FOD3125TV [ONSEMI]

High Temperature, 2.5 A Output Current, Gate Drive Optocoupler;
FOD3125TV
型号: FOD3125TV
厂家: ONSEMI    ONSEMI
描述:

High Temperature, 2.5 A Output Current, Gate Drive Optocoupler

文件: 总18页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Temperature, 2.5 A  
Output Current, Gate Drive  
Optocoupler  
FOD3125  
Description  
The FOD3125 is a 2.5 A Output Current Gate Drive Optocoupler,  
capable of driving most medium IGBTs or MOSFETs across extended  
industrial temperature range, −40°C to 125°C. It is ideally suited for  
fast switching driving of power IGBTs and MOSFETs used in motor  
control inverter applications, and high performance power system.  
It utilizes ON Semiconductor patented coplanar packaging  
www.onsemi.com  
8
8
®
technology, Optoplanar , and optimized IC design to achieve high  
1
1
noise immunity, characterized by high common mode rejection.  
It consists of a gallium aluminum arsenide (AlGaAs) light emitting  
diode optically coupled to an integrated circuit with a high−speed  
driver for push−pull MOSFET output stage.  
PDIP8 GW  
CASE 709AD  
PDIP8 GW  
CASE 709AC  
Features  
8
8
Extended Industrial Temperate Range, −40°C to 125°C  
High Noise Immunity characterized by 35 kV/ms minimum Common  
Mode Rejection  
1
1
PDIP8 6.6x3.81, 2.54P PDIP8 9.655x6.6, 2.54P  
CASE 646BW CASE 646CQ  
2.5 A Peak Output Current Driving Capability for Most 1200 V/  
20 A IGBT  
Use of P−channel MOSFETs at Output Stage Enables Output Voltage  
Swing close to the Supply Rail  
FUNCTIONAL BLOCK DIAGRAM  
Wide Supply Voltage Range from 15 V to 30 V  
Fast Switching Speed  
1
2
3
4
8
NC  
ANODE  
CATHODE  
NC  
V
V
V
V
DD  
400 ns maximum Propagation Delay  
100 ns maximum Pulse Width Distortion  
Under Voltage LockOut (UVLO) with Hysteresis  
7
6
5
O2  
O1  
SS  
Safety and Regulatory Approvals  
UL1577, 5000 V  
for 1 minute  
RMS  
DIN EN/IEC60747−5−5 (pending approval)  
>8.0 mm Clearance and Creepage Distance (Option ‘T’ or ‘TS’)  
1,414 V Peak Working Insulation Voltage (VIORM)  
This is a Pb−Free Device  
Applications  
Note: A 0.1 mF bypass capacitor must be  
Industrial Inverter  
connected between pins 5 and 8.  
Uninterruptible Power Supply  
Induction Heating  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 13 of this data sheet.  
Isolated IGBT/Power MOSFET Gate Drive  
Table 1. TRUTH TABLE  
LED  
Off  
V
O
V
DD  
– V “Positive Going” (Turn−on)  
V
DD  
– V “Negative Going” (Turn−off)  
SS  
SS  
0 V to 30 V  
0 V to 11 V  
11 V to 14 V  
14 V to 30 V  
0 V to 30 V  
0 V to 9.7 V  
Low  
Low  
On  
On  
On  
9.7 V to 12.7 V  
12.7 V to 30 V  
Transition  
High  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
March, 2020 − Rev. 2  
FOD3125/D  
FOD3125  
Table 2. PIN DEFINITIONS  
Pin #  
Name  
Description  
1
2
3
4
NC  
Anode  
Cathode  
NC  
Not Connected  
LED Anode  
LED Cathode  
Not Connected  
5
6
7
8
Negative Supply Voltage  
VSS  
VO2  
VO1  
VDD  
Output Voltage 2 (internally connected to VO1  
Output Voltage 1  
)
Positive Supply Voltage  
Table 3. SAFETY AND INSULATION RATINGS  
As per DIN EN/IEC 60747−5−5 (pending approval). This optocoupler is suitable for “safe electrical insulation” only within the safety limit  
data. Compliance with the safety ratings shall be ensured by means of protective circuits.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Installation Classifications per DIN VDE 0110/1.89 Table 1  
For Rated Main Voltage < 150 Vrms  
I–IV  
I–IV  
For Rated Main Voltage < 300 Vrms  
For Rated Main Voltage < 450 Vrms  
For Rated Main Voltage < 600 Vrms  
For Rated Main Voltage < 1000 Vrms (option T, TS)  
Climatic Classification  
I–III  
I–III  
I–III  
40/125/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Comparative Tracking Index  
CTI  
175  
Input to Output Test Voltage, Method b,  
2651  
V
PR  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 second, Partial  
Discharge < 5 pC  
Input to Output Test Voltage, Method a,  
2262  
VIORM x 1.6 = VPR, Type and Sample Test with tm = 10 second, Partial  
Discharge < 5 pC  
Max Working Insulation Voltage  
1414  
6000  
8  
V
Vpeak  
Vpeak  
mm  
mm  
mm  
mm  
°C  
IORM  
V
Highest Allowable Over Voltage  
IOTM  
External Creepage  
External Clearance  
7.4  
10.16  
0.5  
175  
External Clearance (for Option T or TS, 0.4” Lead Spacing)  
Insulation Thickness  
TCase  
Case Temperature – Maximum Values Allowed in the Event of a Failure  
Input Current – Maximum Values Allowed in the Event of a Failure  
400  
mA  
I
S,INPUT  
Output Power (Duty Factor 2.7 %) – Maximum Values Allowed in the  
Event of a Failure  
700  
mW  
P
S,OUTPUT  
9
> 10  
W
Insulation Resistance at TS, VIO = 500 V – Maximum Values Allowed in the  
Event of a Failure  
R
IO  
www.onsemi.com  
2
FOD3125  
Table 4. ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified.)  
A
Symbol  
Parameter  
Value  
Units  
Storage Temperature  
−40 to +125  
°C  
T
STG  
Operating Temperature  
Junction Temperature  
−40 to +125  
−40 to +125  
260 for 10 sec  
°C  
°C  
°C  
T
OPR  
TJ  
Lead Wave Solder Temperature  
T
SOL  
(refer to page 12 for reflow solder profile)  
Average Input Current  
Operating Frequency (1)  
Reverse Input Voltage  
Peak Output Current (2)  
25  
50  
5
mA  
kHz  
V
I
F(AVG)  
f
VR  
3
A
V
I
O(PEAK)  
V
– V  
Supply Voltage  
0 to 35  
0 to 30  
0 to VDD  
500  
DD  
SS  
T
A
90°C  
Peak Output Voltage  
V
V
O(PEAK)  
Input Signal Rise and Fall Time  
Input Power Dissipation (3) (5)  
ns  
t
, t  
R(IN) F(IN)  
PDI  
45  
mW  
mW  
Output Power Dissipation (4) (5)  
PDO  
250  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Exponential Waveform, I  
2. Maximum pulse width = 10 ms, maximum duty cycle = 1.1 %.  
|2.5 A| 0.3 ms  
O(PEAK)  
3. Derate linearly above 87°C, free air temperature at a rate of 0.77 mW/°C.  
4. Derate linearly above 100°C, free air temperature at a rate of 5.7 mW/°C.  
5. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside  
these ratings.  
Table 5. RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Ambient Operating Temperature  
Value  
Units  
−40 to +125  
°C  
T
A
Power Supply  
15 to 30  
7 to 16  
0 to 0.8  
V
mA  
V
V
– V  
DD  
SS  
I
Input Current (ON)  
Input Voltage (OFF)  
F(ON)  
V
F(OFF)  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
Table 6. ISOLATION CHARACTERISTICS  
Apply over all recommended conditions, typical value is measured at T = 25°C  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
TA = 25°C, R.H.< 50 %, t = 1.0 minute,  
II−O 10 mA, 50 Hz (6) (7)  
5000  
V
RMS  
Input−Output Isolation Voltage  
V
ISO  
VI−O = 500 V (6)  
11  
10  
W
Isolation Resistance  
Isolation Capacitance  
R
C
ISO  
ISO  
VI−O = 0 V, Frequency = 1.0 MHz (6)  
1
pF  
6. Device is considered a two terminal device: pins 2 and 3 are shorted together and pins 5, 6, 7 and 8 are shorted together.  
7. 5,000 VRMS for 1 minute duration is equivalent to 6,000 VACRMS for 1 second duration.  
Table 7. ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Input Forward Voltage  
Conditions  
IF = 10 mA  
Min.  
Typ.  
1.5  
Max.  
Units  
V
VF  
1.1  
1.8  
D(VF / TA) Temperature Coefficient of Forward  
−1.8  
mV/°C  
Voltage  
5
BV  
Input Reverse Breakdown Voltage  
IR = 10 mA  
V
R
www.onsemi.com  
3
 
FOD3125  
Table 7. ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
CIN  
Parameter  
Conditions  
Min.  
Typ.  
20  
Max.  
Units  
pF  
Input Capacitance  
f = 1 MHz, VF = 0 V  
High Level Output Current (1)  
Low Level Output Current (1)  
IOH  
VO = VDD – 3 V  
−1.0  
−2.0  
1.0  
−2.0  
A
VO = VDD – 6 V  
IOL  
VOH  
VOL  
VO = VSS + 3 V  
2.0  
A
V
V
VO = VSS + 6 V  
2.0  
High Level Output Voltage  
Low Level Output Voltage  
IF = 10 mA, IO = −2.5 A  
IF = 10 mA, IO = −100 mA  
IF = 0 mA, IO = 2.5 A  
IF = 0 mA, IO = 100 mA  
VO = Open, IF = 7 to 16 mA  
VO = Open, VF = 0 to 0.8 V  
IO = 0 mA, VO > 5 V  
IO = 0 mA, VO < 5 V  
IF = 1 0mA, VO > 5 V  
IF = 10 mA, VO < 5 V  
VDD – 6.25 V VDD – 2.5 V  
VDD – 0.25 V VDD – 0.1 V  
VSS + 2.5 V VSS + 6.25 V  
VSS + 0.1 V VSS + 0.25 V  
IDDH  
IDDL  
High Level Supply Current  
2.8  
2.8  
2.3  
3.8  
3.8  
5.0  
mA  
mA  
mA  
V
Low Level Supply Current  
IFLH  
Threshold Input Current Low to High  
Threshold Input Voltage High to Low  
0.8  
VFHL  
VUVLO+  
VUVLO–  
11  
12.7  
11.2  
1.5  
14  
V
Under Voltage Lockout Threshold  
9.7  
12.7  
V
UVLOHYS Under Voltage Lockout Threshold  
Hysteresis  
V
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
8. Maximum pulse width = 10 ms, maximum duty cycle = 1.1 %.  
Table 8. SWITCHING CHARACTERISTICS  
Apply over all recommended conditions, typical value is measured at V = 30 V, V = Ground, T = 25°C unless otherwise specified.  
DD  
SS  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
150  
275  
400  
ns  
tPHL  
IF = 7 mA to 16 mA,  
Propagation Delay Time to Logic Low Output  
Rg = 10 W, Cg = 10 nF,  
f = 10 kHz, Duty Cycle = 50 %  
150  
255  
20  
400  
ns  
tPLH  
Propagation Delay Time to Logic High Output  
Pulse Width Distortion, | tPHL – tPLH |  
PWD  
100  
250  
ns  
ns  
PDD  
−250  
Propagation Delay Difference Between Any  
(9)  
(Skew)  
Two Parts or Channels, (tPHL – tPLH  
Output Rise Time (10% – 90%)  
Output Fall Time (90% – 10%)  
UVLO Turn On Delay  
)
tr  
60  
60  
ns  
ns  
tf  
IF = 10 mA , VO > 5 V  
IF = 10 mA , VO < 5 V  
1.6  
0.4  
50  
ms  
tUVLO ON  
tUVLO OFF  
| CMH |  
UVLO Turn Off Delay  
ms  
TA = 25°C, VDD = 30 V,  
IF = 7 to 16 mA, VCM = 2000 V (10)  
35  
35  
kV/ms  
Common Mode Transient Immunity at Output  
High  
| CML |  
TA = 25°C, VDD = 30 V, VF = 0 V,  
50  
kV/ms  
Common Mode Transient Immunity at Output  
Low  
V
CM = 2000 V (11)  
9. The difference between tPHL and tPLH between any two FOD3125 parts under same test conditions.  
10.Common mode transient immunity at output high is the maximum tolerable negative dVcm/dt on the trailing edge of the common mode  
impulse signal, Vcm, to assure that the output will remain high (i.e., VO > 15.0 V).  
11. Common mode transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal,  
Vcm, to assure that the output will remain low (i.e., VO < 1.0 V).  
www.onsemi.com  
4
 
FOD3125  
TYPICAL PERFORMANCE CURVES  
0.5  
0.0  
0.00  
−0.05  
−0.10  
−0.5  
−1.0  
−1.5  
−2.0  
−2.5  
−3.0  
o
T = −40 C  
A
−0.15  
−0.20  
−0.25  
−0.30  
o
T = 25 C  
A
Frequency = 250 Hz,  
Duty Cycle = 0.1%  
V
= 15 V to 30 V  
= 0V  
DD  
V
I = 7 mA to 16 mA  
SS  
F
I = 7 mA to 16 mA  
F
I = −100 mA  
O
V
= 15 V to 30 V  
= 0 V  
DD  
o
T = 125 C  
A
V
SS  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
−40 −20  
0
20  
40  
60  
80  
100 120  
o
I
− OUTPUT HIGH CURRENT (A)  
T − AMBIENT TEMPERATURE ( C)  
OH  
A
Figure 2. Output High Voltage Drop vs. Ambient  
Temperature  
Figure 1. Output High Voltage Drop vs. Output High  
Current  
4
8
Frequency = 250 Hz,  
f = 200 Hz  
Duty Cycle = 99.9%  
Duty Cycle = 0.2%  
V (off) = −3 V to 0.8 V  
V
− V  
= 15 V to 30 V  
F
DD  
SS  
V
V
= 15 V to 30 V  
= 0 V  
I = 7 mA to 16 mA  
3
2
1
0
6
4
2
0
DD  
F
SS  
o
T = 125 C  
A
V = V  
− 6 V  
DD  
O
V = V − 3 V  
O
DD  
o
T = 25 C  
A
o
T = −40 C  
A
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
−40 −20  
0
20  
40  
60  
80  
100 120  
o
I
− OUTPUT LOW CURRENT (A)  
T − AMBIENT TEMPERATURE ( C)  
OL  
A
Figure 4. Output Low Voltage vs. Output Low Current  
Figure 3. Output High Current vs. Ambient  
Temperature  
www.onsemi.com  
5
FOD3125  
8
6
4
2
0
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
V
= 15 V to 30 V  
= 0V  
f = 200 Hz  
Duty Cycle = 99.8%  
DD  
V
SS  
V
− V  
= 15 V to 30 V  
DD  
SS  
V = −3 V to 0.8 V  
F
I = 100 mA  
O
I = 7 mA to 16 mA  
F
V − V = 6 V  
O
SS  
V − V = 3 V  
O
SS  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
o
o
T − AMBIENT TEMPERATURE ( C)  
T − AMBIENT TEMPERATURE ( C)  
A
A
Figure 5. Output Low Voltage vs. Ambient  
Temperature  
Figure 6. Output Low Current vs. Ambient  
Temperature  
3.6  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.2  
2.8  
2.4  
2.0  
I
DDH  
I
DDH  
I
DDL  
I
DDL  
V
= 30 V  
= 0V  
I = 0 mA (for I  
)
DD  
F
DDL  
V
I = 10 mA (for I  
)
SS  
F
DDH  
V
SS  
= 0 V  
I = 0 mA (for I  
F
)
DDL  
T = 25°C  
A
I = 10 mA (for I  
F
)
DDH  
15  
20  
25  
30  
−40 −20  
0
20  
40  
60  
80  
100 120  
V
− SUPPLY VOLTAGE (V)  
o
DD  
T − AMBIENT TEMPERATURE ( C)  
A
Figure 8. Supply Current vs. Supply Voltage  
Figure 7. Supply Current vs. Ambient Temperature  
www.onsemi.com  
6
FOD3125  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
400  
350  
300  
250  
200  
150  
100  
V
= 15 V to 30V  
= 0 V  
DD  
I = 10 mA  
F
V
SS  
T = 25°C  
A
Output = Open  
R = 10 W, C = 10 nF  
g
g
f = 10 KHz,  
Duty Cycle = 50%  
t
PHL  
PLH  
t
−40 −20  
0
20  
40  
60  
80 100 120  
15  
18  
21  
24  
27  
30  
V
DD  
− SUPPLY VOLTAGE (V)  
T − AMBIENT TEMPERATURE (°C)  
A
Figure 10. Propagation Delay vs. Supply Voltage  
Figure 9. Low to High Input Current Threshold vs.  
Ambient Temperature  
400  
500  
V
= 30 V, V = 0 V  
SS  
DD  
I = 10 mA  
F
R = 10 W, C = 10 nF  
g
g
V
DD  
= 30 V, V = 0 V  
SS  
T = 25°C  
A
R = 10 W, C = 10 nF  
g
g
f = 10 KHz,  
Duty Cycle = 50%  
400  
300  
200  
100  
f = 10 KHz,  
Duty Cycle = 50%  
t
t
300  
200  
100  
PHL  
PLH  
t
PHL  
t
PLH  
6
8
10  
12  
14  
16  
−40 −20  
0
20  
40  
60  
80  
100 120  
I − LED FORWARD CURRENT (mA)  
F
T − AMBIENT TEMPERATURE (°C)  
A
Figure 12. Propagation Delay vs. Ambient  
Temperature  
Figure 11. Propagation Delay vs. LED Forward  
Current  
500  
500  
I = 10 mA  
F
I = 10 mA  
F
V
DD  
= 30 V, V = 0 V  
SS  
V
DD  
= 30 V, V = 0 V  
SS  
C = 10 nF  
g
R = 10 W  
g
400  
300  
200  
100  
T = 25°C  
400  
300  
200  
100  
T = 25°C  
Duty Cycle = 50%  
f = 10 kHz  
A
A
Duty Cycle = 50%  
f = 10 kHz  
t
PHL  
t
PHL  
t
PLH  
t
PLH  
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
100  
R − SERIES LOAD RESISTANCE (W)  
g
C − SERIES LOAD CAPACITANCE (nF)  
g
Figure 13. Propagation Delay vs. Series Load  
Resistance  
Figure 14. Propagation Delay vs. Load Capacitance  
www.onsemi.com  
7
FOD3125  
100  
10  
35  
30  
25  
20  
15  
10  
5
V
= 30 V  
DD  
T = 25°C  
A
T = 125°C  
A
1
T = −40°C  
A
0.1  
T = 25°C  
A
0.01  
0.001  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0
0
1
2
3
4
5
V − FORWARD VOLTAGE (V)  
F
I − FORWARD CURRENT (mA)  
F
Figure 16. Input Forward Current vs. Forward Voltage  
Figure 15. Transfer Characteristics  
15  
10  
5
(12.90V, 12.89 V)  
(11.50V, 11.50V)  
(12.85V,0 V)  
15  
(11.45V, 0V)  
10  
0
0
5
20  
V
DD  
− V − FORWARD VOLTAGE (V)  
SS  
Figure 17. Under Voltage Lockout  
www.onsemi.com  
8
FOD3125  
TEST CIRCUIT  
Power Supply  
+
V
= 15 V to 30 V  
DD  
+
C2  
47 mF  
C1  
0.1 mF  
Pulse Generator  
1
2
3
4
8
7
6
PW = 4.99 ms  
Period = 5 ms  
Pulse−In  
R
= 50 ꢀ  
OUT  
Iol  
R2  
100 ꢀ  
Power Supply  
V = 6 V  
+
+
C4  
47 mF  
C3  
0.1 mF  
D1  
VOL  
LED−IFmon  
5
R1  
100 ꢀ  
To Scope  
Test Conditions:  
Frequency = 200 Hz  
Duty Cycle = 99.8 %  
V
= 15 V to 30 V  
DD  
VSS = 0 V  
V
= −3.0 V to 0.8 V  
F(OFF)  
Figure 18. IOL Test Circuit  
Power Supply  
+
V
= 15 V to 30 V  
+
DD  
C2  
47 mF  
C1  
0.1 mF  
Pulse Generator  
1
8
7
PW = 10 ms  
Period = 5 ms  
Pulse−In  
R
= 50 ꢀ  
OUT  
+
2
3
4
Power Supply  
V = 6 V  
+
C4  
47 mF  
C3  
0.1 mF  
Ioh  
R2  
100 ꢀ  
6
D1  
VOH  
LED−IFmon  
Current  
Probe  
5
To Scope  
R1  
100 ꢀ  
Test Conditions:  
Frequency = 200 Hz  
Duty Cycle = 0.2 %  
= 15 V to 30 V  
= 0 V  
V
V
DD  
SS  
I
= 7 mA to 16 mA  
F
Figure 19. IOH Test Circuit  
www.onsemi.com  
9
FOD3125  
1
2
3
4
8
7
6
5
0.1 mF  
+
V
= 15 to 30 V  
= 15 to 30 V  
= 30 V  
I
= 7 to 16 mA  
DD  
F
V
O
100 mA  
Figure 20. VOH Test Circuit  
1
2
3
4
8
7
100 mA  
+
0.1 mF  
V
DD  
V
6
5
O
Figure 21. VOL Test Circuit  
1
2
3
4
8
7
6
5
0.1 mF  
+
V
I
= 7 to 16 mA  
DD  
F
V
O
Figure 22. IDDH Test Circuit  
1
2
3
4
8
7
6
5
0.1 mF  
+
+
V
= 30 V  
V
= 0 to 0.8 V  
DD  
F
V
O
Figure 23. IDDL Test Circuit  
www.onsemi.com  
10  
FOD3125  
1
2
3
4
8
7
6
5
0.1 mF  
+
V
= 15 to 30 V  
DD  
IF  
V
> 5 V  
O
Figure 24. IFLH Test Circuit  
1
2
3
4
8
7
6
5
0.1 mF  
+
+
V
= 15 to 30 V  
V
= 0 to 0.8 V  
DD  
F
V
O
Figure 25. VFHL Test Circuit  
1
2
3
4
8
7
6
5
0.1 F  
+
15 V or 30 V  
Ramp  
I
= 10 mA  
F
V
DD  
V
= 5 V  
O
Figure 26. UVLO Test Circuit  
www.onsemi.com  
11  
FOD3125  
1
2
3
4
8
7
6
5
0.1 mF  
V
O
+
V
= 15 to 30 V  
DD  
+
Rg = 10 W  
Probe  
50 W  
F = 10 kHz  
DC = 50 %  
Cg = 10 nF  
I
F
t
t
f
r
90 %  
50 %  
10 %  
V
OUT  
t
t
PHL  
PLH  
Figure 27. tPHL, tPLH, tR and tF Test Circuit and Waveforms  
1
2
3
4
8
7
6
5
I
F
A
B
0.1 mF  
+
V
= 30V  
DD  
+
V
5 V  
O
+ –  
V
= 2,000 V  
CM  
V
CM  
0V  
V
Dt  
V
O
O
OH  
Switch at A: I = 10 mA  
F
V
V
OL  
Switch at B: I = 0 mA  
F
Figure 28. CMR Test Circuit and Waveforms  
www.onsemi.com  
12  
FOD3125  
REFLOW PROFILE  
245C, 10–30 s  
300  
250  
200  
150  
100  
50  
260C peak  
Time above 183C, <160 sec  
Ramp up = 2–10C/sec  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time (Minute)  
Notes:  
Peak reflow temperature: 260 C (package surface temperature)  
Time of temperature higher than 183 C for 160 seconds or less  
One time soldering reflow is recommended  
Figure 29. Reflow Profile  
ORDERING INFORMATION  
Part Number  
Package  
Shipping  
FOD3125  
DIP 8−Pin  
SMT 8−Pin (Lead Bend)  
50 / Tube  
50 / Tube  
FOD3125S  
FOD3125SD  
FOD3125V  
SMT 8−Pin (Lead Bend)  
1,000 / Tape & Reel  
50 / Tube  
DIP 8−Pin, DIN EN/IEC 60747−5−5 option (pending approval)  
SMT 8−Pin (Lead Bend), DIN EN/IEC 60747−5−5 option (pending approval)  
SMT 8−Pin (Lead Bend), DIN EN/IEC 60747−5−5 option (pending approval)  
FOD3125SV  
FOD3125SDV  
FOD3125TV  
FOD3125TSV  
FOD3125TSR2V  
50 / Tube  
1,000 / Tape & Reel  
50 / Tube  
DIP 8−Pin, 0.4” Lead Spacing, DIN EN/IEC 60747−5−5 option (pending approval)  
SMT 8−Pin, 0.4” Lead Spacing, DIN EN/IEC 60747−5−5 option (pending approval)  
SMT 8−Pin, 0.4” Lead Spacing, DIN EN/IEC 60747−5−5 option (pending approval)  
50 / Tube  
1,000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D  
MARKING INFORMATION  
Definitions  
1
1
2
3
Company logo  
Device number  
ON  
2
6
3125  
V XX YY B  
DIN EN/IEC60747−5−5 Option (pending approval)  
(only appears on component ordered with this option)  
4
5
6
Two digit year code, e.g., ‘19’  
Two digit work week ranging from ‘01’ to ‘53’  
Assembly package code  
5
3
4
Figure 30. Device Marking  
www.onsemi.com  
13  
FOD3125  
CARRIER TAPE SPECIFICATIONS (OPTION SD)  
D0  
P0  
P2  
t
E
K0  
F
W
W1  
P
UserDirectionofFeed  
d
D1  
Figure 31. Carrier Tape Specifications  
Description  
Symbol  
Dimension in mm  
16.0 0.3  
0.30 0.05  
4.0 0.1  
W
t
Tape Width  
Tape Thickness  
P0  
D0  
E
Sprocket Hole Pitch  
Sprocket Hole Diameter  
Sprocket Hole Location  
Pocket Location  
1.55 0.05  
1.75 0.10  
7.5 0.1  
F
P2  
P
2.0 0.1  
Pocket Pitch  
12.0 0.1  
10.30 0.20  
10.30 0.20  
4.90 0.20  
13.2 0.2  
0.1 max  
A0  
B0  
K0  
W1  
d
Pocket Dimensions  
Cover Tape Width  
Cover Tape Thickness  
Max. Component Rotation or Tilt  
Min. Bending Radius  
10°  
R
30  
OPTOPLANAR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
www.onsemi.com  
14  
FOD3125  
PACKAGE DIMENSIONS (OPTION S)  
PDIP8 GW  
CASE 709AC  
ISSUE O  
www.onsemi.com  
15  
FOD3125  
PACKAGE DIMENSIONS (OPTION TS)  
PDIP8 GW  
CASE 709AD  
ISSUE O  
www.onsemi.com  
16  
FOD3125  
PACKAGE DIMENSIONS (OPTION T)  
PDIP8 6.6x3.81, 2.54P  
CASE 646BW  
ISSUE O  
www.onsemi.com  
17  
FOD3125  
PACKAGE DIMENSIONS  
PDIP8 9.655x6.6, 2.54P  
CASE 646CQ  
ISSUE O  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
TECHNICAL SUPPORT  
Email Requests to: orderlit@onsemi.com  
North American Technical Support:  
Voice Mail: 1 800−282−9855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  

相关型号:

FOD3125V

High Temperature, 2.5 A Output Current, Gate Drive Optocoupler
ONSEMI

FOD3150

High Noise Immunity, 1.0A Output Current, Gate Drive Optocoupler
FAIRCHILD

FOD3150

高抗噪能力、1.0A输出电流、栅极驱动光电耦合器
ONSEMI

FOD3150S

High Noise Immunity, 1.0A Output Current, Gate Drive Optocoupler
FAIRCHILD

FOD3150S

高抗噪能力、1.0A输出电流、栅极驱动光电耦合器
ONSEMI

FOD3150SD

High Noise Immunity, 1.0A Output Current, Gate Drive Optocoupler
FAIRCHILD

FOD3150SD

高抗噪能力、1.0A输出电流、栅极驱动光电耦合器
ONSEMI

FOD3150SDV

High Noise Immunity, 1.0A Output Current, Gate Drive Optocoupler
FAIRCHILD

FOD3150SDV

高抗噪能力、1.0A输出电流、栅极驱动光电耦合器
ONSEMI

FOD3150SV

High Noise Immunity, 1.0A Output Current, Gate Drive Optocoupler
FAIRCHILD

FOD3150SV

高抗噪能力、1.0A输出电流、栅极驱动光电耦合器
ONSEMI

FOD3150T

High Noise Immunity, 1.0A Output Current, Gate Drive Optocoupler
FAIRCHILD