING  
PLANE  
NOTE 4  
A1  
GENERIC  
C
SIDE VIEW  
MARKING DIAGRAM*  
1
D2  
DETAIL A  
XXXXXX  
24X L  
XXXXXX  
ALYWG  
G
7
13  
E2  
XXXXXX= Specific Device Code  
1
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
24  
24X b  
e
e/2  
0.10 C A B  
0.05  
C
NOTE 3  
BOTTOM VIEW  
(Note: Microdot may be in either location)  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
SOLDERING FOOTPRINT*  
4.30  
24X  
0.57  
2.82  
2.82  
1
4.30  
PKG  
OUTLINE  
24X  
0.32  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON78470F  
WQFN24, 4X4, 0.5P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

FAN6390MPX

Highly Integrated Secondary-Side Adaptive USB Type-C Charging Controller with USB-PD with SR Embedded
ONSEMI

FAN6390MPXMPX

Power Supply Support Circuit
ONSEMI

FAN65004B

同步 PWM 降压稳压器,高性能,电压模式,65 V,6 A
ONSEMI

FAN65004C

Synchronous PWM Buck Regulator, High Performance, Voltage Mode, 65 V, 6 A
ONSEMI

FAN65005A

同步 PWM 降压稳压器,高性能,电压模式,65 V,8 A
ONSEMI

FAN65008B

同步PWM降压稳压器,高性能,电压模式,65 V, 10 A
ONSEMI

FAN6520A

Single Synchronous Buck PWM Controller
FAIRCHILD

FAN6520AIM

Single Synchronous Buck PWM Controller
FAIRCHILD

FAN6520AIMX

Single Synchronous Buck PWM Controller
FAIRCHILD

FAN6520AIMX_NL

Switching Controller, Voltage-mode, 1A, 340kHz Switching Freq-Max, PDSO8, LEAD FREE, MS-012AA, SOIC-8
FAIRCHILD

FAN6520AIM_NL

Switching Controller, Voltage-mode, 1A, 340kHz Switching Freq-Max, PDSO8, LEAD FREE, MS-012AA, SOIC-8
FAIRCHILD

FAN6520AM

Single Synchronous Buck PWM Controller
FAIRCHILD