FDH047AN08A0 [ONSEMI]

N 沟道,PowerTrench® MOSFET,75V,80A,4.7mΩ;
FDH047AN08A0
型号: FDH047AN08A0
厂家: ONSEMI    ONSEMI
描述:

N 沟道,PowerTrench® MOSFET,75V,80A,4.7mΩ

局域网 开关 晶体管
文件: 总15页 (文件大小:779K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
MOSFET – N-Channel,  
POWERTRENCH)  
V
R
MAX  
I MAX  
D
DSS  
DS(ON)  
75 V  
4.7 mW  
80 A  
75 V, 80 A, 4.7 mW  
D
S
FDH047AN08A0,  
FDP047AN08A0  
G
Features  
R  
Q  
= 4.0 mW (Typ.), V = 10 V, I = 80 A  
GS D  
DS(ON)  
g(TOT)  
= 92 nC (Typ.), V = 10 V  
GS  
TO2473  
CASE 340CK  
Low Miller Charge  
Low Q Body Diode  
UIS Capability (Single Pulse and Repetitive Pulse)  
This Device is PbFree and is RoHS Compliant  
G
rr  
D
D
S
TO2203  
CASE 340AT  
Applications  
G
Synchronous Rectification for ATX / Server / Telecom PSU  
Battery Protection Circuit  
S
Motor Drives and Uninterruptible Power Supplies  
MARKING DIAGRAM  
&Z&3&K  
FDX047AN  
08A0  
&Z  
&3  
&K  
= Assembly Plant Code  
= Data Code (Year & Week)  
= Lot  
FDX047AN08A0  
X
= Specific Device Code  
= H/P  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
Semiconductor Components Industries, LLC, 2003  
1
Publication Order Number:  
April, 2023 Rev. 5  
FDH047AN08A0/D  
FDH047AN08A0, FDP047AN08A0  
MOSFET MAXIMUM RATINGS (T = 25C, Unless otherwise noted)  
C
Symbol  
Parameter  
Value  
75  
Unit  
V
V
DSS  
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
V
GS  
20  
80  
V
I
D
Continuous (T < 144C, V = 10 V)  
A
C
GS  
Continuous (T = 25C, V = 10 V,  
15  
C
GS  
R
= 62C/W)  
q
JA  
I
Drain Current  
Pulsed  
Figure 4  
475  
A
mJ  
W
D
E
AS  
Single Pulse Avalanche Energy (Note 1)  
Power Dissipation  
P
310  
D
Derate Above 25C  
2.0  
W/C  
C  
T , T  
Operating and Storage Temperature Range  
55 to +175  
J
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Starting T = 25C, L = 0.232 mH, I = 64 A.  
J
AS  
THERMAL CHARACTERISTICS  
Symbol  
Parameter  
Value  
0.48  
62  
Unit  
R
q
JC  
R
q
JA  
R
q
JA  
Thermal Resistance, Junction to Case, Max. TO220, TO247  
Thermal Resistance, Junction to Ambient, Max. TO220 (Note 2)  
Thermal Resistance, Junction to Ambient, Max. TO247 (Note 2)  
_C/W  
_C/W  
_C/W  
30  
2. Pulse Width = 100 s.  
PACKAGE MARKING AND ORDERING INFORMATION  
Device Marking  
FDH047AN08A0  
FDP047AN08A0  
Device  
Package  
TO247  
TO220  
Reel Size  
Tube  
Tape Width  
Quantity  
FDH047AN08A0  
FDP047AN08A0  
N/A  
N/A  
30 Units  
50 Units  
Tube  
www.onsemi.com  
2
 
FDH047AN08A0, FDP047AN08A0  
ELECTRICAL CHARACTERISTICS (T = 25C unless otherwise noted)  
C
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
OFF CHARACTERISTICS  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
I
= 250 mA, V = 0 V  
75  
1
V
VDSS  
D
GS  
I
V
V
V
= 60 V, V = 0 V  
mA  
DSS  
DS  
DS  
GS  
GS  
= 60 V, V = 0 V, T = 150_C  
250  
100  
GS  
C
I
Gate to Source Leakage Current  
= 20 V  
nA  
GSS  
ON CHARACTERISTICS  
V
GS(TH)  
R
DS(ON)  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
V
= V , I = 250 mA  
2.0  
4.0  
V
GS  
DS  
D
I
D
I
D
I
D
= 80 A, V = 10 V  
0.0040 0.0047  
0.0058 0.0087  
W
GS  
= 37 V, V = 6 V  
GS  
= 80 A, V = 10 V, T = 175 C  
0.0082  
0.011  
GS  
j
DYNAMIC CHARACTERISTICS  
C
Input Capacitance  
V
= 25 V, V = 0 V, f = 1 MHz  
6600  
1000  
240  
92  
pF  
pF  
pF  
nC  
ISS  
DS  
GS  
C
OSS  
C
RSS  
Output Capacitance  
Reverse Transfer Capacitance  
Total Gate Charge at 10 V  
Q
V
GS  
V
DD  
= 0 V to 10 V,  
138  
g(TOT)  
= 40 V, I = 80 A, I = 1.0 mA  
D
g
Q
Threshold Gate Charge  
V
GS  
V
DD  
= 0 V to 2 V,  
11  
17  
nC  
g(TH)  
= 40 V, I = 80 A, I = 1.0 mA  
D
g
Q
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
V
DD  
= 40 V, I = 80 A, I = 1.0 mA  
27  
16  
21  
nC  
nC  
nC  
gs  
D
g
Q
gs2  
Q
gd  
SWITCHING CHARACTERISTICS (V = 10 V)  
GS  
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
V
DD  
V
GS  
= 40 V, I = 80 A,  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
D
= 10 V, R = 3.3 W  
GS  
t
18  
88  
40  
45  
d(ON)  
t
r
t
Turn-Off Delay Time  
Fall Time  
d(OFF)  
t
f
t
Turn-Off Time  
128  
OFF  
DRAINSOURCE DIODE CHARACTERISTICS  
V
Source to Drain Diode Voltage  
I
I
I
I
= 80 A  
= 40 A  
1.25  
1
V
V
SD  
SD  
SD  
SD  
SD  
t
Reverse Recovery Time  
= 75 A, dl /dt = 100 A/ms  
53  
54  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
= 75 A, dl /dt = 100 A/ms  
SD  
RR  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
3
FDH047AN08A0, FDP047AN08A0  
TYPICAL CHARACTERISTICS  
(T = 25C UNLESS OTHERWISE NOTED)  
C
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
200  
160  
120  
80  
CURRENT LIMITED  
BY PACKAGE  
40  
0
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
T , CASE TEMPERATURE ( C)  
C
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power  
Figure 2. Maximum Continuous  
Dissipation vs. Case Temperature  
Drain Current vs. Case Temperature  
2
DUTY CYCLE DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
0.01  
PEAK T = P  
x Z  
Q
x R  
+ T  
JC C  
Q
J
DM  
JC  
5  
4  
3  
2  
1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
2000  
1000  
o
T
= 25 C  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 T  
C
V
= 10V  
I = I  
GS  
25  
150  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100  
50  
5  
4  
3  
2  
1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
www.onsemi.com  
4
FDH047AN08A0, FDP047AN08A0  
TYPICAL CHARACTERISTICS (CONTINUED)  
(T = 25C UNLESS OTHERWISE NOTED)  
C
NOTE: Refer to onsemi Application Notes  
AN7514 and AN7515  
500  
2000  
1000  
If R = 0  
AV  
10ms  
t
= (L)(I )/(1.3*RATED BV  
V  
)
AS  
DSS  
DD  
If R 0 0  
100ms  
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
V ) +1]  
DSS DD  
AV  
AS  
100  
100  
10  
1
1ms  
o
STARTING T = 25 C  
J
10ms  
OPERATION IN THIS  
AREA MAY BE  
10  
DC  
LIMITEDD BY r  
DS(ON)  
o
STARTING T = 150 C  
J
SINGLE PULSE  
T
T
= MAX RATED  
= 25 C  
J
o
C
1
0.1  
0.1  
1
10  
100  
.01  
0.1  
AV  
1
10  
100  
t
, TIME IN AVALANCHE (ms)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
Figure 5. Forward Bias Safe  
Operating Area  
Figure 6. Unclamped Inductive  
Switching Capability  
150  
120  
90  
60  
30  
0
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
150  
120  
V
= 10V  
V
= 7V  
GS  
GS  
V
= 15V  
DD  
V
= 6V  
GS  
90  
60  
30  
0
o
T
= 175 C  
J
V
= 5V  
o
GS  
o
T = 55  
C
T
= 25 C  
J
J
o
T
= 25 C  
C
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
0
0.5  
1.0  
1.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
, DRAIN TO SOURCE VOLTAGE (V)  
V
, GATE TO SOURCE VOLTAGE (V)  
DS  
GS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
7
6
5
4
3
2.5  
2.0  
1.5  
1.0  
0.5  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
V
= 6V  
GS  
V
= 10V  
GS  
V
= 10V, I = 80A  
D
GS  
0
2 0  
40  
, DRAIN CURRENT (A)  
60  
80  
80  
40  
0
40  
80  
120  
160  
200  
o
I
T , JUNCTION TEMPERATURE ( C)  
D
J
Figure 9. Drain to Source On Resistance  
vs. Drain Current  
Figure 10. Normalized Drain to Source On  
Resistance vs. Junction Temperature  
www.onsemi.com  
5
FDH047AN08A0, FDP047AN08A0  
TYPICAL CHARACTERISTICS (CONTINUED)  
(T = 25C UNLESS OTHERWISE NOTED)  
C
1.2  
1.0  
0.8  
0.6  
0.4  
1.15  
V
= V , I = 250 mA  
I = 250 mA  
D
GS  
DS  
D
1.10  
1.05  
1.00  
0.95  
0.90  
80  
40  
0
40  
80  
120  
160  
200  
80  
40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage  
vs. Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
10000  
10  
V
= 40V  
DD  
C
= C + C  
GS  
ISS  
GD  
8
6
4
2
0
C
^ C + C  
OSS  
DS  
GD  
1000  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 80A  
= 10A  
D
D
V
= 0V, f = 1MHz  
1
GS  
100  
0.1  
10  
75  
0
25  
50  
Q , GATE CHARGE (nC)  
75  
100  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
g
Figure 13. Capacitance vs. Drain  
to Source Voltage  
Figure 14. Gate Charge Waveforms  
for Constant Gate Currents  
www.onsemi.com  
6
FDH047AN08A0, FDP047AN08A0  
TEST CIRCUITS AND WAVEFORMS  
V
DS  
L
VARY tp TO OBTAIN  
REQUIRED PEAK I  
AS  
R
G
+
V
DD  
DUT  
V
GS  
tp  
0 V  
I
AS  
0.01 W  
Figure 15. Unclamped Energy  
Test Circuit  
Figure 16. Unclamped Energy  
Waveforms  
V
DS  
L
V
GS  
+
V
DD  
DUT  
Ig(REF)  
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
R
L
+
V
GS  
V
DD  
DUT  
R
GS  
V
GS  
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
www.onsemi.com  
7
FDH047AN08A0, FDP047AN08A0  
PSPICE ELECTRICAL MODEL  
.SUBCKT FDP047AN08A0 2 1 3 ; rev March 2002  
CA 12 8 1.5e9  
CB 15 14 1.5e9  
CIN 6 8 6.4e9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
EBREAK 11 7 17 18 82.3  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
IT 8 17 1  
LDRAIN 2 5 1e9  
LGATE 1 9 4.81e9  
LSOURCE 3 7 4.63e9  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 9e4  
RGATE 9 20 1.36  
RLDRAIN 2 5 10  
RLGATE 1 9 48.1  
RLSOURCE 3 7 46.3  
RSLC1 5 51 RSLCMOD 1e6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 2.3e3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e6*250),10))}  
.MODEL DBODYMOD D (IS = 2.4e11 N = 1.04 RS = 1.76e3 TRS1 = 2.7e3 TRS2 = 2e7 XTI=3.9 CJO = 4.35e9  
TT = 1e8 M = 5.4e1)  
.MODEL DBREAKMOD D (RS = 1.5e1 TRS1 = 1e3 TRS2 = 8.9e6)  
.MODEL DPLCAPMOD D (CJO = 1.35e9 IS = 1e30 N = 10 M = 0.53)  
.MODEL MMEDMOD NMOS (VTO = 3.7 KP = 9 IS =1e30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.36)  
.MODEL MSTROMOD NMOS (VTO = 4.4 KP = 250 IS = 1e30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 3.05 KP = 0.03 IS = 1e30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.36e1 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 1.05e3 TC2 = 9e7)  
.MODEL RDRAINMOD RES (TC1 = 1.9e2 TC2 = 4e5)  
.MODEL RSLCMOD RES (TC1 = 1.3e3 TC2 = 1e5)  
.MODEL RSOURCEMOD RES (TC1 = 1e3 TC2 = 1e6)  
www.onsemi.com  
8
FDH047AN08A0, FDP047AN08A0  
.MODEL RVTHRESMOD RES (TC1 = 6e3 TC2 = 1.9e5)  
.MODEL RVTEMPMOD RES (TC1 = 2.4e3 TC2 = 1e6)  
.MODEL S1AMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 4.0 VOFF= 1.5)  
.MODEL S1BMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 1.5 VOFF= 4.0)  
.MODEL S2AMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 1.0 VOFF= 0.5)  
.MODEL S2BMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 0.5 VOFF= 1.0)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE SubCircuit for the Power MOSFET  
Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by  
William J. Hepp and C. Frank Wheatley.  
Figure 21. PSPICE Electrical Model  
www.onsemi.com  
9
FDH047AN08A0, FDP047AN08A0  
SABER ELECTRICAL MODEL  
REV March 2002  
template FDP047AN08A0 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl = 2.4e11, n1 = 1.04, rs = 1.76e3, trs1 = 2.7e3, trs2 = 2e7, xti = 3.9, cjo = 4.35e9, tt = 1e8,  
m = 5.4e1)  
dp..model dbreakmod = (rs = 1.5e1, trs1 = 1e3, trs2 = 8.9e6)  
dp..model dplcapmod = (cjo = 1.35e9, isl =10e30, nl =10, m = 0.53)  
m..model mmedmod = (type=_n, vto = 3.7, kp = 9, is =1e30, tox=1)  
m..model mstrongmod = (type=_n, vto = 4.4, kp = 250, is = 1e30, tox = 1)  
m..model mweakmod = (type=_n, vto = 3.05, kp = 0.03, is = 1e30, tox = 1, rs=0.1)  
sw_vcsp..model s1amod = (ron = 1e5, roff = 0.1, von = 4.0, voff = 1.5)  
sw_vcsp..model s1bmod = (ron =1e5, roff = 0.1, von = 1.5, voff = 4.0)  
sw_vcsp..model s2amod = (ron = 1e5, roff = 0.1, von = 1.0, voff = 0.5)  
sw_vcsp..model s2bmod = (ron = 1e5, roff = 0.1, von = 0.5, voff = 1.0)  
c.ca n12 n8 = 1.5e9  
c.cb n15 n14 = 1.5e9  
c.cin n6 n8 = 6.4e9  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
i.it n8 n17 = 1  
l.ldrain n2 n5 = 1e9  
l.lgate n1 n9 = 4.81e9  
l.lsource n3 n7 = 4.63e9  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1 = 1.05e3, tc2 = 9e7  
res.rdrain n50 n16 = 9e4, tc1 = 1.9e2, tc2 = 4e5  
res.rgate n9 n20 = 1.36  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 48.1  
res.rlsource n3 n7 = 46.3  
res.rslc1 n5 n51= 1e6, tc1 = 1e3, tc2 =1e5  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 2.3e3, tc1 = 1e3, tc2 =1e6  
res.rvtemp n18 n19 = 1, tc1 = 2.4e3, tc2 = 1e6  
res.rvthres n22 n8 = 1, tc1 = 6e3, tc2 = 1.9e5  
spe.ebreak n11 n7 n17 n18 = 82.3  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
www.onsemi.com  
10  
FDH047AN08A0, FDP047AN08A0  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51>n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 10))  
}
}
Figure 22. SABER Electrical Model  
www.onsemi.com  
11  
FDH047AN08A0, FDP047AN08A0  
SPICE THERMAL MODEL  
REV 23 March 2002  
th  
JUNCTION  
FDP047AN08A0T  
CTHERM1  
RTHERM1  
RTHERM2  
RTHERM3  
CTHERM1 th 6 6.45e3  
CTHERM2 6 5 3e2  
CTHERM3 5 4 1.4e2  
CTHERM4 4 3 1.65e2  
CTHERM5 3 2 4.85e2  
CTHERM6 2 tl 1e1  
6
5
CTHERM2  
CTHERM3  
CTHERM4  
RTHERM1 th 6 3.24e3  
RTHERM2 6 5 8.08e3  
RTHERM3 5 4 2.28e2  
RTHERM4 4 3 1e1  
RTHERM5 3 2 1.1e1  
RTHERM6 2 tl 1.4e1  
SABER THERMAL MODEL  
SABER thermal model FDP047AN08A0T  
template thermal_model th tl  
thermal_c th, tl  
4
3
2
{
ctherm.ctherm1 th 6 = 6.45e3  
ctherm.ctherm2 6 5 = 3e2  
ctherm.ctherm3 5 4 = 1.4e2  
ctherm.ctherm4 4 3 = 1.65e2  
ctherm.ctherm5 3 2 = 4.85e2  
ctherm.ctherm6 2 tl = 1e1  
RTHERM4  
rtherm.rtherm1 th 6 = 3.24e3  
rtherm.rtherm2 6 5 = 8.08e3  
rtherm.rtherm3 5 4 = 2.28e2  
rtherm.rtherm4 4 3 = 1e1  
rtherm.rtherm5 3 2 = 1.1e1  
rtherm.rtherm6 2 tl = 1.4e1  
}
CTHERM5  
CTHERM6  
RTHERM5  
RTHERM6  
tl  
CASE  
Figure 23. Thermal Model  
POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United  
States and/or other countries.  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2203LD  
CASE 340AT  
ISSUE A  
DATE 03 OCT 2017  
Scale 1:1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13818G  
TO2203LD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2473LD SHORT LEAD  
CASE 340CK  
ISSUE A  
DATE 31 JAN 2019  
P1  
D2  
A
E
P
A
A2  
Q
E2  
S
D1  
D
E1  
B
2
2
1
3
L1  
A1  
b4  
L
c
(3X) b  
(2X) b2  
M
M
B A  
0.25  
MILLIMETERS  
MIN NOM MAX  
4.58 4.70 4.82  
2.20 2.40 2.60  
1.40 1.50 1.60  
1.17 1.26 1.35  
1.53 1.65 1.77  
2.42 2.54 2.66  
0.51 0.61 0.71  
20.32 20.57 20.82  
(2X) e  
DIM  
A
A1  
A2  
b
b2  
b4  
c
GENERIC  
D
MARKING DIAGRAM*  
D1 13.08  
~
~
D2  
E
0.51 0.93 1.35  
15.37 15.62 15.87  
AYWWZZ  
XXXXXXX  
XXXXXXX  
E1 12.81  
~
~
E2  
e
L
4.96 5.08 5.20  
5.56  
15.75 16.00 16.25  
3.69 3.81 3.93  
3.51 3.58 3.65  
XXXX = Specific Device Code  
~
~
A
Y
= Assembly Location  
= Year  
WW = Work Week  
ZZ = Assembly Lot Code  
L1  
P
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
P1 6.60 6.80 7.00  
Q
S
5.34 5.46 5.58  
5.34 5.46 5.58  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13851G  
TO2473LD SHORT LEAD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FDH047AN08A0_NL

Power Field-Effect Transistor, 80A I(D), 75V, 0.0047ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-247, LEAD FREE PACKAGE-3
FAIRCHILD

FDH055N15A

N-Channel PowerTrench® MOSFET 150V, 167A, 5.9m
FAIRCHILD

FDH055N15A

N 沟道 PowerTrench® MOSFET 150V,167A,5.9mΩ
ONSEMI

FDH1000

High Conductance Switching Diodes
FAIRCHILD

FDH1040

Fixed Inductors for Surface Mounting
TOKO

FDH1040B

Fixed Inductors for Surface Mounting
TOKO

FDH1040B-R36M=P3

General Purpose Inductor, 0.36uH, 20%, 1 Element, Iron-Core, SMD, 4541
TOKO

FDH1040B-R56M

General Purpose Inductor, 0.56uH, 20%, 1 Element, SMD, ROHS COMPLIANT
TOKO

FDH1040B-R56M=P3

General Purpose Inductor, 0.56uH, 20%, 1 Element, Iron-Core, SMD, 4541
TOKO

FDH10G

Board Connector, 10 Contact(s), 4 Row(s), 0.2 inch Pitch, IDC Terminal, Black Insulator
ADAM-TECH

FDH10G30

DIP Connector, 10 Contact(s), 4 Row(s), Male, 0.2 inch Pitch, IDC Terminal, Black Insulator, Plug
ADAM-TECH

FDH10GGY

DIP Connector, 10 Contact(s), 4 Row(s), Male, 0.2 inch Pitch, IDC Terminal, Gray Insulator, Plug
ADAM-TECH