FOD3150 [ONSEMI]

高抗噪能力、1.0A输出电流、栅极驱动光电耦合器;
FOD3150
型号: FOD3150
厂家: ONSEMI    ONSEMI
描述:

高抗噪能力、1.0A输出电流、栅极驱动光电耦合器

栅极驱动 光电
文件: 总18页 (文件大小:499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Gate Drive Optocoupler,  
High Noise Immunity,  
1.0 A Output Current  
FOD3150  
Description  
www.onsemi.com  
The FOD3150 is a 1.0 A Output Current Gate Drive Optocoupler,  
capable of driving most 800 V / 20 A IGBT / MOSFET. It is ideally  
suited for fast switching driving of power IGBT and MOSFETs used  
in motor control inverter applications, and high performance power  
system.  
It utilizes ON Semiconductor patented coplanar packaging  
technology, Optoplanar , and optimized IC design to achieve high  
noise immunity, characterized by high common mode rejection.  
It consists of a gallium aluminum arsenide (AlGaAs) light emitting  
diode optically coupled to an integrated circuit with a high−speed  
driver for push−pull MOSFET output stage.  
8
8
®
1
1
PDIP8 GW  
PDIP8 GW  
CASE 709AD  
CASE 709AC  
Features  
8
8
High Noise Immunity characterized by 20 kV/ms minimum Common  
Mode Rejection  
1
1
PDIP8 6.6x3.81, 2.54P PDIP8 9.655x6.6, 2.54P  
Use of P−channel MOSFETs at Output Stage Enables Output Voltage  
Swing close to the Supply Rail  
CASE 646BW CASE 646CQ  
Wide Supply Voltage Range from 15 V to 30 V  
FUNCTIONAL BLOCK DIAGRAM  
Fast Switching Speed  
500 ns maximum Propagation Delay  
300 ns maximum Pulse Width Distortion  
Under Voltage LockOut (UVLO) with Hysteresis  
1
2
3
4
8
NC  
ANODE  
CATHODE  
NC  
V
V
V
V
DD  
Extended Industrial Temperate Range, −40°C to 100°C Temperature  
Range  
7
6
5
O2  
O1  
SS  
Safety and Regulatory Approvals  
UL1577, 5000 V  
for 1 minute  
RMS  
DIN EN/IEC60747−5−5  
>8.0 mm Clearance and Creepage Distance (Option ‘T’)  
This is a Pb−Free Device  
Applications  
Industrial Inverter  
Note: A 0.1 mF bypass capacitor must be  
Uninterruptible Power Supply  
Induction Heating  
connected between pins 5 and 8.  
Isolated IGBT/Power MOSFET Gate Drive  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 12 of this data sheet.  
Related Resources  
FOD3120, 2.5 A Output Current, Gate Drive Optocoupler Datasheet  
www.onsemi.com/products/opto/  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
January, 2021 − Rev. 5  
FOD3150/D  
FOD3150  
Table 1. TRUTH TABLE  
LED  
Off  
V
O
V
DD  
– V “Positive Going” (Turn−on)  
V
– V “Negative Going” (Turn−off)  
SS  
DD SS  
0 V to 30 V  
0 V to 11 V  
11 V to 14 V  
14 V to 30 V  
0 V to 30 V  
0 V to 9.7 V  
Low  
Low  
On  
On  
On  
9.7 V to 12.7 V  
12.7 V to 30 V  
Transition  
High  
Table 2. PIN DEFINITIONS  
Pin #  
Name  
Description  
1
2
3
4
NC  
Anode  
Cathode  
NC  
Not Connected  
LED Anode  
LED Cathode  
Not Connected  
5
6
7
8
Negative Supply Voltage  
V
SS  
Output Voltage 2 (internally connected to VO1  
Output Voltage 1  
)
VO2  
VO1  
Positive Supply Voltage  
V
DD  
Table 3. SAFETY AND INSULATION RATINGS  
As per IEC 60747−5−2. This optocoupler is suitable for “safe electrical insulation” only within the safety limit data.  
Compliance with the safety ratings shall be ensured by means of protective circuits.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Installation Classifications per DIN VDE 0110/1.89 Table 1  
For Rated Main Voltage < 150 Vrms  
I–IV  
I–IV  
For Rated Main Voltage < 300 Vrms  
For Rated Main Voltage < 450 Vrms  
For Rated Main Voltage < 600 Vrms  
Climatic Classification  
I–III  
I–III  
55/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Comparative Tracking Index  
CTI  
175  
Input to Output Test Voltage, Method b,  
1669  
V
PR  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 s,  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a,  
1335  
VIORM x 1.5 = VPR, Type and Sample Test with tm = 60 s,  
Partial Discharge < 5 pC  
Max Working Insulation Voltage  
Highest Allowable Over Voltage  
External Creepage  
890  
6000  
8
V
Vpeak  
Vpeak  
mm  
IORM  
V
IOTM  
External Clearance  
7.4  
mm  
External Clearance (for Option T−0.4” Lead Spacing)  
Insulation Thickness  
10.16  
0.5  
mm  
mm  
TCase  
Safety Limit Values – Maximum Values Allowed in the Event of a Failure  
Case Temperature  
°C  
150  
Input Current  
25  
mA  
mW  
W
I
S,INPUT  
Output Power (Duty Factor 2.7 %)  
Insulation Resistance at TS, VIO = 500 V  
250  
P
S,OUTPUT  
9
10  
R
IO  
www.onsemi.com  
2
FOD3150  
Table 4. ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified.)  
A
Symbol  
Parameter  
Value  
Units  
Storage Temperature  
−55 to +125  
°C  
T
STG  
Operating Temperature  
Junction Temperature  
−40 to +100  
−40 to +125  
260 for 10 sec  
°C  
°C  
°C  
T
OPR  
TJ  
Lead Wave Solder Temperature  
T
SOL  
(refer to page 12 for reflow solder profile)  
Average Input Current  
Reverse Input Voltage  
Peak Output Current (1)  
25  
5
mA  
V
I
F(AVG)  
VR  
1.5  
A
I
O(PEAK)  
Supply Voltage  
0 to 35  
0 to VDD  
500  
V
V
V
– V  
DD  
SS  
Peak Output Voltage  
V
O(PEAK)  
Input Signal Rise and Fall Time  
Input Power Dissipation (2) (4)  
ns  
t
, t  
R(IN) F(IN)  
PDI  
45  
mW  
mW  
Output Power Dissipation (3) (4)  
PDO  
250  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Maximum pulse width = 10 ms, maximum duty cycle = 0.2 %.  
2. Derate linearly above 87°C, free air temperature at a rate of 0.77 mW/°C.  
3. No derating required across temperature range.  
4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside  
these ratings.  
Table 5. RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Ambient Operating Temperature  
Value  
Units  
−40 to +100  
°C  
T
A
Power Supply  
15 to 30  
7 to 16  
0 to 0.8  
V
mA  
V
V
– V  
DD  
SS  
I
Input Current (ON)  
Input Voltage (OFF)  
F(ON)  
V
F(OFF)  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
Table 6. ISOLATION CHARACTERISTICS  
Apply over all recommended conditions, typical value is measured at T = 25°C  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
TA = 25°C, R.H.< 50 %, t = 1.0 minute,  
II−O 10 mA, 50 Hz (5) (6)  
5000  
V
RMS  
Input−Output Isolation Voltage  
V
ISO  
VI−O = 500 V (5)  
11  
10  
W
Isolation Resistance  
Isolation Capacitance  
R
C
ISO  
ISO  
VI−O = 0 V, Frequency = 1.0 MHz (5)  
1
pF  
5. Device is considered a two terminal device: pins 2 and 3 are shorted together and pins 5, 6, 7 and 8 are shorted together.  
6. 5,000 VRMS for 1 minute duration is equivalent to 6,000 VACRMS for 1 second duration.  
Table 7. ELECTRICAL CHARACTERISTICS  
Apply over all recommended conditions, typical value is measured at V = 30 V, V = Ground, T = 25°C unless otherwise specified.  
DD  
SS  
A
Symbol  
Parameter  
Input Forward Voltage  
Conditions  
Min.  
Typ.  
Max.  
Units  
VF  
IF = 10 mA  
1.2  
1.5  
1.8  
V
D(VF / TA)  
−1.8  
mV/°C  
Temperature Coefficient of Forward  
Voltage  
5
BV  
Input Reverse Breakdown Voltage  
IR = 10 mA  
V
R
www.onsemi.com  
3
 
FOD3150  
Table 7. ELECTRICAL CHARACTERISTICS (continued)  
Apply over all recommended conditions, typical value is measured at V = 30 V, V = Ground, T = 25°C unless otherwise specified.  
DD  
SS  
A
Symbol  
Parameter  
Input Capacitance  
Conditions  
Min.  
Typ.  
Max.  
Units  
pF  
C
f = 1 MHz, VF = 0 V  
VO = VDD – 0.75 V  
60  
IN  
(7)  
(7)  
High Level Output Current  
I
0.2  
1.0  
A
OH  
VO = VDD – 4 V  
Low Level Output Current  
I
OL  
VO = VDD + 0.75 V  
0.2  
A
V
V
VO = VDD + 4 V  
1.0  
V
OH  
High Level Output Voltage  
Low Level Output Voltage  
IF = 10 mA, IO = −1 A  
IF = 10 mA, IO = −100 mA  
IF = 0 mA, IO = 1 A  
VDD – 6 V  
VDD – 0.5 V  
VDD – 4 V  
VDD – 0.1 V  
VSS + 4 V  
VSS + 0.1 V  
2.8  
V
OL  
VSS + 6 V  
IF = 0 mA, IO = 100 mA  
VO = Open, IF = 7 to 16 mA  
VO = Open, VF = 0 to 0.8 V  
IO = 0 mA, VO > 5 V  
VSS + 0.5 V  
I
High Level Supply Current  
Low Level Supply Current  
5
5
mA  
mA  
mA  
DDH  
I
2.8  
DDL  
I
2.3  
5.0  
FLH  
Threshold Input Current Low to High  
Threshold Input Voltage High to Low  
Under Voltage Lockout Threshold  
V
FHL  
IO = 0 mA, VO < 5 V  
0.8  
V
V
V
IF = 1 0mA, VO > 5 V  
IF = 10 mA, VO < 5 V  
11  
12.7  
11.2  
1.5  
14  
V
V
V
UVLO+  
9.7  
12.7  
UVLO–  
UVLOHYS  
Under Voltage Lockout Threshold Hys-  
teresis  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. Maximum pulse width = 10 ms, maximum duty cycle = 0.2 %.  
Table 8. SWITCHING CHARACTERISTICS  
Apply over all recommended conditions, typical value is measured at V = 30 V, V = Ground, T = 25°C unless otherwise specified.  
DD  
SS  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
100  
275  
500  
ns  
tPHL  
IF = 7 mA to 16 mA,  
Propagation Delay Time to Logic Low Output  
Rg = 20 W, Cg = 10 nF,  
f = 10 kHz, Duty Cycle = 50 %  
100  
255  
20  
500  
ns  
tPLH  
Propagation Delay Time to Logic High Output  
Pulse Width Distortion, | tPHL – tPLH |  
PWD  
300  
350  
ns  
ns  
PDD  
−350  
Propagation Delay Difference Between Any  
(8)  
(Skew)  
Two Parts or Channels, (t  
– t  
PLH  
)
PHL  
tr  
tf  
Output Rise Time (10% – 90%)  
Output Fall Time (90% – 10%)  
UVLO Turn On Delay  
60  
60  
ns  
ns  
IF = 10 mA , VO > 5 V  
IF = 10 mA , VO < 5 V  
1.6  
0.4  
50  
ms  
t
UVLO ON  
UVLO Turn Off Delay  
ms  
t
UVLO OFF  
| CMH |  
TA = 25°C, VDD = 30 V,  
IF = 7 to 16 mA, VCM = 2000 V (9)  
20  
20  
kV/ms  
Common Mode Transient Immunity at Output  
High  
| CML |  
TA = 25°C, VDD = 30 V, VF = 0 V,  
50  
kV/ms  
Common Mode Transient Immunity at Output  
Low  
V
CM = 2000 V (10)  
8. The difference between tPHL and tPLH between any two FOD3150 parts under same test conditions.  
9. Common mode transient immunity at output high is the maximum tolerable negative dVcm/dt on the trailing edge of the common mode  
impulse signal, Vcm, to assure that the output will remain high (i.e., VO > 15.0 V).  
10.Common mode transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal,  
Vcm, to assure that the output will remain low (i.e., VO < 1.0 V).  
www.onsemi.com  
4
FOD3150  
TYPICAL PERFORMANCE CURVES  
0.5  
0.0  
0.00  
Frequency = 250 Hz  
Duty Cycle = 0.1%  
VDD  
= 15 V to 30 V  
IF = 7 to 16 mA  
DD =15 to 30 V  
VSS = 0 V  
V
SS = 0 V  
V
−0.05  
−0.10  
−0.15  
−0.20  
−0.25  
−0.30  
IF = 7 mA to 16 mA  
IO = −100 mA  
−0.5  
−1.0  
−1.5  
−2.0  
TA =−40_C  
TA =25_C  
T
A =100 _ C  
0.00  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
IOH − OUTPUT HIGH CURRENT (A)  
−40  
−20  
0
20  
40  
60  
80  
100  
TA −AMBIENT TEMPERATURE (_C)  
Figure 1. Output High Voltage Drop vs. Output High  
Current  
Figure 2. Output High Voltage Drop vs. Ambient  
Temperature  
0.25  
2.0  
Frequency = 250 Hz  
Duty Cycle = 99.9%  
VF(OFF) = −3.0 V to 0.8 V  
VDD = 15 V to 30 V  
VDD = 15 V to 30 V  
V
SS = 0 V  
= −3 V to 0.8 V  
TA = 100_C  
VF(OFF)  
IO = 100 mA  
0.20  
0.15  
0.10  
0.05  
0.00  
VSS = 0 V  
1.5  
TA =25 _C  
1.0  
TA =−40 _C  
0.5  
0.0  
0.00  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
−40  
−20  
0
20  
40  
60  
80  
100  
IOL −OUTPUT LOW CURRENT (A)  
TA −AMBIENT TEMPERATURE (_C)  
Figure 4. Output Low Voltage vs. Ambient  
Temperature  
Figure 3. Output Low Voltage vs. Output Low Current  
3.6  
3.6  
VDD = 30 V  
IF = 10 mA (for IDDH  
)
V
SS = 0 V  
F = 0 mA (for IDDL  
IF = 10 mA (for IDDH  
I
V
F = 0 mA (for I DDL  
SS =0, TA = 25_C  
)
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
I
)
)
3.2  
2.8  
2.4  
2.0  
IDDH  
IDDH  
IDDL  
IDDL  
−40  
−20  
0
20  
04  
60  
80  
100  
15  
20  
25  
30  
TA −AMBIENT TEM  
PERATURE(_C)  
VDD −SUPPLY VOLTAGE (V)  
Figure 5. Supply Current vs. Ambient Temperature  
Figure 6. Supply Current vs. Supply Voltage  
www.onsemi.com  
5
FOD3150  
400  
350  
300  
250  
200  
150  
100  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
IF = 10 mA  
VDD = 15 V to 30 V  
VSS = 0 V  
Output = Open  
T
A = 25_C  
Rg=20 W ,Cg = 10 nF  
DUTYCYCLE = 50%  
f = 10 kHz  
tPHL  
tPLH  
15  
18  
21  
24  
27  
30  
−40  
−20  
0
20  
40  
60  
80  
100  
VDD –SUPPLY VOLTAGE (V)  
TA −AMBIENT TEMPERATURE (_C)  
Figure 8. Propagation Delay vs. Supply Voltage  
Figure 7. Low to High Input Current Threshold vs.  
Ambient Temperature  
500  
500  
IF = 10 mA  
VDD = 30 V, VSS = 0 V  
VDD = 30 V, VSS = 0 V  
Rg =20 ,Cg= 10 nF  
W
TA = 25_C  
Rg= 20 , Cg = 10 nF  
W
DUTY CYCLE = 50%  
f = 10 kHz  
DUTY CYCLE = 50%  
f = 10 kHz  
400  
300  
200  
100  
400  
300  
200  
100  
tPHL  
tPHL  
tPLH  
tPLH  
6
8
1 0  
12  
14  
16  
−40  
−20  
0
20  
40  
60  
80  
100  
IF –FORWARD LED CURRENT (mA)  
TA –AMBIENT TEMPERATURE (_C)  
Figure 10. Propagation Delay vs. Ambient  
Temperature  
Figure 9. Propagation Delay vs. LED Forward Current  
500  
500  
IF = 10 mA  
IF = 10 mA  
VDD = 30 V, VSS = 0 V  
VDD = 30 V, VSS = 0 V  
Cg = 10 nF  
Rg= 20  
W
TA = 25_C  
TA = 25_C  
400 DUTY CYCLE = 50%  
f = 10 kHz  
400 DUTY CYCLE = 50%  
f = 10 kHz  
300  
300  
200  
100  
tPHL  
tPLH  
tPHL  
tPLH  
200  
100  
01  
0
203  
04  
05  
0
0
20  
40  
60  
80  
100  
Cg −LOAD CAPACITANCE (nF)  
Rg −SERIES LOAD RESISTANCE(W)  
Figure 11. Propagation Delay vs. Series Load  
Resistance  
Figure 12. Propagation Delay vs. Load Capacitance  
www.onsemi.com  
6
FOD3150  
35  
30  
25  
20  
15  
10  
5
100  
10  
T
A = 25_C  
V
DD = 30 V  
TA = 100 _C  
1
TA =−40_C  
0.1  
TA =25_C  
0.01  
0.001  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VF −FORWARD VOLTAGE (V)  
0
0
1
2
3
4
5
IF –FORWARD LED CURRENT (mA)  
Figure 14. Input Forward Current vs. Forward Voltage  
Figure 13. Transfer Characteristics  
14  
(12.75,12.80)  
12  
(11.25,11.30)  
10  
8
6
4
2
(11.20,0. 00)  
10  
(12. 70,0.00)  
15  
0
0
5
20  
(VDD VSS)–SUPPLY VOLTAGE (V)  
Figure 15. Under Voltage Lockout  
www.onsemi.com  
7
FOD3150  
TEST CIRCUIT  
Power Supply  
+
V
= 15 V to 30 V  
DD  
+
C2  
47 mF  
C1  
0.1 mF  
Pulse Generator  
1
2
3
4
8
7
6
PW = 4.99 ms  
Period = 5 ms  
Pulse−In  
R
= 50 ꢀ  
OUT  
Iol  
R2  
100 ꢀ  
Power Supply  
V = 4 V  
+
+
C4  
47 mF  
C3  
0.1 mF  
D1  
VOL  
LED−IFmon  
5
R1  
100 ꢀ  
To Scope  
Test Conditions:  
Frequency = 200 Hz  
Duty Cycle = 99.8 %  
V
V
V
= 15 V to 30 V  
DD  
SS = 0 V  
= −3.0 V to 0.8 V  
F(OFF)  
Figure 16. IOL Test Circuit  
Power Supply  
+
V
= 15 V to 30 V  
+
DD  
C2  
47 mF  
C1  
0.1 mF  
Pulse Generator  
1
8
7
PW = 10 ms  
Period = 5 ms  
Pulse−In  
R
= 50 ꢀ  
OUT  
+
2
3
4
Power Supply  
V = 4 V  
+
C4  
47 mF  
C3  
0.1 mF  
Ioh  
R2  
100 ꢀ  
6
D1  
VOH  
LED−IFmon  
Current  
Probe  
5
To Scope  
R1  
100 ꢀ  
Test Conditions:  
Frequency = 200 Hz  
Duty Cycle = 0.2 %  
= 15 V to 30 V  
= 0 V  
V
V
DD  
SS  
I
= 7 mA to 16 mA  
F
Figure 17. IOH Test Circuit  
www.onsemi.com  
8
FOD3150  
1
2
3
4
8
7
6
5
0.1 mF  
+
V
= 15 to 30 V  
= 15 to 30 V  
= 30 V  
I
= 7 to 16 mA  
DD  
F
V
O
100 mA  
Figure 18. VOH Test Circuit  
1
2
3
4
8
7
100 mA  
+
0.1 mF  
V
DD  
V
6
5
O
Figure 19. VOL Test Circuit  
1
2
3
4
8
7
6
5
0.1 mF  
+
V
I
= 7 to 16 mA  
DD  
F
V
O
Figure 20. IDDH Test Circuit  
1
2
3
4
8
7
6
5
0.1 mF  
+
+
V
= 30 V  
V
= 0 to 0.8 V  
DD  
F
V
O
Figure 21. IDDL Test Circuit  
www.onsemi.com  
9
FOD3150  
1
2
3
4
8
7
6
5
0.1 mF  
+
V
= 15 to 30 V  
DD  
IF  
V
> 5 V  
O
Figure 22. IFLH Test Circuit  
1
2
3
4
8
7
6
5
0.1 mF  
+
+
V
= 15 to 30 V  
V
= 0 to 0.8 V  
DD  
F
V
O
Figure 23. VFHL Test Circuit  
1
2
3
4
8
0.1 mF  
7
6
5
+
15 V or 30 V  
Ramp  
I
= 10 mA  
F
V
DD  
V
= 5 V  
O
Figure 24. UVLO Test Circuit  
www.onsemi.com  
10  
FOD3150  
1
2
3
4
8
7
6
5
0.1 mF  
V
O
+
V
= 15 to 30 V  
DD  
+
Rg = 20 W  
Probe  
50 W  
F = 10 kHz  
DC = 50 %  
Cg = 10 nF  
I
F
t
t
f
r
90 %  
50 %  
10 %  
V
OUT  
t
t
PHL  
PLH  
Figure 25. tPHL, tPLH, tR and tF Test Circuit and Waveforms  
1
2
3
4
8
7
6
5
I
F
A
B
0.1 mF  
+
V
= 30V  
DD  
+
V
5 V  
O
+ –  
V
= 2,000 V  
CM  
V
CM  
0V  
V
Dt  
V
O
O
OH  
Switch at A: I = 10 mA  
F
V
V
OL  
Switch at B: I = 0 mA  
F
Figure 26. CMR Test Circuit and Waveforms  
www.onsemi.com  
11  
FOD3150  
REFLOW PROFILE  
245°C, 10–30 s  
300  
250  
200  
150  
100  
50  
260°C peak  
Time above 183°C, <160 sec  
Ramp up = 2–100°C/sec  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time (Minute)  
Notes:  
Peak reflow temperature: 260°C (package surface temperature)  
Time of temperature higher than 183°C for 160 seconds or less  
One time soldering reflow is recommended  
Figure 27. Reflow Profile  
ORDERING INFORMATION  
Part Number  
FOD3150  
Package  
Shipping  
DIP 8−Pin  
50 / Tube  
50 / Tube  
FOD3150S  
SMT 8−Pin (Lead Bend)  
FOD3150SD  
SMT 8−Pin (Lead Bend)  
1,000 / Tape & Reel  
50 / Tube  
FOD3150V  
DIP 8−Pin, IEC60747−5−5 option  
FOD3150SV  
SMT 8−Pin (Lead Bend), IEC60747−5−5 option  
SMT 8−Pin (Lead Bend), IEC60747−5−5 option  
DIP 8−Pin, 0.4” Lead Spacing, IEC60747−5−5 option  
SMT 8−Pin, 0.4” Lead Spacing, IEC60747−5−5 option  
SMT 8−Pin, 0.4” Lead Spacing, IEC60747−5−5 option  
50 / Tube  
FOD3150SDV  
FOD3150TV  
1,000 / Tape & Reel  
50 / Tube  
FOD3150TSV  
FOD3150TSR2V  
50 / Tube  
700 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D  
MARKING INFORMATION  
Definitions  
1
1
2
3
ON Semiconductor logo  
Device number  
ON  
2
6
3150  
V XX YY B  
IEC60747−5−5 Option (only appears on component  
ordered with this option)  
4
5
6
Two digit year code, e.g., ‘18’  
Two digit work week ranging from ‘01’ to ‘53’  
Assembly package code  
5
3
4
Figure 28. Device Marking  
www.onsemi.com  
12  
FOD3150  
CARRIER TAPE SPECIFICATIONS  
D0  
P0  
P2  
t
E
K0  
F
W
W1  
P
UserDirectionofFeed  
d
D1  
Figure 29. Carrier Tape Specifications  
Symbol  
Description  
Dimension in mm  
16.0 0.3  
0.30 0.05  
4.0 0.1  
W
t
Tape Width  
Tape Thickness  
P0  
D0  
E
Sprocket Hole Pitch  
Sprocket Hole Diameter  
Sprocket Hole Location  
Pocket Location  
1.55 0.05  
1.75 0.10  
7.5 0.1  
F
P2  
P
2.0 0.1  
Pocket Pitch  
12.0 0.1  
10.30 0.20  
10.30 0.20  
4.90 0.20  
13.2 0.2  
0.1 max  
A0  
B0  
K0  
W1  
d
Pocket Dimensions  
Cover Tape Width  
Cover Tape Thickness  
Max. Component Rotation or Tilt  
Min. Bending Radius  
10°  
R
30  
OPTOPLANAR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8 6.6x3.81, 2.54P  
CASE 646BW  
ISSUE O  
DATE 31 JUL 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13445G  
PDIP8 6.6X3.81, 2.54P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8 9.655x6.6, 2.54P  
CASE 646CQ  
ISSUE O  
DATE 18 SEP 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13446G  
PDIP8 9.655X6.6, 2.54P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8 GW  
CASE 709AC  
ISSUE O  
DATE 31 JUL 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13447G  
PDIP8 GW  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8 GW  
CASE 709AD  
ISSUE O  
DATE 31 JUL 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13448G  
PDIP8 GW  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY