FDP3652 [ONSEMI]

N-Channel PowerTrench® MOSFET, 100V, 61A, 16mΩ;
FDP3652
型号: FDP3652
厂家: ONSEMI    ONSEMI
描述:

N-Channel PowerTrench® MOSFET, 100V, 61A, 16mΩ

局域网 开关 晶体管
文件: 总15页 (文件大小:765K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Is Now Part of  
To learn more about ON Semiconductor, please visit our website at  
www.onsemi.com  
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers  
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor  
product management systems do not have the ability to manage part nomenclature that utilizes an underscore  
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain  
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated  
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please  
email any questions regarding the system integration to Fairchild_questions@onsemi.com.  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right  
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON  
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON  
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s  
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA  
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor  
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
October 2013  
FDP3652 / FDB3652  
N-Channel PowerTrench MOSFET  
100 V, 61 A, 16 mΩ  
®
Applications  
Features  
Synchronous Rectification for ATX / Server / Telecom PSU  
rDS(on) = 14 m( Typ.), VGS = 10 V, ID = 61 A  
Qg(tot) = 41 nC ( Typ.), VGS = 10 V  
Low Miller Charge  
Battery Protection Circuit  
Motor drives and Uninterruptible Power Supplies  
Low QRR Body Diode  
Micro Solar Inverter  
UIS Capability (Single Pulse and Repetitive Pulse)  
Formerly developmental type 82769  
D
D
G
G
D2-PAK  
G
D
S
S
TO-220  
S
MOSFET Maximum Ratings TC = 25°C unless otherwise noted  
Symbol  
VDSS  
VGS  
Parameter  
FDP3652 / FDB3652  
Unit  
V
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
100  
±20  
V
Continuous (TC = 25oC, VGS = 10V)  
Continuous (TC = 100oC, VGS = 10V)  
Continuous (Tamb = 25oC, VGS = 10V) with RθJA = 43oC/W)  
Pulsed  
61  
A
ID  
43  
9
A
A
Figure 4  
182  
A
EAS  
Single Pulse Avalanche Energy (Note 1)  
Power dissipation  
mJ  
W
150  
PD  
Derate above 25oC  
W/oC  
oC  
1.0  
TJ, TSTG  
Operating and Storage Temperature  
-55 to 175  
Thermal Characteristics  
RθJC  
RθJA  
RθJA  
Thermal Resistance Junction to Case TO-220, D2-PAK  
Thermal Resistance Junction to Ambient TO-220, D2-PAK (Note 2)  
Thermal Resistance Junction to Ambient D2-PAK, 1in2 copper pad area  
1.0  
62  
43  
oC/W  
oC/W  
oC/W  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
1
Package Marking and Ordering Information  
Device Marking  
Device  
FDB3652  
FDP3652  
Package  
D2-PAK  
TO-220  
Reel Size  
330 mm  
Tube  
Tape Width  
24 mm  
Quantity  
800 units  
50 units  
FDB3652  
FDP3652  
N/A  
Electrical Characteristics TC = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
BVDSS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ID = 250µA, VGS = 0V  
100  
-
-
-
-
-
V
V
DS = 80V  
-
-
-
1
IDSS  
µA  
nA  
VGS = 0V  
TC= 150oC  
250  
±100  
IGSS  
VGS = ±20V  
On Characteristics  
VGS(TH)  
Gate to Source Threshold Voltage  
VGS = VDS, ID = 250µA  
D = 61A, VGS = 10V  
ID = 30A, VGS = 6V  
2
-
-
4
V
I
0.014 0.016  
0.018 0.026  
-
rDS(ON)  
Drain to Source On Resistance  
I
D = 61A, VGS = 10V,  
-
0.035 0.043  
TJ = 175oC  
Dynamic Characteristics  
CISS  
Input Capacitance  
-
-
-
2880  
390  
100  
41  
-
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
VDS = 25V, VGS = 0V,  
f = 1MHz  
COSS  
CRSS  
Qg(TOT)  
Qg(TH)  
Qgs  
Output Capacitance  
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Threshold Gate Charge  
-
VGS = 0V to 10V  
53  
6.5  
-
VGS = 0V to 2V  
-
-
-
-
5
VDD = 50V  
ID = 61A  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
15  
Ig = 1.0mA  
Qgs2  
10  
-
Qgd  
10  
-
Switching Characteristics (VGS = 10V)  
tON  
td(ON)  
tr  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
146  
ns  
ns  
ns  
ns  
ns  
ns  
12  
85  
26  
45  
-
-
-
VDD = 50V, ID = 61A  
VGS = 10V, RGS = 6.8Ω  
td(OFF)  
tf  
Turn-Off Delay Time  
Fall Time  
-
-
tOFF  
Turn-Off Time  
107  
Drain-Source Diode Characteristics  
I
I
SD = 61A  
SD = 30A  
-
-
-
-
-
-
-
-
1.25  
1.0  
62  
V
V
VSD  
Source to Drain Diode Voltage  
trr  
Reverse Recovery Time  
ISD = 61A, dISD/dt = 100A/µs  
ISD = 61A, dISD/dt = 100A/µs  
ns  
nC  
QRR  
Reverse Recovered Charge  
45  
Notes:  
1: Starting T = 25°C, L = 0.228mH, I = 40A.  
J
AS  
2: Pulse Width = 100s  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
2
Typical Characteristics T = 25°C unless otherwise noted  
C
1.2  
75  
1.0  
0.8  
50  
0.6  
0.4  
25  
0.2  
0
0
150  
0
25  
50  
75  
100  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
C
T , CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
PEAK T = P x Z  
x R  
+ T  
J
DM  
θJC  
θJC C  
0.01  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
1000  
o
T
= 25 C  
C
FOR TEMPERATURES  
o
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
100  
50  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
3
Typical Characteristics T = 25°C unless otherwise noted  
C
1000  
100  
10  
500  
If R = 0  
= (L)(I )/(1.3*RATED BV  
If R ¼ 0  
t
- V  
)
AV  
AS  
DSS  
DD  
10µs  
t
AV  
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DSS DD  
AS  
100  
100µs  
o
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
LIMITED BY r  
DS(ON)  
10  
1ms  
1
10ms  
o
SINGLE PULSE  
STARTING T = 150 C  
J
T
T
= MAX RATED  
J
o
= 25 C  
DC  
C
0.1  
1
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
0.1  
1
10  
0.01  
V
t
, TIME IN AVALANCHE (ms)  
DS  
AV  
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515  
Figure 6. Unclamped Inductive Switching  
Capability  
Figure 5. Forward Bias Safe Operating Area  
125  
125  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V  
V
= 7V  
GS  
GS  
V
= 15V  
DD  
100  
75  
50  
25  
0
100  
75  
50  
25  
0
V
= 6V  
GS  
o
T
= 175 C  
J
o
T
= 25 C  
C
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
o
T
= 25 C  
T
= -55 C  
J
J
V
= 5V  
GS  
3
4
5
6
0
1
V , DRAIN TO SOURCE VOLTAGE (V)  
DS  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
20  
18  
16  
14  
12  
3.0  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
2.5  
V
= 6V  
GS  
2.0  
1.5  
1.0  
0.5  
0
V
= 10V  
GS  
V
= 10V, I = 61A  
D
GS  
0
20  
40  
60  
-80  
-40  
0
40  
80  
120  
160  
200  
o
I
, DRAIN CURRENT (A)  
T , JUNCTION TEMPERATURE ( C)  
D
J
Figure 9. Drain to Source On Resistance vs Drain  
Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
4
Typical Characteristics T = 25°C unless otherwise noted  
C
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
DS D  
I
= 250µA  
GS  
D
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
10  
5000  
V
= 50V  
DD  
C
= C + C  
GS GD  
ISS  
8
6
4
2
0
C
C
+ C  
OSS  
DS GD  
1000  
C
= C  
RSS  
GD  
WAVEFORMS IN  
100  
40  
DESCENDING ORDER:  
I
= 61A  
= 30A  
D
I
D
V
= 0V, f = 1MHz  
1
GS  
0.1  
10  
100  
0
10  
20  
30  
40  
50  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
g
DS  
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
5
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
P
L
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
L
DS  
V
GS  
V
= 10V  
GS  
V
GS  
+
-
Q
gs2  
V
DD  
DUT  
V
= 2V  
GS  
I
g(REF)  
0
Q
g(TH)  
Q
Q
gs  
gd  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
L
t
t
f
r
V
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
V
10%  
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
6
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, TJM, and the  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, PDM, in an  
80  
60  
40  
20  
R
= 26.51+ 19.84/(0.262+Area) EQ.2  
θJA  
R
= 26.51+ 128/(1.69+Area) EQ.3  
θJA  
application.  
Therefore the application’s ambient  
temperature, TA (oC), and thermal resistance RθJA (oC/W)  
must be reviewed to ensure that TJM is never exceeded.  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
A
-----------------------------  
=
(EQ. 1)  
P
DM  
Rθ JA  
In using surface mount devices such as the TO-263  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
power dissipation ratings. Precise determination of PDM is  
complex and influenced by many factors:  
0.1  
(0.645)  
1
10  
(6.45)  
(64.5)  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 21  
defines the RθJA for the device as a function of the top  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeter  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
19.84  
(0.262 + Area)  
------------------------------------  
R
= 26.51 +  
(EQ. 2)  
θ JA  
θ JA  
Area in Iches Squared  
128  
---------------------------------  
R
= 26.51 +  
(EQ. 3)  
(1.69 + Area)  
Area in Centimeter Squared  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
7
PSPICE Electrical Model  
.SUBCKT FDP3652 2 1 3 rev March 2002  
Ca 12 8 1.1e-9  
Cb 15 14 1.1e-9  
Cin 6 8 2.8e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
Ebreak 11 7 17 18 108.2  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
-
+
50  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
Evtemp 20 6 18 22 1  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
-
18  
22  
MMED  
It 8 17 1  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 7.16e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 2.29e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
RLgate 1 9 71.6  
RLdrain 2 5 10  
RLsource 3 7 22.9  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
-
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 5.7e-3  
Rgate 9 20 1.06  
-
-
8
22  
RVTHRES  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 6.5e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*150),7))}  
.MODEL DbodyMOD D (IS=1.5E-11 N=1.06 RS=2.5e-3 TRS1=2.4e-3 TRS2=1.1e-6  
+ CJO=1.9e-9 M=5.8e-1 TT=2.5e-8 XTI=3.9)  
.MODEL DbreakMOD D (RS=2.7e-1 TRS1=1e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=7e-10 IS=1e-30 N=10 M=0.58)  
.MODEL MmedMOD NMOS (VTO=3.6 KP=5.5 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.06)  
.MODEL MstroMOD NMOS (VTO=4.3 KP=110 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=3 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.06e1 RS=.1)  
.MODEL RbreakMOD RES (TC1=1.05e-3 TC2=1e-6)  
.MODEL RdrainMOD RES (TC1=1.7e-2 TC2=3.2e-5)  
.MODEL RSLCMOD RES (TC1=1e-3 TC2=1e-7)  
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-5.3e-3 TC2=-1.2e-5)  
.MODEL RvtempMOD RES (TC1=-3.3e-3 TC2=1.3e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-8 VOFF=-5)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5 VOFF=-8)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=0.5)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.5 VOFF=-1)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
8
SABER Electrical Model  
REV March 2002  
template FDP3652 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=1.5e-11,nl=1.06,rs=2.5e-3,trs1=2.4e-3,trs2=1.1e-6,cjo=1.9e-9,m=5.8e-1,tt=2.5e-8,xti=3.9)  
dp..model dbreakmod = (rs=2.7e-1,trs1=1e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=7e-10,isl=10e-30,nl=10,m=0.58)  
m..model mmedmod = (type=_n,vto=3.6,kp=5.5,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=4.3,kp=110,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=3,kp=0.03,is=1e-30, tox=1,rs=.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-8,voff=-5)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-5,voff=-8)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=0.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1)  
c.ca n12 n8 = 1.1e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
c.cb n15 n14 = 1.1e-9  
c.cin n6 n8 = 2.8e-9  
RSLC2  
ISCL  
DBREAK  
11  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
50  
-
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
spe.ebreak n11 n7 n17 n18 = 108.2  
MWEAK  
LGATE  
EVTEMP  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
RGATE  
GATE  
1
6
+
-
18  
22  
EBREAK  
+
MMED  
9
20  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
i.it n8 n17 = 1  
RLSOURCE  
S1A  
S2A  
RBREAK  
l.lgate n1 n9 = 7.16e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 2.29e-9  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
res.rlgate n1 n9 = 71.6  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 22.9  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
22  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=1.05e-3,tc2=1e-6  
res.rdrain n50 n16 = 5.7e-3, tc1=1.7e-2,tc2=3.2e-5  
res.rgate n9 n20 = 1.06  
res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=1e-7  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 6.5e-3, tc1=1e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1.2e-5  
res.rvtemp n18 n19 = 1, tc1=-3.3e-3,tc2=1.3e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/150))** 7))  
}
}
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
9
SPICE Thermal Model  
JUNCTION  
th  
REV 23 March 2002  
FDP3652  
CTHERM1 TH 6 1e-2  
CTHERM2 6 5 1.5e-2  
CTHERM3 5 4 2e-2  
CTHERM4 4 3 2.1e-2  
CTHERM5 3 2 2.2e-2  
CTHERM6 2 TL 9e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 2.7e-2  
RTHERM2 6 5 2.8e-2  
RTHERM3 5 4 7.8e-2  
RTHERM4 4 3 9e-2  
RTHERM5 3 2 2.7e-1  
RTHERM6 2 TL 2.87e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model FDP3652  
template thermal_model th tl  
thermal_c th, tl  
{
4
3
2
ctherm.ctherm1 th 6 =1e-2  
ctherm.ctherm2 6 5 =1.5e-2  
ctherm.ctherm3 5 4 =2e-2  
ctherm.ctherm4 4 3 =2.1e-2  
ctherm.ctherm5 3 2 =2.2e-2  
ctherm.ctherm6 2 tl =9e-2  
rtherm.rtherm1 th 6 =2.7e-2  
rtherm.rtherm2 6 5 =2.8e-2  
rtherm.rtherm3 5 4 =7.8e-2  
rtherm.rtherm4 4 3 =9e-2  
rtherm.rtherm5 3 2 =2.7e-1  
rtherm.rtherm6 2 tl =2.87e-1  
}
tl  
CASE  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
10  
Mechanical Dimensions  
TO-220 3L  
Figure 22. TO-220, Molded, 3Lead, Jedec Variation AB  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specif-  
ically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003  
Dimension in Millimeters  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
11  
Mechanical Dimensions  
TO-263 2L (D2PAK)  
Figure 23. 2LD, TO263, Surface Mount  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specif-  
ically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT263-002  
Dimension in Millimeters  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
www.fairchildsemi.com  
12  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not  
intended to be an exhaustive list of all such trademarks.  
AccuPower™  
AX-CAP *  
BitSiC™  
Build it Now™  
CorePLUS™  
CorePOWER™  
CROSSVOLT™  
CTL™  
F-PFS™  
FRFET  
Sync-Lock™  
®*  
®
®
®
tm  
®
Global Power ResourceSM  
GreenBridge™  
Green FPS™  
PowerTrench  
PowerXS™  
Programmable Active Droop™  
QFET  
QS™  
Quiet Series™  
RapidConfigure™  
®
TinyBoost  
TinyBuck  
®
®
Green FPS™ e-Series™  
Gmax™  
GTO™  
TinyCalc™  
®
TinyLogic  
TINYOPTO™  
TinyPower™  
TinyPWM™  
TinyWire™  
TranSiC™  
TriFault Detect™  
Current Transfer Logic™  
IntelliMAX™  
®
DEUXPEED  
ISOPLANAR™  
Marking Small Speakers Sound Louder  
and Better™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MicroPak2™  
MillerDrive™  
MotionMax™  
Dual Cool™  
®
EcoSPARK  
Saving our world, 1mW/W/kW at a time™  
SignalWise™  
SmartMax™  
EfficentMax™  
ESBC™  
®
TRUECURRENT *  
SerDes™  
SMART START™  
®
Solutions for Your Success™  
®
®
SPM  
Fairchild  
®
STEALTH™  
SuperFET  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
Fairchild Semiconductor  
FACT Quiet Series™  
®
®
UHC  
®
Ultra FRFET™  
UniFET™  
VCX™  
VisualMax™  
VoltagePlus™  
XS™  
®
mWSaver  
OptoHiT™  
OPTOLOGIC  
OPTOPLANAR  
FACT  
FAST  
®
®
FastvCore™  
FETBench™  
FPS™  
®
®
SupreMOS  
SyncFET™  
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE  
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY  
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY  
THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used here in:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body or (b) support or sustain life,  
and (c) whose failure to perform when properly used in accordance with  
instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury of the user.  
2. A critical component in any component of a life support, device, or  
system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or  
effectiveness.  
ANTI-COUNTERFEITING POLICY  
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,  
www.Fairchildsemi.com, under Sales Support.  
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their  
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed  
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the  
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild  
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild  
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of  
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and  
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is  
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Datasheet contains the design specifications for product development. Specifications  
may change in any manner without notice.  
Advance Information  
Formative / In Design  
Datasheet contains preliminary data; supplementary data will be published at a later  
date. Fairchild Semiconductor reserves the right to make changes at any time without  
notice to improve design.  
Preliminary  
First Production  
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to  
make changes at any time without notice to improve the design.  
No Identification Needed  
Obsolete  
Full Production  
Datasheet contains specifications on a product that is discontinued by Fairchild  
Semiconductor. The datasheet is for reference information only.  
Not In Production  
Rev. I66  
www.fairchildsemi.com  
13  
©2003 Fairchild Semiconductor Corporation  
FDP3652 / FDB3652 Rev. C0  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FDP3652_NL

Power Field-Effect Transistor, 9A I(D), 100V, 0.016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

FDP3672

N-Channel PowerTrench MOSFET 105V, 41A, 33mз
FAIRCHILD

FDP3672

N 沟道,PowerTrench® MOSFET,105V,41A,33mΩ
ONSEMI

FDP3672_NL

Power Field-Effect Transistor, 5.9A I(D), 105V, 0.033ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

FDP3682

N-Channel PowerTrench MOSFET 100V, 32A, 36mз
FAIRCHILD

FDP3682

STEREO 200W CLASS-T DIGITAL AUDIO AMPLIFIER DRIVER USING DIGITAL POWER PROCESSING TECHNOLOGY
TRIPATH

FDP3682

N 沟道,PowerTrench® MOSFET,100V,32A,36mΩ
ONSEMI

FDP3682_NL

Power Field-Effect Transistor, 6A I(D), 100V, 0.036ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

FDP39N20

200V N-Channel MOSFET
FAIRCHILD

FDP39N20

功率 MOSFET,N 沟道,UniFETTM,200 V,39 A,66 mΩ,TO-220
ONSEMI

FDP39N20_07

200V N-Channel MOSFET
FAIRCHILD

FDP3N50NZ

Power Field-Effect Transistor, 3A I(D), 500V, 2.5ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, TO-220, 3 PIN
FAIRCHILD