FNA25012A [ONSEMI]

智能功率模块,1200V,50A;
FNA25012A
型号: FNA25012A
厂家: ONSEMI    ONSEMI
描述:

智能功率模块,1200V,50A

文件: 总15页 (文件大小:696K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FNA25012A  
1200 V Motion SPM)  
2ꢀSeries  
General Description  
The FNA25012A is a Motion SPM 2 module providing  
®
a fullyfeatured, highperformance inverter output stage for AC  
induction, BLDC, and PMSM motors. These modules integrate  
optimized gate drive of the builtin IGBTs to minimize EMI and  
losses, while also providing multiple onmodule protection features:  
undervoltage lockouts, overcurrent shutdown, temperature sensing,  
and fault reporting. The builtin, highspeed HVIC requires only  
a single supply voltage and translates the incoming logiclevel gate  
inputs to highvoltage, highcurrent drive signals to properly drive the  
module’s internal IGBTs. Separate negative IGBT terminals are  
available for each phase to support the widest variety of control  
algorithms.  
www.onsemi.com  
Features  
1200 V 50 A 3Phase IGBT Inverter, Including Control Ics for  
Gate Drive and Protections  
LowLoss, ShortCircuitRated IGBTs  
Very Low Thermal Resistance Using AIN DBC Substrate  
BuiltIn Bootstrap Diodes and Dedicated Vs Pins Simplify PCB  
Layout  
SPMCAA34/34 LD, PDD STD, DBC DIP TYPE  
CASE MODFQ  
Separate OpenEmitter Pins from LowSide IGBTs for ThreePhase  
Current Sensing  
Figure 1. 3D Package Drawing  
SingleGrounded Power Supply Supported  
BuiltIn NTC Thermistor for Temperature Monitoring and  
Management  
(Click to Activate 3D Content)  
MARKING DIAGRAM  
Adjustable OverCurrent Protection via Integrated SenseIGBTs  
Isolation Rating of 2500 Vrms/1 min.  
Applications  
FNA25012A  
XXX YWW  
Motion Control Industrial Motor (AC 400 V Class)  
Related Resources  
®
AN9075 Users Guide for 1200 V SPM 2 Series  
®
AN9076 Mounting Guide for New SPM 2 Package  
®
AN9079 Thermal Performance of 1200 V Motion SPM 2 Series  
FNA25012A  
XXX  
= Specific Device Code  
= Lot Code  
by Mounting Torque  
YWW  
= Work Week Code  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
October, 2018 Rev. 3  
FNA25012A/D  
FNA25012A  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
Package  
Packing Type  
Quantity  
FNA25012A  
FNA25012A  
SPMCBA34  
Rail  
6
Integrated Power Functions  
1200 V 50 A IGBT inverter for threephase DC/AC power conversion (Refer to Figure 3)  
Integrated Drive, Protection and System Control Functions  
For inverter highside IGBTs: gatedrive circuit, highvoltage isolated highspeed level shifting control circuit,  
UnderVoltage LockOut Protection (UVLO), Available bootstrap circuit example is given in Figures 5 and 15  
For inverter lowside IGBTs: gatedrive circuit, ShortCircuit Protection (SCP) control circuit, UnderVoltage  
LockOut Protection (UVLO)  
Fault signaling: corresponding to UV (lowside supply) and SC faults  
Input interface: activeHIGH interface, works with 3.3/5 V logic, Schmitttrigger input  
PIN CONFIGURATION  
(34) V  
(33) V  
S(W)  
B(W)  
(32) V  
(31) V  
BD(W)  
CC(WH)  
(1) P  
(30) IN  
(WH)  
(29) V  
(28) V  
S(V)  
B(V)  
(2) W  
(3) V  
(27) V  
(26) V  
BD(V)  
CC(VH)  
(25) IN  
(VH)  
(24) V  
(23) V  
S(U)  
B(U)  
Case Temperature (T )  
Detecting Point  
C
(22) V  
(21) V  
BD(U)  
CC(UH)  
(20) COM  
(H)  
(UH)  
(4) U  
(19) IN  
(18) R  
(17) C  
(16) C  
SC  
(5) N  
W
SC  
(6) N  
FOD  
FO  
(WL)  
(VL)  
(UL)  
V
(15) V  
(14) IN  
(13) IN  
(12) IN  
(7) N  
(8) R  
U
(11) COM  
(10) VCC  
(L)  
(L)  
TH  
TH  
(9) V  
Figure 2. Top View  
www.onsemi.com  
2
 
FNA25012A  
PIN DESCRIPTIONS  
Pin Number  
Pin Name  
Pin Description  
1
2
P
Positive DCLink Input  
)
W
V
Output for WPhase  
Output for VPhase  
Output for UPhase  
3
4
U
5
N
Negative DCLink Input for WPhase  
W
6
N
V
N
U
Negative DCLink Input for VPhase  
7
Negative DCLink Input for UPhase  
8
R
TH  
V
TH  
Series Resistor for Thermistor (Temperature Detection)  
Thermistor Bias Voltage  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
V
LowSide Bias Voltage for IC and IGBTs Driving  
LowSide Common Supply Ground  
CC(L)  
COM  
(L)  
(UL)  
IN  
IN  
Signal Input for HighSide UPhase  
Signal Input for HighSide VPhase  
(VL)  
IN  
Signal Input for HighSide WPhase  
(WL)  
V
Fault Output  
FO  
C
Capacitor for Fault Output Duration Selection  
Capacitor (LowPass Filter) for ShortCircuit Current Detection Input  
Resistor for ShortCircuit Current Detection  
Signal Input for HighSide U Phase  
FOD  
C
SC  
SC  
R
IN  
(UH)  
COM  
HighSide Common Supply Ground  
(H)  
V
HighSide Bias Voltage for U Phase IC  
CC(UH)  
V
BD(U)  
Anode of Bootstrap Diode for U Phase HighSide Bootstrap Circuit  
HighSide Bias Voltage for U Phase IGBT Driving  
HighSide Bias Voltage Ground for U Phase IGBT Driving  
Signal Input for HighSide V Phase  
V
B(U)  
V
S(U)  
IN  
(VH)  
V
HighSide Bias Voltage for V Phase IC  
CC(VH)  
V
BD(V)  
Anode of Bootstrap Diode for V Phase HighSide Bootstrap Circuit  
HighSide Bias Voltage for V Phase IGBT Driving  
HighSide Bias Voltage Ground for V Phase IGBT Driving  
Signal Input for HighSide W Phase  
V
B(V)  
S(V)  
(WH)  
V
IN  
V
HighSide Bias Voltage for W Phase IC  
CC(WH)  
V
BD(W)  
Anode of Bootstrap Diode for W Phase HighSide Bootstrap Circuit  
HighSide Bias Voltage for W Phase IGBT Driving  
HighSide Bias Voltage Ground for W Phase IGBT Driving  
V
B(W)  
V
S(W)  
www.onsemi.com  
3
FNA25012A  
INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS  
(1) P  
(33) V  
B(W)  
V
V
OUT  
IN  
B
(32) V  
(31) V  
BD(W)  
OUT  
CC  
HVIC  
HVIC  
HVIC  
CC(WH)  
V
S
(30) IN  
(34) V  
(WH)  
S(W)  
(2) W  
(3) V  
(28) V  
V
B
B(V)  
(27) V  
(26) V  
BD(V)  
CC(VH)  
OUT  
V
OUT  
IN  
CC  
(25) IN  
(29) V  
V
S
(VH)  
S(V)  
(23) V  
V
B
B(U)  
(22) V  
(21) V  
BD(U)  
CC(UH)  
(20) COM  
OUT  
V
OUT  
IN  
CC  
(H)  
(UH)  
S(U)  
V
S
(19) IN  
(24) V  
(4) U  
(17) C  
(16) C  
SC  
C
C
OUT  
OUT  
OUT  
SC  
FOD  
FOD  
(5) N  
(6) N  
W
(15) V  
V
FO  
FO  
(14) IN  
IN  
(WL)  
LVIC  
(13) IN  
(12) IN  
IN  
(VL)  
(UL)  
V
IN  
(11) COM  
(10) VCC  
COM  
(L)  
(L)  
V
CC  
(7) N  
U
(8) R  
TH  
Thermistor  
(9) V  
TH  
(18) R  
SC  
NOTES:  
1. Inverter highside is composed of three normalIGBTs, freewheeling diodes, and one control IC for each IGBT.  
2. Inverter lowside is composed of three senseIGBTs, freewheeling diodes, and one control IC for each IGBT. It has gate drive and  
protection functions.  
3. Inverter power side is composed of four inverter DClink input terminals and three inverter output terminals.  
Figure 3. Internal Block Diagram  
www.onsemi.com  
4
FNA25012A  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
INVERTER PART  
Symbol  
Parameter  
Conditions  
Applied between PN , N , N  
Rating  
900  
Unit  
V
V
Supply Voltage  
PN  
PN(Surge)  
U
V
W
W
V
Supply Voltage (Surge)  
Applied between PN , N , N  
1000  
1200  
50  
V
U
V
V
CES  
CollectorEmitter Voltage  
V
I
C
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
T
T
= 25°C, T =150°C  
(Note 4)  
A
C
J
I
= 25°C, T =150°C, Under 1 ms  
75  
A
CP  
C
J
Pulse Width  
(Note 4)  
P
C
Collector Dissipation  
T =25°C per One Chip  
C
(Note 4)  
347  
W
T
J
Operating Junction Temperature  
40150  
°C  
CONTROL PART  
Symbol  
Parameter  
Conditions  
Rating  
20  
Unit  
V
V
CC  
Control Supply Voltage  
Applied between V  
, V  
COM  
CC(H) CC(L)  
V
BS  
HighSide Control Bias Voltage  
Applied between V  
B(V) S(V) B(W) S(W)  
V  
,
20  
V
B(U) S(U)  
V
V  
, V  
V  
V
IN  
Input Signal Voltage  
Applied between IN  
, IN  
, IN  
,
0.3V +0.3  
V
(UH)  
(VH)  
(WH)  
CC  
IN  
, IN  
, IN  
COM  
(UL)  
(VL)  
(WL)  
V
Fault Output Supply Voltage  
Fault Output Current  
Applied between V COM  
0.3V +0.3  
V
mA  
V
FO  
FO  
CC  
I
Sink Current at V pin  
2
FO  
FO  
V
SC  
Current Sensing Input Voltage  
Applied between C COM  
0.3V +0.3  
SC  
CC  
BOOTSTRAP DIODE PART  
Symbol  
Parameter  
Conditions  
Rating  
1200  
1.0  
Unit  
V
V
Maximum Repetitive Reverse Voltage  
Forward Current  
RRM  
I
F
T
T
= 25°C, T 150°C  
(Note 4)  
A
C
J
I
FP  
Forward Current (Peak)  
= 25°C, T =150°C, Under 1 ms  
2.0  
A
C
J
Pulse Width  
(Note 4)  
T
J
Operating Junction Temperature  
40150  
°C  
TOTAL SYSTEM  
Symbol  
Parameter  
Conditions  
= V = 13.516.5 V, T = 150°C,  
Rating  
Unit  
V
Self Protection Supply Voltage Limit  
(Short Circuit Protection Capability)  
V
CC  
V
800  
V
PN(PROT)  
BS  
J
= < 1200 V, Nonrepetitive, < 2 ms  
CES  
T
Module Case Operation Temperature  
Storage Temperature  
See Figure 2  
40125  
40125  
2500  
°C  
°C  
C
T
STG  
V
ISO  
Isolation Voltage  
60 Hz, Sinusoidal, AC 1 minute,  
Connection Pins to Heat Sink Plate  
V
rms  
THERMAL RESISTANCE  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
°C/W  
°C/W  
R
Junction to Case Thermal  
Resistance  
Inverter IGBT part (per 1/6 module)  
Inverter FWD part (per 1/6 module)  
0.36  
0.66  
th(jc)Q  
(Note 5)  
R
th(jc)F  
4. These values had been made an acquisition by the calculation considered to design factor.  
5. For the measurement point of case temperature (T ), please refer to Figure 2.  
C
www.onsemi.com  
5
 
FNA25012A  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
INVERTER PART  
Symbol  
Parameter  
Conditions  
= V = 15 = 50 A, T = 25°C  
Min.  
Typ.  
Max.  
Unit  
V
Collector Emitter Saturation  
V
I
C
2.20  
2.80  
V
CE(SAT)  
DD  
BS  
J
Voltage  
V, V = 5 V  
IN  
V
FWDi Forward Voltage  
Switching Times  
V
V
= 0 V  
I = 50 A, T = 25°C  
0.90  
2.40  
1.40  
0.50  
1.10  
0.15  
0.20  
1.00  
0.50  
1.10  
0.15  
0.25  
3.00  
2.00  
0.95  
1.70  
0.55  
V
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
mA  
F
IN  
F
J
HS  
LS  
t
= 600 V, V = 15 V, I = 50 A,  
PN CC C  
ON  
T = 25°C  
J
t
C(ON)  
V
IN  
= 0 V 5 V, Inductive Load  
See Figure 5  
(Note 6)  
t
OFF  
t
C(OFF)  
t
rr  
t
V
PN  
= 600 V, V = 15 V, I = 50 A,  
0.50  
1.60  
0.95  
1.70  
0.55  
ON  
CC  
C
T = 25°C  
J
t
C(ON)  
V
IN  
= 0 V 5 V, Inductive Load  
See Figure 5  
(Note 6)  
t
OFF  
t
C(OFF)  
t
rr  
I
CollectorEmitter Leakage Current  
V
CE  
= V  
CES  
5
CES  
6. t and t  
include the propagation delay time of the internal drive IC. t  
and t  
are the switching time of IGBT itself under the  
C(OFF)  
ON  
OFF  
C(ON)  
given gatedriving condition internally. For the detailed information see Figure 4.  
100% I  
100% I  
C
C
t
rr  
I
C
I
C
V
CE  
V
CE  
V
IN  
V
IN  
t
ON  
t
OFF  
t
t
c(OFF)  
c(ON)  
10% I  
C
V
IN(ON)  
V
IN(OFF)  
10% V  
10% I  
CE  
C
90% I 10% V  
C
CE  
(a) turn on  
(b) turn off  
Figure 4. Switching Time Definition  
www.onsemi.com  
6
 
FNA25012A  
OneLeg Diagram of SPM 2  
I
C
R
BS  
P
C
BS  
V
V
B
CC  
LS Switching  
COM  
IN  
OUT  
V
S
V
PN  
HS Switching  
LS Switching  
U,V,W  
V
Inductor  
IN  
600 V  
V
V
C
C
CC  
FO  
V
IN  
HS Switching  
OUT  
5 V  
0 V  
4.7 kW  
FOD  
SC  
V
CC  
V
COM  
N
U,V,W  
15 V  
V
5 V  
R
SC  
Figure 5. Example Circuit for Switching Test  
INDUCTIVE LOAD, V = 600 V, V = 15 V, T = 255C  
INDUCTIVE LOAD, V = 600 V, V = 15 V, T = 1505C  
CC J  
PN  
CC  
J
PN  
14400  
12800  
14400  
12800  
IGBT TurnON, E  
IGBT TurnON, E  
on  
on  
IGBT TurnOFF, E  
IGBT TurnOFF, E  
off  
off  
11200  
9600  
11200  
9600  
FRD TurnOFF, E  
FRD TurnOFF, E  
rec  
rec  
8000  
6400  
8000  
6400  
4800  
4800  
3200  
1600  
3200  
1600  
0
0
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56  
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56  
Collector Current, I [A]  
Collector Current, I [A]  
C
C
Figure 6. Switching Loss Characteristics (Typical)  
600  
550  
RT CURVE IN 505C 1255C  
20  
500  
16  
450  
400  
12  
8
350  
300  
250  
4
0
200  
150  
100  
50  
50  
60  
70  
80  
90  
100 110 120  
Temperature [5C]  
0
20 10  
0
10  
20  
30 40  
50 60  
70 80  
90 100 110 120  
Temperature, T [5C]  
TH  
Figure 7. RT Curve of Builtin Thermistor  
www.onsemi.com  
7
FNA25012A  
BOOTSTRAP DIODE PART  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
2.2  
80  
Max.  
Unit  
V
V
F
Forward Voltage  
I = 1.0 A, T = 25°C  
F
J
t
rr  
ReverseRecovery Time  
I = 1.0 A, dl /dt = 50 A, T = 25°C  
ns  
F
F
J
CONTROL PART (T = 25°C)  
J
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
I
Quiescent V Supply Cur-  
V
= 15 V,  
V
V
V
COM  
COM  
0.15  
mA  
QCCH  
CC  
CC(UH,VH.WH)  
(UH,VH.WH)  
CC(UH)  
CC(VH)  
CC(WH)  
(H),  
(H),  
(H)  
rent  
IN  
= 0 V  
COM  
I
V
= 15 V,  
(UH,VH.WH)  
V
COM  
(L)  
5.00  
0.30  
mA  
mA  
QCCL  
CC(L)  
CC(L)  
IN  
= 0 V  
I
Operating V Supply Current  
V
= 15 V, f  
=
V
V
V
COM  
COM  
PDDH  
DD  
CC(UH,VH.WH)  
PWM  
CC(UH)  
CC(VH)  
CC(WH)  
(H),  
(H),  
20 kHz, Duty = 50%, Applied  
to one PWM Signal Input for  
HighSide  
COM  
(H)  
I
V
= 15 V, f  
= 20 kHz,  
V
CC(L)  
COM  
(L)  
15.5  
mA  
PDDL  
CC(L)  
PWM  
Duty = 50%, Applied to one  
PWM Signal Input for Low−  
Side  
I
Quiescent V Supply Current  
V
= 15 V,  
(UH,VH.WH)  
V
V
V
V  
S(V)  
V  
,
0.30  
12.0  
mA  
mA  
QBS  
BS  
BS  
IN  
B(U)  
B(V)  
B(W)  
S(U)  
= 0 V  
V  
,
,
S(W)  
I
Operating V Supply Current  
V
PWM  
= V = 15 V,  
V
B(U)  
V
B(V)  
V
B(W)  
V  
V  
,
,
PBS  
BS  
CC  
BS  
S(U)  
S(V)  
V  
f
= 20 kHz, Duty = 50%,  
Applied to one PWM Signal  
Input for HighSide  
,
S(W)  
V
Fault Output Voltage  
V
= 15 V, V = 0 V, V Circuit: 4.7 kW to 5 V  
4.5  
V
V
FOH  
CC  
SC  
FO  
Pullup  
V
V
CC  
= 15 V, V = 1 V, V Circuit: 4.7 kW to 5 V  
0.5  
FOL  
SC  
FO  
Pullup  
V
Short Circuit Trip Level  
V
= 15 V  
(Note 7)  
C
COM  
(L)  
0.43  
10.3  
10.8  
9.5  
10.0  
50  
0.50  
0.57  
12.8  
13.3  
12.0  
12.5  
V
V
SC(ref)  
CC  
SC  
UV  
Supply Circuit UnderVoltage  
Protection  
Detection Level  
Reset Level  
CCD  
CCR  
BSD  
BSR  
UV  
UV  
UV  
t
V
Detection Level  
Reset Level  
V
V
FaultOut Pulse Width  
C
C
= Open  
(Note 8)  
ms  
ms  
V
FOD  
FOD  
FOD  
= 2.2 nF  
1.7  
V
ON Threshold Voltage  
OFF Threshold Voltage  
Resistance of Thermistor  
Applied between IN  
IN  
COM ,  
(H)  
2.6  
IN(ON)  
(UH,VH.WH)  
COM  
(L)  
(UL,VL.WL)  
V
0.8  
V
IN(OFF)  
R
TH  
at T = 25°C  
See Figure 7  
(Note 9)  
47  
2.9  
kW  
kW  
TH  
at T = 100°C  
TH  
7. Shortcircuit current protection os functioning only at the lowsides because the sense current is divided from main current at lowside  
IGBTs. Inserting the shunt resistor for monitoring the phase current at N , N , N terminal, the trip level of the shortcircuit current is changed.  
U
V
FOD  
W
8. The faultout pulse width t  
depends on the capacitance value of C  
according to the following approximate equation :  
FOD  
[s].  
6
t
= 0.8 x 10 x C  
FOD  
FOD  
9. T is the temperature of thermistor itself. To know case temperature (T ), conduct experiments considering the application.  
TH  
C
www.onsemi.com  
8
 
FNA25012A  
RECOMMENDED OPERATING CONDITIONS  
Value  
Typ.  
600  
Min.  
300  
Max.  
800  
Symbol  
Parameter  
Supply Voltage  
Conditions  
Unit  
V
V
Applied between P N , N , N  
U V W  
PN  
CC  
V
Control Supply Voltage  
HighSide Bias Voltage  
Control Supply Variation  
Applied between V  
COM  
,
14.0  
15.0  
16.5  
V
CC(UH,VH,WH)  
(H)  
V
COM  
CC(L)  
(L)  
V
BS  
Applied between V  
V , V  
S(U) B(V)  
V ,  
S(V)  
13.0  
1  
15.0  
18.5  
1
V
V/ms  
ms  
B(U)  
V
B(W)  
V  
S(W)  
dV /dt,  
DD  
dV /dt,  
BS  
t
Blanking Time for Preventing  
ArmShort  
For Each Input Signal  
40°C T 125°C, 40°C T 150°C  
2.0  
dead  
f
PWM Input Signal  
20  
5
kHz  
V
PWM  
C
J
V
SEN  
Voltage for Current Sensing  
Applied between N , N , N COM  
(H,L)  
5  
U
V
W
(Including Surge Voltage)  
PW  
PW  
Minimum Input Pulse Width  
V
= V = 15 V, I 75 A, Wiring Inductance  
2.5  
2.5  
40  
ms  
°C  
IN(ON)  
CC  
BS  
C
between N , , and DC Link N < 10 nH  
U V W  
(Note 10)  
IN(OFF)  
T
Junction Temperature  
150  
J
10.This product might not make response if input pulse width is less than the recommended value.  
44  
40  
36  
f
= 5 kHz  
SW  
32  
28  
24  
20  
f
= 15 kHz  
SW  
16  
12  
V
= 600 V, V = V = 15 V  
CC BS  
DC  
8
4
0
T
J
150°C, T 125°C  
C
M.I. = 0.9, P.F. = 0.8  
Sinusoidal PWM  
0
10  
20 30  
40  
50 60  
70 80  
90 100 110 120 130 140  
Case Temperature, T [5C]  
C
Figure 8. Allowable Maximum Output Current  
NOTE:  
11. This allowable output current value is the reference data for the safe operation of this product. This may be different from the actual application  
and operating condition.  
www.onsemi.com  
9
 
FNA25012A  
MECHANICAL CHARACTERISTICS AND RATINGS  
Min.  
Typ.  
Max.  
0
Device Flatness  
Mounting Torque  
See Figure 9  
1.0  
10.1  
+200  
1.5  
15.1  
mm  
Nm  
kgcm  
s
Mounting Screw: M4  
See Figure 10  
Recommended 1.0 Nm  
0.9  
9.1  
10  
2
Recommended 10.1 kgcm  
Terminal Pulling Strength  
Terminal Bending Strength  
Weight  
Load 19.6 N  
Load 9.8 N, 90 degrees Bend  
times  
g
50  
Figure 9. Flatness Measurement Position  
PreScrewing: 1 2  
Final Screwing: 2 1  
2
1
Figure 10. Mounting Screws Torque Order  
NOTES:  
12.Do not make over torque when mounting screws. Much mounting torque may cause DBC cracks, as well as bolts and Al heatsink  
destruction.  
13.Avoid onesided tightening stress. Figure 10 shows the recommended torque order for mounting screws. Uneven mounting can cause the  
DBC substrate of package to be damaged. The prescrewing torque is set to 20 30% of maximum torque rating.  
www.onsemi.com  
10  
 
FNA25012A  
Input signal  
Protection  
Circuit State  
RESET  
a1  
SET  
RESET  
UV  
DDR  
a6  
Control  
Supply Voltage  
UV  
CCD  
a3  
a4  
a2  
a7  
Output Current  
a5  
Fault Output Signal  
a1: Control supply voltage rises: After the voltage rises UV  
a2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when next input is applied.  
CCR  
a3: Under voltage detection (UV  
).  
CCD  
a4: IGBT OFF in spite of control input condition.  
a5: Fault output operation starts with a fixed pulse width according to the condition of the external capacitor C  
.
FOD  
a6: Undervoltage reset (UV  
).  
CCR  
a7: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 11. UnderVoltage Protection (LowSide)  
Input signal  
Protection  
RESET  
b1  
SET  
RESET  
Circuit State  
UV  
BSR  
b5  
Control  
Supply Voltage  
UV  
BSD  
b3  
b4  
b6  
b2  
Output Current  
Highlevel (no fault output)  
Fault Output Signal  
b1: Control supply voltage rises: After the voltage rises UV  
b2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when next input is applied.  
BSR  
b3: Under voltage detection (UV  
).  
BSD  
b4: IGBT OFF in spite of control input condition, but there is no fault output signal.  
b5: Under voltage reset (UV ).  
BSR  
b6: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 12. UnderVoltage Protection (HighSide)  
www.onsemi.com  
11  
FNA25012A  
Lower Arms  
Control Input  
c6  
c7  
Protection  
Circuit State  
SET  
RESET  
c4  
c3  
Internal IGBT  
GateEmitter Voltage  
c2  
Internal delay  
at protection circuit  
SC current trip level  
c8  
c1  
Output Current  
SC reference voltage  
Sensing Voltage  
of Sense Resistor  
RC filter circuit  
time constant  
delay  
Fault Output Signal  
c5  
(with the external sense resistance and RC filter connection)  
c1: Normal operation: IGBT ON and carrying current.  
c2: Short circuit current detection (SC trigger).  
c3: All lowside IGBTs gate are hard interrupted.  
c4: All lowside IGBTs turn OFF.  
c5: Fault output operation starts with a fixed pulse width according to the condition of the external capacitor C  
c6: Input HIGH: IGBT ON state, but during the active period of fault output the IGBT doesn’t turn ON.  
.
FOD  
c7: Fault output operation finishes, but IGBT doesn’t turn on until triggering the next signal from LOW to HIGH.  
c8: Normal operation: IGBT ON and carrying current.  
Figure 13. ShortCircuit Current Protection (LowSide Operation Only)  
INPUT/OUTPUT INTERFACE CIRCUIT  
+5V (MCU or Control power)  
4.7 k  
ASPM  
IN  
IN  
, IN  
, IN  
(UH)  
(VH)  
(WH)  
, IN  
(VL)  
, IN  
(WL)  
(UL)  
MCU  
VFO  
COM  
NOTE:  
14.RC coupling at each input might change depending on the PWM control scheme used in the application and the wiring impedance  
of the application’s printed circuit board. The input signal section of the ASPM27 product integrates 5kW (typ.) pulldown resistor.  
Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.  
Figure 14. Recommended CPU I/O Interface Circuit  
www.onsemi.com  
12  
 
FNA25012A  
P (1)  
R
R
R
1
1
1
(30) IN  
(WH)  
Gating WH  
Gating VH  
Gating UH  
IN  
(31) V  
CC(WH)  
V
CC  
C
4
(32) V  
OUT  
R
R
R
BD(W)  
COM  
2
HVIC  
HVIC  
(33) V  
(34) V  
B(W)  
V
B
V
S
W (2)  
S(W)  
C
C
C
3
4
(25) IN  
(VH)  
IN  
(26) V  
CC(VH)  
V
CC  
C
C
4
OUT  
(27) V  
COM  
BD(V)  
2
(28) V  
(29) V  
B(V)  
V
B
V
S
V (3)  
S(V)  
3
4
M
(19) IN  
(21) V  
(UH)  
IN  
C
V
DC  
7
CC(UH)  
V
CC  
C
(20) COM  
4
4
(H)  
COM  
OUT  
M
C
U
(22) V  
2
HVIC  
BD(U)  
C
C
C
1
1
1
(23) V  
(24) V  
B(U)  
V
B
V
S
U (4)  
S(U)  
C
C
3
5 V line  
R
3
C
5
R
1
OUT  
OUT  
OUT  
(16) C  
(15) V  
FOD  
Fault  
C
FOD  
A
R
4
4
N
(5)  
FO  
W
V
FO  
R
R
1
1
(14) IN  
(13) IN  
(12) IN  
(WL)  
Gating WL  
Gating VL  
Gating UL  
IN  
IN  
IN  
(VL)  
LVIC  
R
1
(UL)  
R
E
N
(6)  
(7)  
V
15 V line  
(10) V  
CC(L)  
V
CC  
Shunt  
Resistor  
C
C
C
1
1
1
Power  
GND Line  
(11) COM  
(L)  
C
C
4
2
COM  
5 V line  
(9) V  
TH  
R
4
N
C
U
(8) R  
TH  
SC  
Temp.  
Monitoring  
R
Thermistor  
5
R
(18)  
SC  
R
7
Sense  
(17) C  
SC  
Resistor  
D
B
C
R
6
WPhase Current  
VPhase Current  
UPhase Current  
Control  
GND Line  
C
6
NOTES:  
15.To avoid malfunction, the wiring of each input should be as short as possible. (less than 23 cm)  
16.V output is opendrain type. The signal line should be pulled up to the positive side of the MCU or control power supply with a resistor  
FO  
that makes I up to 2 mA. Please refer to Figure 14.  
FO  
17.Fault out pulse width can be adjust by capacitor C connected to the C  
terminal.  
5
FOD  
18.Input signal is activeHIGH type. There is a 5 W resistor inside the IC to pulldown each input signal line to GND. RC coupling circuits  
should be adopted for the prevention of input signal oscillation. R C time constant should be selected in the range 50 150 ns  
1
1
(recommended R = 100 W, C = 1 nF).  
1
1
19.Each wiring pattern inductance of point A should be minimized (recommended less than 10 nH). Use the shunt resistor R of surface  
4
mounted (SMD) type to reduce wiring inductance. To prevent malfunction, wiring of point E should be connected to the terminal of the  
shunt resistor R as close as possible.  
4
20.To insert the shunt resistor to measure each phase current at N , N , N terminal, it makes to change the trip level I about  
U
V
W
SC  
the short circuit current.  
21.To prevent errors of the protection function, the wiring of B, C and D point should be as short as possible. The wiring of B between C  
SC  
filter and R terminal should be divided at the point that is close to the terminal of sense resistor R .  
SC  
5
22.For stable protection function, use the sense resistor R with resistance variation within 1% and low inductance value.  
5
23.In the shortcircuit protection circuit, select the R C time constant in the range 1.0 1.5 ms. R should be selected with a minimum of  
6
6
6
10 times larger resistance than sense resistor R . Do enough evaluation on the real system because shortcircuit protection time may  
5
vary wiring pattern layout and value of the R C time constant.  
6
6
24.Each capacitor should be mounted as close to the pins of the Motion SPM 2 product as possible.  
25.To prevent surge destruction, the wiring between the smoothing capacitor C and the P & GND pins should be as short as possible. The  
7
use of a highfrequency noninductive capacitor of around 0.1 0.22 mF between the P & GND pins is recommended.  
26.Relays are used in most systems of electrical equipment at industrial application. In these cases, there should be sufficient distance be-  
tween the MCU and the relays.  
27.The Zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each  
pair of control supply terminals (recommended Zener diode is 22 V/1 W. which has the lower Zener impedance characteristic than  
about 15 W).  
28.C of around seven times larger than bootstrap capacitor C is recommended.  
2
3
29.Please choose the electrolytic capacitor with good temperature characteristic in C . Choose 0.1 0.2 mF Rcategory ceramic capacitors  
3
with good temperature and frequency characteristics in C .  
4
Figure 15. Typical Application Circuit  
SPM is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or  
other countries.  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPMCAA34 / 34LD, PDD STD, DBC DIP TYPE  
CASE MODFQ  
ISSUE O  
DATE 31 JAN 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13565G  
SPMCAA34 / 34LD, PDD STD, DBC DIP TYPE  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FNA25060

智能功率模块,600V,50A
ONSEMI

FNA27560

600 V Motion SPM® 2 系列
ONSEMI

FNA40560

Smart Power Module
FAIRCHILD

FNA40560

智能功率模块,600V,5A
ONSEMI

FNA40560B2

AC Motor Controller, 10A, PDIP26, SPM26-AAC, 26 PIN
FAIRCHILD

FNA40560_12

Smart Power Module
FAIRCHILD

FNA40860

Smart Power Module
FAIRCHILD

FNA40860

智能功率模块,600V,8A
ONSEMI

FNA40860B2

Smart Power Module
FAIRCHILD

FNA40860B2

智能功率模块 (IPM),运动控制
ONSEMI

FNA40860_1010

Smart Power Module
FAIRCHILD

FNA41060

Smart Power Module
FAIRCHILD