FNA41560T2 [ONSEMI]

智能功率模块 (IPM),600V,15A;
FNA41560T2
型号: FNA41560T2
厂家: ONSEMI    ONSEMI
描述:

智能功率模块 (IPM),600V,15A

局域网 电动机控制
文件: 总16页 (文件大小:720K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Motion SPM) 45 Series  
FNA41560T2  
General Description  
FNA41560T2 is a Motion SPM 45 module providing  
a fullyfeatured, highperformance inverter output stage for AC  
Induction, BLDC, and PMSM motors. These modules integrate  
optimized gate drive of the builtin IGBTs to minimize EMI  
and losses, while also providing multiple onmodule protection  
features including undervoltage lockouts, overcurrent shutdown,  
thermal monitoring of drive IC, and fault reporting. The builtin,  
highspeed HVIC requires only a single supply voltage and translates  
the incoming logiclevel gate inputs to the highvoltage, highcurrent  
drive signals required to properly drive the module’s internal IGBTs.  
Separate negative IGBT terminals are available for each phase  
to support the widest variety of control algorithms.  
3D Package Drawing (Click to Activate 3D Content)  
SPMAAC26 / 26LD, PDD STD CERAMIC TYPE,  
LONG LEAD DUAL FORM TYPE  
CASE MODFC  
Features  
UL Certified No. E209204 (UL1557)  
MARKING DIAGRAM  
600 V 15 A 3Phase IGBT Inverter with Integral Gate Drives  
and Protection  
Low Thermal Resistance Using Ceramic Substrate  
26  
10  
LowLoss, ShortCircuitRated IGBTs  
BuiltIn Bootstrap Diodes and Dedicated Vs Pins Simplify PCB  
Layout  
$Y  
FNA41560T2  
XXX  
YWW  
BuiltIn NTC Thermistor for Temperature Monitoring  
9
1
Separate OpenEmitter Pins from LowSide IGBTs for ThreePhase  
Current Sensing  
$Y  
= onsemi Logo  
SingleGrounded Power Supply  
FNA41560T2 = Specific Device Code  
XXX  
Y
= Trace Code  
= Year  
= Work Week  
Isolation Rating of 2000 Vrms / 1 min.  
This is a PbFree and Halogen Free/BFR Free Device  
WW  
Applications  
Motion Control Home Appliance / Industrial Motor  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 14 of  
this data sheet.  
Related Resources  
®
AN9084 Smart Power Module, Motion SPM 45 H V3 Series  
User’s Guilde  
®
AN9072 Smart Power Module Motion SPM in SPM45H  
Thermal Performance Information  
®
AN9071 Smart Power Module Motion SPM in SPM45H  
Mounting Guidance  
®
AN9760 PCB Design Guidance for SPM  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
October, 2021 Rev. 2  
FNA41560T2/D  
FNA41560T2  
Integrated Power Functions  
600 V 15 A IGBT inverter for threephase DC / AC  
power conversion (refer to Figure 2)  
Integrated Drive, Protection, and System Control Functions  
For inverter highside IGBTs:  
Fault signaling:  
gatedrive circuit, highvoltage isolated highspeed  
levelshifting control circuit,  
corresponding to UVLO (lowside supply)  
and SC faults  
UnderVoltage LockOut Protection (UVLO)  
Input interface:  
activeHIGH interface, works with 3.3 / 5 V logic,  
Schmitttrigger input  
NOTE: Available bootstrap circuit example is given in  
Figures 14  
For inverter lowside IGBTs:  
gatedrive circuit, ShortCircuit Protection (SCP)  
control supply circuit,  
UnderVoltage LockOut Protection (UVLO)  
Pin Configuration  
Figure 1. Top View  
www.onsemi.com  
2
 
FNA41560T2  
PIN DESCRIPTIONS  
Pin No.  
Pin Name  
Pin Description  
1
2
3
4
5
6
7
V
R
Thermistor Bias Voltage  
TH  
TH  
Series Resistor for the Use of Thermistor (Temperature Detection)  
Positive DCLink Input  
P
U
V
Output for UPhase  
Output for VPhase  
W
Output for WPhase  
N
Negative DCLink Input for UPhase  
U
8
9
N
Negative DCLink Input for VPhase  
Negative DCLink Input for WPhase  
V
N
W
10  
11  
12  
Shut Down Input for Shortcircuit Current Detection Input  
Fault Output  
C
V
SC  
FO  
IN(WL)  
IN(VL)  
IN(UL)  
COM  
Signal Input for LowSide WPhase  
13  
14  
15  
16  
17  
18  
Signal Input for LowSide VPhase  
Signal Input for LowSide UPhase  
Common Supply Ground  
LowSide Common Bias Voltage for IC and IGBTs Driving  
HighSide Common Bias Voltage for IC and IGBTs Driving  
Signal Input for HighSide WPhase  
V
DD(L)  
DD(H)  
V
IN  
(WH)  
19  
20  
21  
Signal Input for HighSide VPhase  
IN(VH)  
IN  
(UH)  
Signal Input for HighSide UPhase  
VS  
VB  
HighSide Bias Voltage Ground for WPhase IGBT Driving  
(W)  
(W)  
22  
23  
24  
25  
26  
HighSide Bias Voltage for WPhase IGBT Driving  
HighSide Bias Voltage Ground for VPhase IGBT Driving  
HighSide Bias Voltage for VPhase IGBT Driving  
HighSide Bias Voltage Ground for UPhase IGBT Driving  
HighSide Bias Voltage for UPhase IGBT Driving  
VS  
VB  
VS  
VB  
(V)  
(V)  
(U)  
(U)  
www.onsemi.com  
3
FNA41560T2  
Internal Equivalent Circuit and Input/Output Pins  
VTH (1)  
RTH (2)  
P (3)  
Thermistor  
(26) VB(U)  
UVB  
(25) VS(U)  
UVS  
OUT(UH)  
UVS  
(24) VB(V)  
(23) VS(V)  
U(4)  
VVB  
VVS  
(22) VB(W)  
(21) VS(W)  
WVB  
WVS  
OUT(VH)  
(20) IN(UH)  
(19) IN(VH)  
VVS  
IN(UH)  
IN(VH)  
V (5)  
(18) IN(WH)  
(17) VDD(H)  
IN(WH)  
VDD  
OUT(WH)  
WVS  
COM  
W(6)  
(16) VDD(L)  
(15) COM  
VDD  
OUT(UL)  
OUT(VL)  
COM  
NU (7)  
(14) IN(UL)  
(13) IN(VL)  
IN(UL)  
IN(VL)  
IN(WL)  
(12) IN(WL)  
(11) VFO  
N
V (8)  
VFO  
CSC  
(10) CSC  
OUT(WL)  
NW (9)  
NOTES:  
1. Inverter highside is composed of three normalIGBTs, freewheeling diodes, and one control IC for each IGBT.  
2. Inverter lowside is composed of three senseIGBTs, freewheeling diodes, and one control IC for each IGBT.  
It has gate drive and protection functions.  
3. Inverter power side is composed of four inverter DClink input terminals and three inverter output terminals.  
Figure 2. Internal Block Diagram  
www.onsemi.com  
4
FNA41560T2  
ABSOLUTE MAXIMUM RATINGS (T = 25°C, unless otherwise specified)  
J
Symbol  
Parameter  
Conditions  
Rating  
Unit  
INVERTER PART  
V
Supply Voltage  
Applied between P N , N , N  
450  
500  
600  
15  
V
V
V
A
A
PN  
PN(Surge)  
U
V
W
V
Supply Voltage (Surge)  
Applied between P N , N , N  
U V  
W
V
CES  
Collector Emitter Voltage  
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
I
C
T
T
= 25°C, T < 150°C  
J
C
I
= 25°C, T < 150°C,  
30  
CP  
C
J
Under 1 ms Pulse Width (Note 4)  
P
C
Collector Dissipation  
T
C
= 25°C per One Chip (Note 4)  
38  
W
T
J
Operating Junction Temperature  
40 150  
°C  
CONTROL PART  
V
Control Supply Voltage  
Applied between V  
, V COM  
DD(H) DD(L)  
20  
20  
V
V
DD  
V
HighSide Control Bias Voltage  
Applied between V  
V  
,
BS  
B(U)  
S(U)  
V
S(W)  
V
V  
, V  
B(V)  
S(V) B(W)  
V
IN  
Input Signal Voltage  
Applied between IN  
, IN  
, IN  
,
0.3 V + 0.3  
V
(UH)  
(VH)  
(WH)  
DD  
IN  
, IN  
, IN  
COM  
(UL)  
(VL)  
(WL)  
V
Fault Output Supply Voltage  
Fault Output Current  
Applied between V COM  
0.3 V + 0.3  
V
mA  
V
FO  
FO  
DD  
I
Sink Current at V pin  
1
FO  
FO  
V
SC  
CurrentSensing Input Voltage  
Applied between C COM  
0.3 V + 0.3  
SC  
DD  
BOOTSTRAP DIODE PART  
V
Maximum Repetitive Reverse Voltage  
Forward Current  
600  
0.5  
2.0  
V
A
A
RRM  
I
F
T
T
= 25°C, T < 150°C  
J
C
I
Forward Current (Peak)  
= 25°C, T < 150°C,  
J
Under 1 ms Pulse Width (Note 4)  
FP  
C
T
J
Operating Junction Temperature  
40 150  
°C  
TOTAL SYSTEM  
V
SelfProtection Supply Voltage Limit  
(ShortCircuit Protection Capability)  
V
= V = 13.5 16.5 V, T = 150°C,  
400  
V
PN(PROT)  
DD  
BS  
J
NonRepetitive, < 2 ms  
T
Module Case Operation Temperature  
Storage Temperature  
See Figure 1  
40 125  
40 125  
2000  
°C  
°C  
C
T
STG  
V
ISO  
Isolation Voltage  
60 Hz, Sinusoidal, AC 1 Minute,  
Connect Pins to Heat Sink Plate  
Vrms  
THERMAL RESISTANCE  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
°C/W  
°C/W  
R
Junction to Case Thermal Resistance Inverter IGBT Part (per 1 / 6 Module)  
(Note 5)  
3.20  
4.00  
th(jc)Q  
R
Inverter FWDi Part (per 1 / 6 Module)  
th(jc)F  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
4. These values had been made an acquisition by the calculation considered to design factor.  
5. For the measurement point of case temperature (T ), please refer to Figure 1.  
C
www.onsemi.com  
5
 
FNA41560T2  
ELECTRICAL CHARACTERISTICS (T = 25°C, unless otherwise specified)  
J
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
INVERTER PART  
V
Collector Emitter Saturation  
V
V
= V = 15 V  
I = 15 A,  
C
J
1.60  
2.00  
2.20  
2.60  
V
V
CE(SAT)  
DD  
IN  
BS  
Voltage  
= 5 V  
T = 25°C  
V
F
FWDi Forward Voltage  
Switching Times  
V
IN  
= 0 V  
I = 15 A,  
F
T = 25°C  
J
t
V
PN  
= 300 V, V = V = 15 V, I = 15 A  
DD BS C  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
mA  
HS  
0.40  
0.80  
0.20  
0.85  
0.25  
0.10  
0.85  
0.25  
0.90  
0.25  
0.15  
1.30  
0.50  
1.35  
0.55  
ON  
T = 25°C  
J
t
V
IN  
= 0 V 5 V, Inductive Load  
C(ON)  
(Note 6)  
t
OFF  
t
C(OFF)  
t
rr  
V
PN  
= 300 V, V = V = 15 V, I = 15 A  
DD BS C  
LS  
t
0.45  
1.35  
0.55  
1.40  
0.55  
ON  
T = 25°C  
J
t
V
IN  
= 0 V 5 V, Inductive Load  
C(ON)  
(Note 6)  
t
OFF  
t
C(OFF)  
t
rr  
I
Collector Emitter Leakage  
Current  
V
= V  
1
CES  
CE CES  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. t and t  
include the propagation delay of the internal drive IC. t  
and t  
are the switching times of IGBT under the given gate  
ON  
OFF  
C(ON)  
C(OFF)  
driving condition internally. For the detailed information, please see Figure 3.  
Figure 3. Switching Time Definition  
www.onsemi.com  
6
 
FNA41560T2  
Inductive Load, V = 300 V, V = 15 V, T = 150°C  
Inductive Load, V = 300 V, V = 15 V, T = 25°C  
PN  
DD  
J
PN  
DD  
J
IGBT Turnon, Eon  
IGBT Turnoff, Eoff  
FRD Turnoff, Erec  
IGBT Turnon, Eon  
IGBT Turnoff, Eoff  
FRD Turnoff, Erec  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
0
5
10  
15  
0
5
10  
15  
I , Collector Current (A)  
C
I , Collector Current (A)  
C
Figure 4. Switching Loss Characteristics (Typical)  
CONTROL PART  
Symbol  
Parameter  
Conditions  
= 0 V  
Min.  
Typ.  
Max.  
0.10  
2.65  
0.15  
Unit  
mA  
mA  
mA  
I
Quiescent V Supply Current  
V
V
V
= 15 V, IN  
= 15 V, IN  
= 15 V,  
V
DD(H)  
V
DD(L)  
V
DD(H)  
COM  
COM  
COM  
QDDH  
DD  
DD(H)  
DD(L)  
DD(H)  
(UH,VH, WH)  
I
= 0 V  
(UL,VL, WL)  
QDDL  
PDDH  
I
Operating V Supply Current  
DD  
f
= 20 kHz, Duty = 50%,  
Applied to one PWM Signal  
PWM  
Input for HighSide  
I
V
PWM  
= 15V,  
V
DD(L)  
COM  
4.00  
mA  
PDDL  
DD(L)  
f
= 20 kHz, Duty = 50%,  
Applied to one PWM Signal  
Input for LowSide  
I
Quiescent V Supply Current  
V
= 15 V, IN  
= 0 V  
V
V
V
V  
,
,
0.30  
2.00  
mA  
mA  
QBS  
BS  
BS  
(UH, VH, WH)  
B(U)  
B(V)  
B(W)  
S(U)  
V  
S(V)  
V  
S(W)  
I
Operating V Supply Current  
V
PWM  
= V = 15 V,  
V
B(U)  
V
B(V)  
V
B(W)  
V  
V  
,
,
PBS  
BS  
DD  
BS  
S(U)  
f
= 20 kHz,  
S(V)  
Duty = 50%, Applied to one PWM  
Signal Input for HighSide  
V  
S(W)  
V
Fault Output Voltage  
V
V
V
= 0 V, V Circuit: 4.7 kΩ to 5 V Pullup  
4.5  
0.5  
0.55  
13.0  
13.5  
12.5  
13.0  
V
V
FOH  
SC  
SC  
DD  
FO  
V
= 1 V, V Circuit: 4.7 kΩ to 5 V Pullup  
FO  
FOL  
V
SC(ref)  
Short Circuit Trip Level  
= 15 V (Note 7)  
C
COM  
SC  
0.45  
10.5  
11.0  
10.0  
10.5  
30  
0.50  
V
UV  
Supply Circuit UnderVoltage  
Protection  
Detection Level  
Reset Level  
V
DDD  
DDR  
BSD  
BSR  
UV  
UV  
UV  
V
Detection Level  
Reset Level  
V
V
t
FaultOut Pulse Width  
ON Threshold Voltage  
OFF Threshold Voltage  
Resistance of Thermistor  
ms  
V
FOD  
V
IN(ON)  
Applied between IN  
IN  
COM,  
2.6  
(UH, VH, WH)  
COM  
(UL, VL, WL)  
V
0.8  
V
IN(OFF)  
R
at T = 25°C (Note 8)  
47  
2.9  
kW  
kW  
TH  
TH  
at T = 100°C  
TH  
7. Shortcircuit current protection is functioning only at the lowsides.  
8. T is the temperature of thermistor itselt. To know case temperature (T ), please make the experiment considering your application.  
TH  
C
www.onsemi.com  
7
 
FNA41560T2  
RT Curve  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
RT Curve in 50°C ~ 125°C  
20  
16  
12  
8
4
0
50 60 70 80 90 100 110 120  
Temperature (°C)  
0
20 10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
T
TH  
, Temperature (°C)  
Figure 5. RT Curve of The BuiltIn Thermistor  
BOOTSTRAP DIODE PART  
Symbol  
Parameter  
Conditions  
I = 0.1 A, T = 25°C  
Min.  
Typ.  
2.5  
80  
Max.  
Unit  
V
V
F
Forward Voltage  
F
C
t
rr  
ReverseRecovery Time  
I = 0.1 A, dI / dt = 50 A / μs,  
ns  
F
J
F
T = 25°C  
BuiltIn Bootstrap Diode V I Characteristic  
F
F
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
T
= 25°C  
C
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
V
F
(V)  
NOTE: Builtin bootstrap diode includes around 15 W resistance characteristic.  
Figure 6. BuiltIn Bootstrap Diode Characteristic  
www.onsemi.com  
8
FNA41560T2  
RECOMMENDED OPERATING CONDITIONS  
Value  
Typ.  
300  
Min.  
Max.  
400  
Symbol  
Parameter  
Supply Voltage  
Conditions  
Unit  
V
V
PN  
DD  
Applied between P N , N , N  
U V W  
V
Control Supply Voltage  
Applied between V  
COM  
V
13.5  
15.0  
16.5  
V
DD(H), DD(L)  
V
BS  
HighSide Bias Voltage  
Applied between V  
V ,  
S(U)  
13.0  
15.0  
18.5  
V
B(U)  
V
V
V  
, V  
S(W)  
B(V)  
S(V) B(W)  
dV / dt, dV / dt Control Supply Variation  
1  
1
V / ms  
ms  
DD  
BS  
t
Blanking Time for Preventing  
Arm Short  
For each input signal  
1
dead  
f
PWM Input Signal  
40_C T 125_C,  
20  
4
kHz  
V
PWM  
C
40_C T 150_C  
J
V
Voltage for Current Sensing  
Applied between N , N , N COM  
4  
SEN  
U
V
W
(Including SurgeVoltage)  
PW  
PW  
Minimun Input Pulse Width  
Minimun Input Pulse Width  
Junction Temperature  
V
= V = 15 V, I 15 A,  
0.5  
0.5  
1.2  
1.2  
40  
ms  
ms  
_C  
IN(ON)  
DD  
BS  
C
Wiring Inductance between N  
U, V, W  
and DC Link N < 10 nH (Note 9)  
IN(OFF)  
PW  
V
DD  
= V = 15 V, I 30 A,  
IN(ON)  
BS  
C
Wiring Inductance between N  
U, V, W  
PW  
and DC Link N < 10 nH (Note 9)  
IN(OFF)  
T
150  
J
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
9. This product might not make right output response if input pulse width is less than the recommanded value.  
15  
12  
fSW = 5 kHz  
9
6
V
DC = 300 V, VDD = VBS = 15 V  
fSW = 15 kHz  
Tj  
= 150°C, T = 125°C  
C
3
0
M.I. = 0.9, P.F. = 0.8  
Sinusoidal PWM  
0
20  
40  
60  
80  
100  
120  
140  
T , Case Temperature (°C)  
C
NOTE: This allowable output current value is the reference data for the safe operation of this product. This may be different  
from the actual application and operating condition.  
Figure 7. Allowable Maximum Output Current  
www.onsemi.com  
9
 
FNA41560T2  
MECHANICAL CHARACTERISTICS AND RATINGS  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
mm  
Device Flatness  
See Figure 8  
0
+120  
0.8  
Mounting Torque  
Weight  
Mounting Screw: M3  
See Figure 9  
Recommended 0.7 N/m  
Recommended 7.1 kg/cm  
0.6  
6.2  
0.7  
7.1  
N/m  
8.1  
kg/cm  
11.00  
g
Figure 8. Flatness Measurement Position  
Figure 9. Mounting Screws Torque Order  
NOTES:  
10.Do not make over torque when mounting screws. Much mounting torque may cause ceramic cracks, as well as bolts and Al heatsink  
destruction.  
11. Avoid onesided tightening stress. Figure 9 shows the recommended torque order for the mounting screws. Uneven mounting can cause  
the ceramic substrate damaged. The prescrewing torque is set to 20 30% of maximum torque rating.  
www.onsemi.com  
10  
 
FNA41560T2  
Time Charts of Protective Function  
Input Signal  
Protection  
SET  
RESET  
b1  
RESET  
Circuit State  
UV  
DDR  
a6  
UV  
a2  
DDD  
Control  
a3  
a4  
Supply Voltage  
a7  
Output Current  
a5  
Fault Output Signal  
a1 : Control supply voltage rises: after the voltage rises UVDDR, the circuits start to operate when the next input is applied.  
a2 : Normal operation: IGBT ON and carrying current.  
a3 : Undervoltage detection (UVDDD).  
a4 : IGBT OFF in spite of control input condition.  
a5 : Fault output operation starts with a fixed pulse width.  
a6 : Undervoltage reset (UVDDR).  
a7 : Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 10. UnderVoltage Protection (LowSide)  
Input Signal  
Protection  
RESET  
b1  
SET  
RESET  
Circuit State  
b5  
Control  
b3  
b4  
Supply Voltage  
b6  
b2  
Output Current  
Highlevel (no fault output )  
Fault Output Signal  
b1 : Control supply voltage rises: after the voltage reaches UVBSR, the circuits start to operate when the next input is applied.  
b2 : Normal operation: IGBT ON and carrying current.  
b3 : Undervoltage detection (UVBSD).  
b4 : IGBT OFF in spite of control input condition, but there is no fault output signal.  
b5 : Undervoltage reset (UVBSR).  
b6 : Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 11. UnderVoltage Protection (HighSide)  
www.onsemi.com  
11  
FNA41560T2  
Lower Arms  
Control Input  
c6  
c7  
Protection  
Circuit state  
SET  
RESET  
Internal IGBT  
GateEmitter Voltage  
c4  
c3  
c2  
SC  
c1  
c8  
Output Current  
SC Reference  
Voltage  
Sensing Voltage  
of Sense Resistor  
CR Circuit Time  
Constant Delay  
Fault Output Signal  
c5  
(with the external sense resistance and RC filter connection)  
c1 : Normal operation: IGBT ON and carrying current.  
c2 : Shortcircuit current detection (SC trigger).  
c3 : All lowside IGBTs gate are hard interrupted.  
c4 : All lowside IGBTs turn OFF.  
c5 : Fault output operation starts with a fixed pulse width according to the condition of the external capacitor CFOD.  
c6 : Input HIGH: IGBT ON state, but during the active period of fault output, the IGBT doesn’t turn ON.  
c7 : Fault output operation finishes, but IGBT doesn’t turn on until triggering the next signal from LOW to HIGH.  
c8 : Normal operation: IGBT ON and carrying current.  
Figure 12. ShortCircuit Current Protection (LowSide Operation only)  
Input/Output Interface Circuit  
+5 V (for MCU or Control power)  
R
= 10 kΩ  
PF  
SPM  
,
,
IN(UH) IN(VH) IN(WH)  
,
,
IN(UL) IN(VL) IN( WL)  
MCU  
VFO  
COM  
NOTE: RC coupling at each input might change depending on the PWM control scheme used in the application and the wiring  
impedance of the application’s printed circuit board. The input signal section of the Motion SPM 45 product integrates  
5 kW(typ.) pulldown resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage  
drop at input terminal.  
Figure 13. Recommended MCU I/O Interface Circuit  
www.onsemi.com  
12  
FNA41560T2  
HVIC  
(26) VB(U)  
P (3)  
U (4)  
VB(U)  
CBS  
CBS  
CBS  
CBSC  
(25) VS(U)  
VS(U)  
OUT(UH)  
VS(U)  
RS  
(20) IN  
(UH)  
IN(UH)  
Gating UH  
Gating VH  
Gating WH  
(24) VB(V)  
(23) VS(V)  
VB(V)  
CBSC  
VS(V)  
RS  
(19) IN  
(VH)  
OUT(VH)  
VS(V)  
IN(VH)  
V (5)  
(22) VB(W)  
(21) VS(W)  
M
VB(W)  
VS(W)  
CBSC  
RS  
(18) IN  
(WH)  
IN(WH)  
VDD  
CDCS  
VDC  
OUT(WH)  
VS(W)  
(17) VDD(H)  
(15) COM  
+15 V  
W (6)  
CPS CPS CPS  
CSPC15  
CSP15  
COM  
MCU  
+5 V  
LVIC  
(16) VDD(L)  
VDD  
VFO  
OUT(UL)  
RPF  
RSU  
NU (7)  
NV (8)  
NW (9)  
CSPC05  
CSP05  
RS  
(11) VFO  
Fault  
CPF  
CBP  
F
OUT(VL)  
RS  
(14) IN  
(UL)  
RSV  
Gating UL  
Gating VL  
Gating WL  
IN(UL)  
IN(VL)  
IN(WL)  
RS  
RS  
(13) IN  
(VL)  
(12) IN  
(WL)  
CSC  
OUT(WL)  
COM  
CSC  
(10) C  
CPS CP  
SC  
CPS  
S
RSW  
RF  
(1) VTH  
(2) RTH  
RTH  
THERMISTOR  
UPhase Current  
VPhase Current  
WPhase Current  
Input Signal for  
ShortCircuit Protection  
Temp. Monitoring  
Figure 14. Typical Application Circuit  
NOTES:  
12.To avoid malfunction, the wiring of each input should be as short as possible (less than 2 3 cm).  
13.V output is an opendrain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor  
FO  
that makes I up to 1 mA.  
FO  
14.C  
of around seven times larger than bootstrap capacitor C is recommended.  
SP15  
BS  
15.Input signal is activeHIGH type. There is a 5 kW resistor inside the IC to pull down each input signal line to GND. RC coupling circuits is  
recommanded for the prevention of input signal oscillation. R C time constant should be selected in the range 50 ~ 150 ns (recommended  
S
PS  
R
= 100 W, C = 1 nF).  
S
PS  
16.To prevent errors of the protection function, the wiring around RF and CSC should be as short as possible.  
17.In the shortcircuit protection circuit, please select the R C time constant in the range 1.5 ~ 2 ms. Do enough evaluaiton on the real system  
F
SC  
because shortcircuit protection time may vary wiring pattern layout and value of the R C time constant.  
F
SC  
18.The connection between control GND line and power GND line which includes the N , N , N must be connected to only one point. Please  
U
V
W
do not connect the control GND to the power GND by the broad pattern. Also, the wiring distance between control GND and power GND  
should be as short as possible.  
19.Each capacitor should be mounted as close to the pins of the Motion SPM 45 product as possible.  
20.To prevent surge destruction, the wiring between the smoothing capacitor and the P & GND pins should be as short as possible. The use  
of a highfrequency noninductive capacitor of around 0.1 ~ 0.22 mF between the P and GND pins is recommended.  
21.Relays are used in almost every systems of electrical equipment in home appliances. In these cases, there should be sufficient distance  
between the MCU and the relays.  
22.The zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each pair  
of control supply terminals (recommanded zener diode is 22 V / 1 W, which has the lower zener impedance characteristic than about 15 W).  
23.Please choose the electrolytic capacitor with good temperature characteristic in C . Also, choose 0.1 ~ 0.2 mF Rcategory ceramic  
BS  
capacitors with good temperature and frequency characteristics in C  
.
BSC  
www.onsemi.com  
13  
FNA41560T2  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
Package  
Shipping  
FNA41560T2  
FNA41560T2  
SPMAAC26 / 26LD, PDD STD CERAMIC TYPE,  
LONG LEAD DUAL FORM TYPE  
(PbFree)  
12 Units / Rail  
SPM is registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or  
other countries.  
www.onsemi.com  
14  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPMAAC26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL FORM TYPE  
CASE MODFC  
ISSUE O  
DATE 31 JAN 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13555G  
SPMAAC26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FNA41560_1010

Smart Power Module
FAIRCHILD

FNA51060T3

Motion SPM® 55 系列
ONSEMI

FNA51560T1

Motion SPMR 55 Series
FAIRCHILD

FNA51560T3

Motion SPMR 55 Series
FAIRCHILD

FNA51560T3

Motion SPM® 55 系列
ONSEMI

FNA51560TD3

Motion SPM® 55 系列
ONSEMI

FNA620048

Oscillator, 1MHz Min, 166MHz Max, 106.25MHz Nom,
PERICOM

FNA620049

Oscillator, 1MHz Min, 166MHz Max, 106.25MHz Nom,
PERICOM

FNA620052

XO, Clock, 1MHz Min, 166MHz Max, 106.25MHz Nom,
DIODES

FNB-0.1G

Micro EM Spring-Applied Brake
ETC

FNB-0.1K

Micro EM Spring-Applied Brake
ETC

FNB-0.2G

Micro EM Spring-Applied Brake
ETC