FND42060F2 [ONSEMI]

智能功率模块 (IPM),运动控制;
FND42060F2
型号: FND42060F2
厂家: ONSEMI    ONSEMI
描述:

智能功率模块 (IPM),运动控制

文件: 总15页 (文件大小:650K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Motion SPM) 45 Series  
FND42060F2  
General Description  
FND42060F2 is an advanced Motion SPM 45 module providing  
a fullyfeatured, highperformance inverter output stage for AC  
Induction, BLDC, and PMSM motors. These modules integrate  
optimized gate drive of the builtin IGBTs to minimize EMI and  
losses, while also providing multiple onmodule protection features  
including undervoltage lockouts, overcurrent shutdown, thermal  
monitoring, and fault reporting. The builtin, highspeed HVIC  
requires only a single supply voltage and translates the incoming  
logiclevel gate inputs to the highvoltage, highcurrent drive signals  
required to properly drive the module’s robust shortcircuitrated  
IGBTs. Separate negative IGBT terminals are available for each phase  
to support the widest variety of control algorithms.  
www.onsemi.com  
Features  
UL Certified No. E209204 (UL1557)  
600 V 20 A 3Phase IGBT Inverter with Integral Gate Drivers  
and Protection  
Low Thermal Resistance Using Ceramic Substrate  
LowLoss, ShortCircuit Rated IGBTs  
BuiltIn Bootstrap Diodes and Dedicated Vs Pins Simplify PCB  
Layout  
BuiltIn NTC Thermistor for Temperature Monitoring  
Separate OpenEmitter Pins from LowSide IGBTs for  
ThreePhase Current Sensing  
SPMAAC26  
CASE MODFC  
SingleGrounded Power Supply  
Figure 1. Package Overview  
(Click to Activate 3D Content)  
Optimized for 5 kHz Switching Frequency  
Isolation Rating: 4000 V /min  
rms  
Remove Dummy Pin  
MARKING DIAGRAM  
Applications  
XXXXXXXXXXX  
ZZZ ATYWW  
NNNNNNN  
Motion Control Home Appliance/Industrial Motor  
Related Resources  
®
AN9070 Motion SPM 45 Series Users Guide  
XXXX  
ZZZ  
AT  
Y
WW  
NNN  
= Specific Device Code  
= Lot ID  
= Assembly and Test Location  
= Year  
= Work Week  
= Serial Number  
®
AN9071 Motion SPM 45 Series Thermal Performance  
Information  
®
AN9072 Motion SPM 45 Series Mounting Guidance  
RD344 Reference Design (Three Shunt Solution)  
RD345 Reference Design (One Shunt Solution)  
ORDERING INFORMATION  
Integrated Power Functions  
600 V20 A IGBT inverter for threephase DC/AC  
power conversion (Refer to Figure 3)  
Device  
Package  
Shipping  
FND42060F2  
SPMAAJ26 12 Units/Rail  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
September, 2019 Rev. 3  
FND42060F2/D  
FND42060F2  
Integrated Drive, Protection and System Control  
Functions  
For inverter highside IGBTs: gate drive circuit,  
Fault signaling: corresponding to UVLO (lowside  
supply) and SC faults  
Input interface: activeHIGH interface, works with  
3.3/5 V logic, Schmitttrigger input  
highvoltage isolated highspeed level shifting control  
circuit UnderVoltage LockOut (UVLO) protection  
For inverter lowside IGBTs: gate drive circuit,  
ShortCircuit Protection (SCP) control supply circuit,  
UnderVoltage LockOut (UVLO) protection  
PIN CONFIGURATION  
V
V
(26)  
(25)  
B(U)  
V
R
(1)  
(2)  
TH  
S(U)  
TH  
V
V
(24)  
(23)  
B(V)  
S(V)  
P (3)  
U (4)  
V (5)  
W (6)  
V
V
(22)  
(21)  
B(W)  
S(W)  
Case temperature (T )  
C
IN (20)  
UH  
Detecting Point  
IN (19)  
IN  
VH  
(18)  
WH  
V
CC(H)  
V
CC(L)  
(17)  
(16)  
COM (15)  
IN  
(UL)  
(14)  
IN  
IN  
(13)  
(12)  
(VL)  
N
(7)  
U
(WL)  
V
FO  
(11)  
N (8)  
V
C
(10)  
SC  
N
(9)  
W
Figure 2. Top View  
www.onsemi.com  
2
 
FND42060F2  
PIN DESCRIPTIONS  
Pin Number  
Pin Name  
Pin Description  
1
V
R
Thermistor Bias Voltage  
TH  
TH  
2
Series Resistor for the Use of Thermistor (Temperature Detection)  
Positive DCLink Input  
3
P
U
V
4
Output for UPhase  
5
Output for VPhase  
6
W
Output for WPhase  
7
N
Negative DCLink Input for UPhase  
U
8
N
Negative DCLink Input for VPhase  
V
9
N
Negative DCLink Input for WPhase  
Capacitor (LowPass Filter) for Shortcircuit Current Detection Input  
Fault Output  
W
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
C
V
SC  
FO  
(WL)  
IN  
Signal Input for LowSide WPhase  
IN  
IN  
Signal Input for LowSide VPhase  
(VL)  
Signal Input for LowSide UPhase  
(UL)  
COM  
Common Supply Ground  
V
CC(L)  
CC(H)  
LowSide Common Bias Voltage for IC and IGBTs Driving  
HighSide Common Bias Voltage for IC and IGBTs Driving  
Signal Input for HighSide WPhase  
V
IN  
(WH)  
IN  
IN  
Signal Input for HighSide VPhase  
(VH)  
(UH)  
S(W)  
B(W)  
Signal Input for HighSide UPhase  
V
V
HighSide Bias Voltage Ground for WPhase IGBT Driving  
HighSide Bias Voltage for WPhase IGBT Driving  
HighSide Bias Voltage Ground for VPhase IGBT Driving  
HighSide Bias Voltage for VPhase IGBT Driving  
HighSide Bias Voltage Ground for UPhase IGBT Driving  
HighSide Bias Voltage for UPhase IGBT Driving  
V
S(V)  
V
B(V)  
V
S(U)  
V
B(U)  
www.onsemi.com  
3
FND42060F2  
INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS  
V
R
(1)  
(2)  
TH  
Thermister  
TH  
P (3)  
V
V
(26)  
(25)  
B(U)  
UVB  
UVS  
S(U)  
OUT(UH)  
UVS  
V
V
(24)  
(23)  
B(V)  
U (4)  
VVB  
VVS  
S(V)  
V
V
(22)  
(21)  
B(W)  
WVB  
WVS  
S(W)  
OUT(VH)  
VVS  
IN (20)  
UH  
V (5)  
IN(UH)  
IN(VH)  
IN(WH)  
IN (19)  
VH  
IN  
(18)  
WH  
V
CC(H)  
(17)  
VCC  
OUT(WH)  
WVS  
COM  
W (6)  
V
(16)  
CC(L)  
VCC  
OUT(UL)  
OUT(VL)  
OUT(WL)  
COM (15)  
COM  
N
(7)  
U
IN  
(14)  
(UL)  
IN(UL)  
IN(VL)  
IN(WL)  
VFO  
IN  
IN  
(13)  
(12)  
(VL)  
(WL)  
N (8)  
V
V
FO  
(11)  
C
(10)  
SC  
C(SC)  
N
(9)  
W
NOTES:  
1. Inverter highside is composed of three IGBTs, freewheeling diodes, and one control IC for each IGBT.  
2. Inverter lowside is composed of three IGBTs, freewheeling diodes, and one control IC for each IGBT. It has gate drive  
and protection functions.  
3. Inverter power side is composed of four inverter DClink input terminals and three inverter output terminals.  
Figure 3. Internal Block Diagram  
www.onsemi.com  
4
FND42060F2  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
J
Symbol  
Parameter  
Conditions  
Rating  
Unit  
INVERTER PART  
V
Supply Voltage  
Applied between PN , N , N  
450  
500  
600  
20  
V
V
V
A
A
PN  
PN(Surge)  
U
V
W
V
Supply Voltage (Surge)  
Applied between PN , N , N  
U V  
W
V
CES  
CollectorEmitter Voltage  
I
C
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
T
T
= 25°C, T 150°C  
J
C
I
= 25°C, T 150°C, Under 1 ms  
40  
CP  
C
J
Pulse Width  
P
C
Collector Dissipation  
T
C
= 25°C per Chip  
50  
W
T
J
Operating Junction Temperature  
(Note 2)  
40 150  
°C  
CONTROL PART  
V
Control Supply Voltage  
Applied between V  
, V COM  
CC(H) CC(L)  
20  
20  
V
V
CC  
V
HighSide Control Bias Voltage  
Applied between V  
V  
,
BS  
B(U)  
S(U)  
V  
S(V) B(W) S(W)  
V
V  
, V  
B(V)  
V
IN  
Input Signal Voltage  
Applied between IN  
, IN  
, IN  
,
0.3 V +0.3  
V
(UH)  
(VH)  
(WH)  
CC  
IN  
, IN  
, IN  
COM  
(UL)  
(VL)  
(WL)  
V
Fault Output Supply Voltage  
Fault Output Current  
Applied between V COM  
0.3 V +0.3  
V
mA  
V
FO  
FO  
CC  
I
Sink Current at V pin  
1
FO  
FO  
V
SC  
Current Sensing Input Voltage  
Applied between C COM  
0.3V +0.3  
SC  
CC  
BOOTSTRAP DIODE PART  
V
Maximum Repetitive Reverse Voltage  
Forward Current  
600  
0.50  
1.50  
V
A
A
RRM  
I
F
T
T
= 25°C, T 150°C  
J
C
I
Forward Current (Peak)  
= 25°C, T 150°C, Under 1 ms  
J
Pulse Width  
FP  
C
T
J
Operating Junction Temperature  
40 150  
°C  
TOTAL SYSTEM  
V
SelfProtection Supply Voltage Limit  
(ShortCircuit Protection Capability)  
V
J
= V = 13.5 V 16.5 V  
400  
V
PN(PROT)  
CC  
BS  
T = 150°C, Nonrepetitive, < 2 ms  
T
Storage Temperature  
Isolation Voltage  
40 125  
°C  
STG  
V
60 Hz, Sinusoidal, AC 1 minute,  
Connect Pins to Heat Sink Plate (Note 3)  
4000  
V
rms  
ISO  
1. The maximum junction temperature rating of the power chips integrated within the Motion SPM 45 product is 150°C.  
2. For the measurement point of case temperature (T ). Please refer to Figure 2.  
C
3. For the Recommend HeatSink Design, Please refer to Figure 11. if do not follow Recommend HeatSink Design, Viso is 2000 Vrms.  
THERMAL RESISTANCE  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
2.5  
Unit  
°C/W  
°C/W  
R
Junction to Case Thermal Resis-  
tance  
Inverter IGBT Part (per 1/6 module)  
Inverter FWDi Part (per 1/6 module)  
th(jc)Q  
R
3.6  
th(jc)F  
www.onsemi.com  
5
 
FND42060F2  
ELECTRICAL CHARACTERISTICS INVERTER PART (T = 25°C unless otherwise specified)  
J
Symbol  
Parameter  
Conditions  
= 20 A, T = 25°C  
Min.  
Typ.  
Max.  
Unit  
V
Collector Emitter Saturation  
V
V
= V = 15 V,  
I
C
1.85  
2.35  
V
CE(SAT)  
CC  
IN  
BS  
J
Voltage  
= 5 V  
V
FWDi Forward Voltage  
Switching Times  
V
V
= 0 V  
I = 20 A, T = 25°C  
0.45  
1.95  
0.75  
0.20  
0.70  
0.15  
0.15  
0.75  
0.20  
0.75  
0.15  
0.15  
2.45  
1.25  
0.45  
1.20  
0.40  
V
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
mA  
F
IN  
F
J
HS  
LS  
t
= 300 V, V = V = 15 V, I = 20 A,  
PN CC BS C  
ON  
T = 25°C  
J
t
C(ON)  
V
IN  
= 0 V 5 V, Inductive Load  
(Note 4)  
t
OFF  
t
C(OFF)  
t
rr  
t
V
PN  
= 300 V, V = V = 15 V, I = 20 A,  
0.45  
1.25  
0.45  
1.25  
0.40  
ON  
CC  
BS  
C
T = 25°C  
J
t
C(ON)  
V
IN  
= 0 V 5 V, Inductive Load  
(Note 4)  
t
OFF  
t
C(OFF)  
t
rr  
I
CollectorEmitter Leakage  
Current  
V
CE  
= V  
CES  
5
CES  
4. t and t  
include the propagation delay of the internal drive IC. t  
and t  
are the switching time of IGBT itself under the given  
ON  
OFF  
C(ON)  
C(OFF)  
gate driving condition internally. For the detailed information, please see Figure 4.  
100% I  
100% I  
C
C
t
rr  
I
C
I
C
V
CE  
V
CE  
V
IN  
V
IN  
t
ON  
t
OFF  
t
t
c(OFF)  
c(ON)  
10% I  
C
V
IN(ON)  
V
IN(OFF)  
10% V  
10% I  
CE  
C
90% I 10% V  
C
CE  
(a) turn on  
(b) turn off  
Figure 4. Switching Time Definition  
www.onsemi.com  
6
 
FND42060F2  
Inductive Load, V = 300 V, V = 15 V, T = 25°C  
Inductive Load, V = 300 V, V = 15 V, T = 150°C  
PN  
CC  
J
PN  
CC  
J
1200  
1100  
1000  
900  
1200  
1100  
1000  
900  
IGBT TurnON, E  
IGBT TurnON, E  
on  
on  
off  
IGBT TurnOFF, E  
IGBT TurnOFF, E  
IGBT TurnOFF, E  
off  
rec  
IGBT TurnOFF, E  
rec  
800  
800  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
0
2
4
6
8
10  
12  
14  
16 18  
20  
22  
0
2
4
6
8
10  
12  
14  
16 18  
20  
22  
COLLECTOR CURRENT, I [AMPERES]  
COLLECTOR CURRENT, I [AMPERES]  
C
C
Figure 5. Switching Loss Characteristics (Typical)  
CONTROL PART  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
I
Quiescent V Supply Current  
V
= 15 V,  
(UH,VH.WH)  
V
DD(H)  
V
CC(L)  
V
CC(H)  
COM  
COM  
COM  
0.10  
mA  
mA  
mA  
QCCH  
CC  
CC(H)  
IN  
= 0 V  
I
V
= 15 V,  
2.65  
0.15  
QCCL  
PCCH  
CC(L)  
IN  
= 0 V  
(UL,VL,WL)  
I
Operating V Supply Current  
V
CC(L)  
= 15 V, f  
= 20 kHz,  
CC  
PWM  
duty = 50%, Applied to one  
PWM Signal Input for HighSide  
I
V
= 15 V, f  
= 20 kHz,  
V
COM  
4.00  
0.30  
2.00  
mA  
mA  
mA  
PCCL  
CC(L)  
PWM  
CC(L)  
duty = 50%, Applied to one  
PWM Signal Input for LowSide  
I
Quiescent V Supply Current  
V
= 15 V,  
(UH,VH.WH)  
V
B(U)  
V
B(V)  
V
B(W)  
V  
S(V)  
V  
,
QBS  
BS  
BS  
S(U)  
IN  
= 0 V  
V  
,
,
,
S(W)  
I
Operating V Supply Current  
V
PWM  
= V = 15 V,  
V
B(U)  
V
B(V)  
V
B(W)  
V  
V  
,
PBS  
BS  
DD  
BS  
S(U)  
S(V)  
V  
f
= 20 kHz, duty = 50%,  
,
Applied to one PWM Signal  
Input for HighSide  
S(W)  
V
Fault Output Voltage  
V
V
V
= 0 V, V Circuit: 10 kW to 5 V Pullup  
4.5  
0.5  
0.55  
13.0  
13.5  
12.5  
13.0  
V
V
FOH  
SC  
SC  
CC  
FO  
V
= 1 V, V Circuit: 10 kW to 5 V Pullup  
FOL  
FO  
V
SC(ref)  
Short Circuit Trip Level  
= 15 V (Note 5)  
0.45  
10.5  
11.0  
10.0  
10.5  
30  
0.50  
V
UV  
Supply Circuit UnderVoltage  
Protection  
Detection Level  
Reset Level  
V
CCD  
CCR  
BSD  
BSR  
UV  
UV  
UV  
V
Detection Level  
Reset Level  
V
V
t
FaultOut Pulse Width  
ON Threshold Voltage  
OFF Threshold Voltage  
Resistance of Thermister  
ms  
V
FOD  
V
IN(ON)  
Applied between IN  
IN  
IN  
(VH),  
IN  
(WH),  
IN  
(UL),  
2.6  
(UH),  
COM  
IN  
(WL)  
(VL),  
V
0.8  
V
IN(OFF)  
R
@ T = 25°C (Note 6)  
47  
2.9  
kW  
kW  
TH  
TH  
@ T = 100°C  
TH  
5. Shortcircuit current protection os functioning only at the lowsides.  
6. T is the temperature of thermister itself. To know case temperature (T ), please make the experiment considering your application.  
TH  
C
www.onsemi.com  
7
 
FND42060F2  
RT Curve  
600  
RT Curve in 505C ~ 1255C  
550  
500  
20  
16  
12  
8
450  
400  
350  
300  
250  
200  
150  
100  
4
0
50  
60  
70  
80  
90  
100  
110  
120  
Temperature [5C]  
50  
0
20 10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120  
Temperature, T [5C]  
TH  
Figure 6. RT Curve of the BuiltIn Thermistor  
BOOTSTRAP DIODE PART  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
2.5  
80  
Max.  
Unit  
V
V
F
Forward Voltage  
I = 0.1 A, T = 25°C  
F
C
t
rr  
ReverseRecovery Time  
I = 0.1 A, T = 25°C  
ns  
F
C
BuiltIn Bootstrap Diode V I Characteristic  
F
F
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
T
C
= 25°C  
0.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
V
F
[V]  
NOTE: Builtin bootstrap diode includes around 15 W resistance characteristic.  
Figure 7. BuiltIn Bootstrap Diode Characteristics  
www.onsemi.com  
8
FND42060F2  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Supply Voltage  
Conditions  
Min.  
Typ.  
300  
Max.  
400  
Unit  
V
V
PN  
V
CC  
Applied between P N , N , N  
U
V
W
Control Supply Voltage  
Applied between V  
Applied between V  
COM, V  
COM  
13.5  
13.0  
15.0  
15.0  
16.5  
18.5  
V
CC(H)  
CC(L)  
V
BS  
HighSide Bias Voltage  
V , V  
S(U) B(V)  
V ,  
S(V)  
V
B(U)  
V
V  
B(W)  
S(W)  
dV /dt,  
Control Supply Variation  
1  
1
V/ms  
ms  
CC  
dV /dt  
BS  
t
Blanking Time for Preventing  
ArmShort  
For Each Input Signal  
40°C < T < 150°C  
1.5  
dead  
f
PWM Input Signal  
20  
4
kHz  
V
PWM  
J
V
SEN  
Voltage for Current Sensing  
Applied between N , N , N COM  
4  
U
V
W
(Including Surge Voltage)  
PW  
Minimum Input Pulse Width  
(Note 7)  
0.7  
0.7  
ms  
IN(ON)  
PW  
IN(OFF)  
7. This product might not make response if input pulse width is less than the recommended value.  
Allowable Maximum Output Current  
18  
f
= 5 kHz  
SW  
16  
14  
12  
10  
f
= 15 kHz  
SW  
8
6
V
= 300 V, V = V = 15 V,  
CC BS  
DC  
4
2
0
T
J
< 150°C, T 125°C  
C
M.I. = 0.9, P.F. = 0.8  
Sinusoidal PWM  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
Case Temperature, T [5C]  
C
NOTE: This allowable output current value is the reference data for the safe operation of this product. This may be  
different from the actual application and operating condition  
Figure 8. Allowable Maximum Output Current  
MECHANICAL CHARACTERISTICS AND RATINGS  
Value  
Min.  
0
Typ.  
Max.  
+120  
0.8  
Parameter  
Device Flatness  
Conditions  
Unit  
mm  
See Figure 9  
Mounting Torque  
Mounting Screw: M3  
See Figure 10  
Recommended 0.7 Nm  
Recommended 7.1 kgcm  
0.6  
6.2  
0.7  
Nm  
kgcm  
g
7.1  
8.1  
Weight  
11.00  
www.onsemi.com  
9
 
FND42060F2  
Figure 9. Flatness Measurement Position  
PreScrewing: 1 à 2  
Final Screwing: 2 à 1  
Figure 10. Mounting Screws Torque Order  
Figure 11. Recommended HeatSink Design  
NOTES:  
8. Do not make over torque when mounting screws. Much mounting torque may cause ceramic cracks, as well as bolts and Al heatsink  
destruction.  
9. Avoid one side tightening stress. Figure 10 shows the recommended torque order for mounting screws. Uneven mounting can cause the  
ceramic substrate of the SPM 45 package to be damaged. The prescrewing torque is set to 20 30% of maximum torque rating.  
www.onsemi.com  
10  
 
FND42060F2  
TIME CHARTS OF PROTECTIVE FUNCTION  
Input signal  
Protection  
Circuit State  
RESET  
a1  
SET  
RESET  
UV  
CCR  
a6  
Control  
Supply Voltage  
UV  
CCD  
a3  
a4  
a2  
a7  
Output Current  
a5  
Fault Output Signal  
a1: Control supply voltage rises: after the voltage rises UV  
a2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when next input is applied.  
CCR  
a3: Under voltage detection (UV  
).  
CCD  
a4: IGBT OFF in spite of control input condition.  
a5: Fault output operation starts.  
a6: Under voltage reset (UV  
).  
CCR  
a7: Normal operation: IGBT ON and carrying current.  
Figure 12. UnderVoltage Protection (LowSide)  
Input signal  
Protection  
Circuit State  
RESET  
b1  
SET  
RESET  
UV  
BSR  
b5  
Control  
Supply Voltage  
UV  
BSD  
b3  
b4  
b6  
b2  
Output Current  
Highlevel (no fault output)  
Fault Output Signal  
b1: Control supply voltage rises: after the voltage reaches UV  
b2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when next input is applied.  
BSR  
b3: Under voltage detection (UV  
).  
BSD  
b4: IGBT OFF in spite of control input condition, but there is no fault output signal.  
b5: Under voltage reset (UV ).  
BSR  
b6: Normal operation: IGBT ON and carrying current..  
Figure 13. UnderVoltage Protection (HighSide)  
www.onsemi.com  
11  
FND42060F2  
Lower Arms  
Control Input  
c6  
c7  
Protection  
Circuit State  
SET  
RESET  
c4  
c3  
Internal IGBT  
GateEmitter Voltage  
c2  
SC  
c1  
c8  
Output Current  
SC Reference Voltage  
Sensing Voltage  
of Shunt Resistance  
CR Circuit Time  
c5 Constant Delay  
Fault Output Signal  
(with the external sense resistance and CR connection)  
c1: Normal operation: IGBT ON and carrying current.  
c2: Shortcircuit current detection (SC trigger).  
c3: Hard IGBT gate interrupt.  
c4: IGBT turns OFF.  
c5: Input “LOW”:IGBT OFF state.  
c6: Input “HIGH”: IGBT ON state, but during the active period of fault output the IGBT doesn’t turn ON.  
c7: IGBT OFF state.  
Figure 14. ShortCircuit Protection (LowSide Operation Only)  
INPUT/OUTPUT INTERFACE CIRCUIT  
+5 V (for MCU and Control power)  
R
PF  
= 10 k  
SPM  
IN  
IN  
, IN  
, IN  
(UH)  
(VH)  
(WH)  
, IN  
(VL)  
, IN  
(WL)  
(UL)  
MCU  
VFO  
COM  
NOTE:  
10.RC coupling at each input (parts shown dotted) might change depending on the PWM control scheme in the application and the wiring  
impedance of the application’s printed circuit board. The input signal section of the Motion SPM 45 product integrates a 5 kW (typ.)  
pulldown resistor. Therefore, when using an external filtering resistor, pay attention to the signal voltage drop at input terminal.  
Figure 15. Recommended MCU I/O Interface Circuit  
www.onsemi.com  
12  
 
FND42060F2  
HVIC  
(26) VB(U)  
VB(U)  
P (3)  
U (4)  
CBS  
CBS  
CBS  
CBSC  
(25) VS(U)  
(20) IN(UH)  
VS(U)  
OUT(UH)  
VS(U)  
RS  
RS  
RS  
IN(UH)  
Gating UH  
Gating VH  
Gating WH  
(24) VB(V)  
(23) VS(V)  
VB(V)  
CBSC  
VS(V)  
(19) IN  
(VH)  
OUT(VH)  
VS(V)  
IN(VH)  
V (5)  
(22) VB(W)  
(21) VS(W)  
M
VB(W)  
VS(W)  
CBSC  
(18) IN(WH)  
(17) VCC(H)  
CDCS  
VDC  
IN(WH)  
VCC  
M
C
U
OUT(WH)  
VS(W)  
+15 V  
W (6)  
CPS CPS CPS  
CSPC15  
CSP15  
(15) COM  
COM  
+5 V  
LVIC  
(16) VCC(L)  
VCC  
VFO  
OUT(UL)  
RPF  
RSU  
NU (7)  
CSPC05  
CSP05  
RS  
(11) VFO  
Fault  
CPF  
CBPF  
OUT(VL)  
RS  
(14) IN(UL)  
(13) IN(VL)  
(12) IN(WL)  
RSV  
Gating UL  
Gating VL  
Gating WL  
IN(UL)  
IN(VL)  
IN(WL)  
NV (8)  
RS  
RS  
CSC  
OUT(WL)  
COM  
CSC  
(10) CSC  
(1) VTH  
(2) RTH  
CPS CPS  
CPS  
RSW  
NW (9)  
RF  
THERMISTOR  
RTH  
UPhase Current  
VPhase Current  
WPhase Current  
Input Signal for  
ShortCircuit Protection  
Temp. Monitoring  
NOTES:  
11. To avoid malfunction, the wiring of each input should be as short as possible. (less than 23 cm).  
)
12.By virtue of integrating an applicationspecific type of HVIC inside the Motion SPM 45 product, direct coupling to MCU terminals without  
any optocoupler or transformer isolation is possible.  
13.V output is opendrain type. The signal line should be pulled up to the positive side of the MCU or control power supply with a resistor  
FO  
that makes I up to 1 mA (please refer to Figure 15).  
FO  
14.Input signal is activeHIGH type. There is a 5 kW resistor inside the IC to pulldown each input signal line to GND. RC coupling circuits  
is recommended for the prevention of input signal oscillation. R C time constant should be selected in the range 50 150 ns  
S
PS  
(recommended R = 100 W, C = 1 nF).  
S
PS  
15.To prevent errors of the protection function, the wiring around R C time constant in the range 1.5 2 ms.  
F
SC  
16.The connection between control GND line and power GND line which includes the N , N , N must be connected to only one point.  
U
V
W
Please do not connect the control GND to the power GND by the broad pattern. Also, the wiring distance between control GND and power  
GND should be as short as possible.  
17.Each capacitor should be mounted as close to the pins of the Motion SPM 45 product as possible.  
18.To prevent surge destruction, the wiring between the smoothing capacitor and the P & GND pins should be as short as possible. The  
use of a highfrequency noninductive capacitor of around 0.1 0.22 ms between the P and GND pins is recommended.  
19.Relays are used in almost every systems of electrical equipment in home appliances. In these cases, there should be sufficient distance  
between the MCU and the relays.  
20.The zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each  
pair of control supply terminals (recommended zener diode is 22 V/1 W. which has the lower zener impedance characteristic than  
about 15 W).  
21.Please choose the electrolytic capacitor with good temperature characteristic in C . Also choose 0.1 0.2 mF Rcategory ceramic  
BS  
capacitors with good temperature and frequency characteristics in C  
.
BSC  
22.For the detailed information, please refer to the AN9070, AN9071, AN9072, RD344 and RD345.  
Figure 16. Typical Application Circuit  
SPM is registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or  
other countries.  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPMAAC26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL FORM TYPE  
CASE MODFC  
ISSUE O  
DATE 31 JAN 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13555G  
SPMAAC26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FND43060T2

智能功率模块,600V,30A
ONSEMI

FND500

Red GaAsP 0.5-inch 7-Segment Numeric LED Displays
ETC

FND507

Red GaAsP 0.5-inch 7-Segment Numeric LED Displays
ETC

FND560

Red GaAsP 0.5-inch 7-Segment Numeric LED Displays
ETC

FND566IDR

0.52 Dual Digit Displays
EVERLIGHT

FND566IDRL18

0.52 Dual Digit Displays
EVERLIGHT

FND567

Red GaAsP 0.5-inch 7-Segment Numeric LED Displays
ETC

FND5910

0.52 Dual Digit Displays
EVERLIGHT

FND5910/D566IDR/L18

0.52 Dual Digit Displays
EVERLIGHT

FND5910L18

0.52 Dual Digit Displays
EVERLIGHT

FND6G80.SMD

Smart/Normal 7 Seg Numeric LED Display, Green, 14.22mm, SMD, 10 PIN
EVERLIGHT

FND6H60.SMD

Smart/Normal 7 Seg Numeric LED Display, Red, 14.22mm, SMD, 10 PIN
EVERLIGHT