FOD3182S [ONSEMI]

3 A 输出电流,高速 MOSFET 门极驱动器光耦合器;
FOD3182S
型号: FOD3182S
厂家: ONSEMI    ONSEMI
描述:

3 A 输出电流,高速 MOSFET 门极驱动器光耦合器

驱动 输出元件 光电 驱动器
文件: 总21页 (文件大小:447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
3 A Output Current, High  
Speed MOSFET Gate Driver  
Optocoupler  
PDIP8 6.6x3.81, 2.54P  
CASE 646BW  
8
1
PDIP8 9.655x6.61, 2.54P  
CASE 646CQ  
FOD3182  
8
8
1
1
1
Description  
The FOD3182 is a 3 A Output Current, High Speed MOSFET Gate  
Drive Optocoupler. It consists of a aluminium gallium arsenide  
(AlGaAs) light emitting diode optically coupled to a CMOS detector  
with PMOS and NMOS output power transistors integrated circuit  
power stage. It is ideally suited for high frequency driving of power  
MOSFETS used in Plasma Display Panels (PDPs), motor control  
inverter applications and high performance DC/DC converters.  
The device is packaged in an 8pin dual inline housing compatible  
with 260°C reflow processes for lead free solder compliance.  
PDIP8 GW  
CASE 709AC  
PDIP8 GW  
CASE 709AD  
8
MARKING DIAGRAM  
Features  
High Noise Immunity Characterized by 50 kV/ms (Typ.) Common  
ON  
3182  
Mode Rejection @ V = 2,000 V  
CM  
VXXYYB  
Guaranteed Operating Temperature Range of 40°C to +100°C  
3 A Peak Output Current  
3182 = Device Number  
= VDE Mark (Note: Only appears on parts  
ordered with DIN EN/IEC 6074752 option See  
V
Fast Switching Speed  
210 ns Max. Propagation Delay  
65 ns Max. Pulse Width Distortion  
Fast Output Rise/Fall Time  
ordering table)  
XX  
YY  
B
= Two Digit Year Code, e.g., “11”  
= Digit Work Week Ranging from “01” to “53”  
= Assembly Package Code  
Offers Lower Dynamic Power Dissipation  
250 kHz Maximum Switching Speed  
Wide V  
perating Range: 10 V to 30 V  
DD O  
Use of PChannel MOSFETs at Output Stage Enables Output  
Voltage Swing Close to the Supply Rail (RailtoRail Output)  
5000 Vrms, 1 Minute Isolation  
FUNCTIONAL BLOCK DIAGRAM  
1
2
3
4
8
7
6
5
NC  
ANODE  
CATHODE  
NC  
VDD  
VO2  
VO1  
VSS  
Under Voltage Lockout Protection (UVLO) with Hysteresis –  
Optimized for Driving MOSFETs  
Minimum Creepage Distance of 8.0 mm  
Minimum Clearance Distance of 10 mm to 16 mm (Option TV or  
TSV)  
Minimum Insulation Thickness of 0.5 mm  
UL and VDE*  
1,414 Peak Working Insulation Voltage (V  
)
IORM  
NOTE: A 0.1 mF bypass capacitor must be  
*Requires “V” Ordering Option  
connected between pins 5 and 8.  
Applications  
Plasma Display Panel  
High Performance DC/DC Convertor  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 16 of  
this data sheet.  
High Performance Switch Mode Power Supply  
High Performance Uninterruptible Power Supply  
Isolated Power MOSFET Gate Drive  
© Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
September, 2021 Rev. 2  
FOD3182/D  
FOD3182  
TRUTH TABLE  
LED  
Off  
V
DD  
– V “Positive Going” (Turnon)  
V
DD  
– V “Negative Going” (Turnoff)  
V
O
SS  
SS  
0 V to 30 V  
0 V to 7.4 V  
7.4 V to 9 V  
9 V to 30 V  
0 V to 30 V  
0 V to 7 V  
Low  
Low  
On  
On  
On  
7 V to 8.5 V  
8.5 V to 30 V  
Transition  
High  
PIN DEFINITIONS  
Pin No.  
Name  
NC  
Description  
1
2
Not Connected  
LED Anode  
Anode  
3
4
5
6
7
8
Cathode  
NC  
LED Cathode  
Not Connected  
Negative Supply Voltage  
V
SS  
V
O2  
V
O1  
DD  
Output Voltage 2 (internally connected to V  
)
O1  
Output Voltage 1  
V
Positive Supply Voltage  
SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 6074752. This optocoupler is suitable for “safe electrical insulation”  
only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Installation Classications per DIN VDE 0110/1.89 Table 1  
For Rated Mains Voltage < 150 Vrms  
I–IV  
For Rated Mains Voltage < 300 Vrms  
For Rated Mains Voltage < 450 Vrms  
For Rated Mains Voltage < 600 Vrms  
For Rated Mains Voltage < 1000 Vrms (Option T, TS)  
Climatic Classication  
I–IV  
I–III  
I–III  
I–III  
40/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
Comparative Tracking Index  
2
CTI  
175  
2651  
V
PR  
Input to Output Test Voltage, Method b,  
V
x 1.875 = V , 100% Production Test with tm = 1 second,  
IORM  
PR  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a,  
2121  
V
x 1.5 = V , Type and Sample Test with tm = 60 seconds,  
IORM  
PR  
Partial Discharge < 5 pC  
V
Max Working Insulation Voltage  
Highest Allowable Over Voltage  
External Creepage  
1,414  
6000  
8
V
IORM  
peak  
V
V
peak  
IOTM  
mm  
mm  
mm  
mm  
External Clearance  
7.4  
External Clearance (for Option T or TS 0.4” Lead Spacing)  
Insulation Thickness  
10.16  
0.5  
Safety Limit Values – Maximum Values Allowed in the Event of a Failure  
Case Temperature  
T
150  
25  
°C  
mA  
mW  
W
Case  
I
Input Current  
S,INPUT  
P
Output Power (Duty Factor 2.7%)  
250  
S,OUTPUT  
9
R
Insulation Resistance at T , V = 500 V  
10  
IO  
S
IO  
www.onsemi.com  
2
FOD3182  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
A
Symbol  
Parameter  
Value  
Unit  
°C  
°C  
°C  
°C  
mA  
ns  
V
T
Storage Temperature  
Operating Temperature  
Junction Temperature  
40 to +125  
STG  
OPR  
T
40 to +100  
T
J
40 to +125  
T
SOL  
Lead Solder Temperature – Wave Solder (Refer to Reflow Temperature Profile, page 15)  
Average Input Current (Note 1)  
260 for 10 seconds  
I
25  
F(AVG)  
I
LED Current Minimum Rate of Rise/Fall  
Reverse Input Voltage  
250  
F(tr, tf)  
V
R
5
I
“High” Peak Output Current (Note 2)  
“Low” Peak Output Current (Note 2)  
Supply Voltage  
3
3
A
OH(PEAK)  
I
A
OL(PEAK)  
V
– V  
0.5 to 35  
V
DD  
SS  
V
Output Voltage  
0 to V  
V
O(PEAK)  
DD  
P
P
Output Power Dissipation (Note 3)  
Total Power Dissipation (Note 4)  
250  
295  
mW  
mW  
O
D
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Derate linearly above +79°C free air temperature at a rate of 0.37mA/°C.  
2. Maximum pulse width = 10 ms, maximum duty cycle = 11%.  
3. Derate linearly above +79°C, free air temperature at the rate of 5.73 mW/°C.  
4. No derating required across operating temperature range.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Value  
10 to 30  
10 to 16  
3.0 to 0.8  
Unit  
V
V
DD  
– V  
Power Supply  
SS  
I
Input Current (ON)  
Input Voltage (OFF)  
mA  
V
F(ON)  
V
F(OFF)  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
3
 
FOD3182  
ELECTRICALOPTICAL CHARACTERISTICS (DC) (Apply over all recommended conditions, typical value is measured at  
V
DD  
= 30 V, V = 0 V, T = 25°C, unless otherwise specified.)  
SS A  
Symbol  
Parameter  
Test Conditions  
= (V – V – 1 V)  
Min  
0.5  
2.5  
0.5  
2.5  
Typ  
0.9  
Max  
Unit  
I
High Level Output Current  
V
OH  
V
OH  
V
OL  
V
OL  
A
OH  
DD  
SS  
= (V – V – 6 V)  
DD  
SS  
I
OL  
Low Level Output Current  
= (V – V + 1 V)  
1
A
DD  
SS  
= (V – V + 6 V)  
DD  
SS  
V
High Level Output Voltage (Note 5, 6)  
Low Level Output Voltage (Note 5, 6)  
High Level Supply Current  
I
I
= 100 mA  
V – 0.5  
DD  
V
V
OH  
O
O
V
= 100 mA  
V
SS  
+ 0.5  
OL  
I
Output Open, I = 10 to 16 mA  
2.6  
2.5  
3.0  
4.0  
4.0  
7.5  
mA  
mA  
mA  
V
DDH  
F
I
Low Level Supply Current  
Output Open, V = 3.0 to 0.8 V  
DDL  
F
I
Threshold Input Current Low to High  
Threshold Input Voltage High to Low  
Input Forward Voltage  
I
O
I
O
= 0 mA, V > 5 V  
FLH  
O
V
FHL  
= 0 mA, V < 5 V  
0.8  
1.1  
O
V
I = 10 mA  
F
1.43  
1.5  
8.3  
7.7  
0.6  
1.8  
V
F
DV / T  
Temperature Coefficient of Forward Voltage  
UVLO Threshold  
I = 10 mA  
F
mV/°C  
V
F
A
V
V
> 5V, I = 10 mA  
7
9
UVLO+  
UVLO–  
O
O
F
V
V
< 5V, I = 10 mA  
6.5  
8.5  
V
F
UVLO  
BV  
UVLO Hysteresis  
V
HYST  
Input Reverse Breakdown Voltage  
Input Capacitance  
I
R
= 10 mA  
5
V
R
C
f = 1 MHz, V = 0 V  
25  
pF  
IN  
F
5. In this test, VOH is measured with a dc load current of 100 mA. When driving capacitive load VOH will approach VDD as IOH approaches zero  
amps.  
6. Maximum pulse width = 1 ms, maximum duty cycle = 20%.  
www.onsemi.com  
4
 
FOD3182  
SWITCHING CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V = 30 V, V = 0 V,  
DD  
SS  
T = 25°C, unless otherwise specified.)  
A
Symbol  
Parameter  
Test Conditions  
Min  
50  
Typ  
120  
145  
35  
Max  
Unit  
ns  
t
t
Propagation Delay Time to High Output Level (Note 7)  
Propagation Delay Time to Low Output Level (Note 7)  
Pulse Width Distortion (Note 8)  
I = 10 mA, R = 10 W,  
210  
210  
65  
PLH  
PHL  
F
g
f = 250 kHz,  
50  
ns  
Duty Cycle = 50%,  
C = 10 nF  
g
P
WD  
ns  
P
PHL  
Propagation Delay Difference Between Any Two Parts  
(Note 9)  
90  
90  
ns  
DD  
PLH  
(t  
– t  
)
t
Rise Time  
C = 10 nF, R = 10 W  
38  
24  
ns  
ns  
r
L
g
t
Fall Time  
f
t
UVLO Turn On Delay  
UVLO Turn Off Delay  
2.0  
0.3  
50  
ms  
UVLO ON  
t
ms  
UVLO OFF  
| CM  
|
Output High Level Common Mode Transient Immunity  
(Note 10, 11)  
T = +25°C, I = 7 mA to  
35  
kV/ms  
H
A
f
16 mA, V = 2 kV,  
CM  
= 30 V  
V
DD  
| CM |  
Output Low Level Common Mode Transient Immunity  
(Note 10, 12)  
T = +25°C, V = 0 V,  
CM  
35  
50  
kV/ms  
L
A
f
V
= 2 kV, V = 30 V  
DD  
7. t  
propagation delay is measured from the 50% level on the falling edge of the input pulse to the 50% level of the falling edge of the V  
O
PHL  
signal. t  
propagation delay is measured from the 50% level on the rising edge of the input pulse to the 50% level of the rising edge of the  
PLH  
V
signal.  
O
8. PWD is defined as | t  
– t  
PHL  
| for any given device.  
PLH  
PHL  
PLH  
9. The difference between t  
and t  
between any two FOD3182 parts under same operating conditions, with equal loads.  
10.Pin 1 and 4 need to be connected to LED common.  
11. Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse VCMto assure that the output  
will remain in the high state (i.e. VO > 15 V).  
12.Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output  
will remain in a low state (i.e. VO < 1.0 V).  
INSULATION CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
T = 25°C, R.H. < 50%,  
Min  
Typ*  
Max  
Unit  
V
ISO  
Withstand Isolation Voltage (Note 13, 14)  
5000  
V
rms  
A
t = 1 minute, I  
10 mA  
IO  
11  
R
C
Resistance (Input to Output) (Note 14)  
Capacitance (Input to Output)  
V
= 500 V  
10  
W
IO  
IO  
IO  
Freq. = 1 MHz  
1
pF  
*Typical values at T = 25°C  
A
13.In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage > 6000 Vrms, 60 Hz for 1 second (leakage  
detection current limit IIO < 10 mA).  
14.Device considered a twoterminal device: pins on input side shorted together and pins on output side shorted together.  
www.onsemi.com  
5
 
FOD3182  
TYPICAL PERFORMANCE CURVES  
0.5  
0
0.00  
Frequency = 200 Hz  
Duty Cycle = 0.1%  
V
V
= 15 V to 30 V  
= 0 V  
DD  
SS  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
I = 10 mA to 16 mA  
I = 10 mA to 16 mA  
F
F
V
DD  
V
SS  
= 15 V to 30 V  
= 0 V  
I = 100 mA  
O
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
T = 40°C  
A
T = 25°C  
A
T =100°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
40 20  
0
20  
40  
60  
80  
100  
I
, OUTPUT HIGH CURRENT (A)  
T , AMBIENT TEMPERATURE (°C)  
A
OH  
Figure 1. Output High Voltage Drop vs. Output  
High Current  
Figure 2. Output High Voltage Drop vs. Ambient  
Temperature  
8
8
Frequency = 200 Hz  
Frequency = 200 Hz  
Duty Cycle = 0.2%  
Duty Cycle = 0.5%  
I = 10 mA to 16 mA  
F
I = 10 mA to 16 mA  
F
6
4
2
0
V
= 15 V to 30 V  
6
4
2
0
V
= 15 V to 30 V  
DD  
DD  
V
V
= 6 V  
= 3 V  
O
V
V
= 6 V  
= 3 V  
O
O
O
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 3. Output High Current vs. Ambient  
Temperature  
Figure 4. Output High Current vs. Ambient  
Temperature  
4
0.30  
Frequency = 200 Hz  
Duty Cycle = 99.9%  
V
V
= 15 V to 30 V  
= 0 V  
DD  
SS  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V (off) = 0.8 V  
V = 3 V to 0.8 V  
I = 100 mA  
O
F
F
3
2
1
0
V
DD  
V
SS  
= 15 V to 30 V  
= 0 V  
T =100°C  
A
T = 25°C  
A
T = 40°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
40 20  
0
20  
40  
60  
80  
100  
I
OL  
, OUTPUT LOW CURRENT (A)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 5. Output Low Voltage vs. Output Low  
Current  
Figure 6. Output Low Voltage vs. Ambient  
Temperature  
www.onsemi.com  
6
FOD3182  
TYPICAL PERFORMANCE CURVES (Continued)  
8
6
4
2
0
8
Frequency = 200 Hz  
Duty Cycle = 99.8%  
Frequency = 200 Hz  
Duty Cycle = 99.5%  
V = 0.8 V  
V = 0.8 V  
F
F
V
DD  
= 15 V to 30 V  
6
4
2
0
V
DD  
= 15 V to 30 V  
V
V
= 6 V  
= 3 V  
O
V
V
= 6 V  
= 3 V  
O
O
O
40 20  
0
20  
40  
60  
80  
100  
100  
100  
40 20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 7. Output Low Current vs. Ambient  
Figure 8. Output Low Current vs. Ambient  
Temperature  
Temperature  
3.6  
3.6  
V
V
= 15 V to 30 V  
= 0 V  
I = 0 mA (for I  
F DDL  
)
DD  
I = 10 mA (for I  
)
SS  
F
DDH  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
I = 0 mA (for I  
)
V
SS  
= 0 V  
F
DDL  
3.2  
2.8  
2.4  
2.0  
I = 10 mA (for I  
)
T = 25°C  
A
F
DDH  
I
(30 V)  
DDH  
I
(30 V)  
DDL  
I
DDH  
I
DDL  
I
(15 V)  
DDH  
I
(15 V)  
DDL  
40 20  
0
20  
40  
60  
80  
15  
20  
25  
30  
T , AMBIENT TEMPERATURE (°C)  
A
V
DD  
, SUPPLY VOLTAGE (V)  
Figure 9. Supply Current vs. Ambient  
Temperature  
Figure 10. Supply Current vs. Supply Voltage  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
250  
V
V
= 15 V to 30 V  
= 0 V  
I = 10 mA to 16 mA  
DD  
F
T = 25°C  
SS  
A
Output = Open  
R
C
= 10 W  
= 10 nF  
G
200  
150  
100  
50  
G
Duty Cycle = 50%  
Frequency = 250 kHz  
t
t
PHL  
PLH  
40 20  
0
20  
40  
60  
80  
15  
18  
21  
, SUPPLY VOLTAGE (V)  
DD  
24  
27  
30  
T , AMBIENT TEMPERATURE (°C)  
A
V
Figure 11. Lowto High Input Current Threshold  
Figure 12. Propagation Delay vs. Supply Voltage  
vs. Ambient Temperature  
www.onsemi.com  
7
FOD3182  
TYPICAL PERFORMANCE CURVES (Continued)  
250  
200  
150  
100  
50  
450  
V
= 15 V to 30 V  
I = 10 mA to 16 mA  
F
DD  
T = 25°C  
V
R
C
= 15 V to 30 V  
= 10 W  
= 10 nF  
A
DD  
R
C
= 10 W  
= 10 nF  
G
G
G
350  
250  
150  
50  
G
Duty Cycle = 50%  
Frequency = 250 kHz  
Duty Cycle = 50%  
Frequency = 250 kHz  
t
t
PHL  
PLH  
t
t
PHL  
PLH  
6
8
10  
12  
14  
18  
40 20  
0
20  
40  
60  
80  
100  
I , FORWARD LED CURRENT (A)  
F
T , AMBIENT TEMPERATURE (°C)  
A
Figure 13. Propagation Delay vs. LED Forward  
Figure 14. Propagation Delay vs. Ambient  
Current  
Temperature  
450  
450  
I = 10 mA to 16 mA  
F
I = 10 mA to 16 mA  
F
V
C
= 15 V to 30 V  
= 10 nF  
V
R
= 15 V to 30 V  
= 10 W  
G
DD  
DD  
G
350  
250  
150  
50  
350  
250  
150  
50  
Duty Cycle = 50%  
Frequency = 250 kHz  
Duty Cycle = 50%  
Frequency = 250 kHz  
t
t
PHL  
PHL  
t
t
PLH  
PLH  
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
100  
R , SERIES LOAD RESISTANCE (W)  
G
C , SERIES LOAD CAPACITANCE (nF)  
G
Figure 15. Propagation Delay vs. Series Load  
Figure 16. Propagation Delay vs. Series Load  
Resistance  
Capacitance  
35  
100  
V
DD  
= 30 V  
T = 25°C  
A
30  
25  
20  
15  
10  
5
10  
1
0.1  
T = 100°C 25°C  
A
40°C  
0.01  
0
0.001  
0
1
2
3
4
5
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
I , FORWARD LED CURRENT (mA)  
F
V , FORWARE VOLTAGE (V)  
R
Figure 17. Transfer Characteristics  
Figure 18. Input Forward Current vs. Forward  
Voltage  
www.onsemi.com  
8
FOD3182  
TYPICAL PERFORMANCE CURVES (Continued)  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
0
5
10  
15  
20  
(V V ), SUPPLY VOLTAGE (V)  
DD  
SS  
Figure 19. Under Voltage Lockout  
www.onsemi.com  
9
FOD3182  
TEST CIRCUIT  
Power Supply  
= 10 V to 30 V  
+
+
V
DD  
C1  
C2  
0.1 mF  
47 mF  
Pulse Generator  
1
2
3
4
8
7
PW = 4.99 ms  
Period = 5 ms  
PulseIn  
ROUT = 50 W  
R2  
100 W  
Iol  
Power Supply  
V = 6 V  
6
+
+
C3  
0.1 mF  
C4  
47 mF  
D1  
VOL  
LEDIFmon  
5
R1  
100 W  
To Scope  
Test Conditions:  
Frequency = 200 Hz  
Duty Cycle = 99.8%  
V
DD  
V
SS  
= 10 V to 30 V  
= 0 V  
V (OFF) = 3.0 V to 0.8 V  
F
Figure 20. IOL Test Circuit  
Power Supply  
+
+
C1  
C2  
V
DD  
= 10 V to 30 V  
0.1 mF  
47 mF  
Pulse Generator  
1
2
3
4
8
7
PW = 10 ms  
Period = 5 ms  
PulseIn  
ROUT = 50 W  
+
Power Supply  
V = 6 V  
+
C3  
0.1 mF  
C4  
47 mF  
Ioh  
R2  
100 W  
6
5
D1  
VOH  
LEDIFmon  
Current  
Probe  
To Scope  
R1  
100 W  
Test Conditions:  
Frequency = 200 Hz  
Duty Cycle = 0.2%  
V
DD  
V
SS  
= 10 V to 30 V  
= 0 V  
I
F
= 10 mA to 16 mA  
Figure 21. IOH Test Circuit  
www.onsemi.com  
10  
FOD3182  
TEST CIRCUIT (Continued)  
1
2
3
4
8
7
6
5
0.1 mF  
+
V
DD  
= 10 to 30 V  
I = 10 to 16 mA  
F
VO  
100 mA  
Figure 22. VOH Test Circuit  
1
2
3
4
8
100 mA  
7
+
0.1 mF  
V
DD  
= 10 to 30 V  
VO  
6
5
Figure 23. VOL Test Circuit  
www.onsemi.com  
11  
FOD3182  
TEST CIRCUIT (Continued)  
1
2
3
4
8
7
6
5
0.1 mF  
+
V
DD  
= 30 V  
I = 10 to 16 mA  
F
VO  
Figure 24. IDDH Test Circuit  
1
2
3
4
8
7
6
5
0.1 mF  
+
+
V
DD  
= 30 V  
V = 0.3 to 0.8 V  
F
VO  
Figure 25. IDDL Test Circuit  
www.onsemi.com  
12  
FOD3182  
TEST CIRCUIT (Continued)  
1
2
3
4
8
7
6
5
0.1 mF  
+
V
DD  
= 10 to 30 V  
IF  
V
O > 5 V  
Figure 26. IFLH Test Circuit  
1
2
3
4
8
0.1 mF  
7
6
5
+
+
V
DD  
= 10 to 30 V  
V = 0.3 to 0.8 V  
F
VO  
Figure 27. IFHL Test Circuit  
1
8
0.1 mF  
2
3
4
7
6
5
+
10 to 30 V  
Ramp  
I = 10 mA  
F
V
DD  
V
O = 5 V  
Figure 28. UVLO Test Circuit  
www.onsemi.com  
13  
FOD3182  
TEST CIRCUIT (Continued)  
1
2
3
4
8
0.1 mF  
7
6
5
VO  
+
V
DD  
= 10 to 30 V  
+
Rg = 10 W  
Probe  
50 W  
F = 250 kHz  
DC = 50%  
Cg = 10 nF  
IF  
tr  
tf  
90%  
50%  
10%  
VOUT  
tPLH  
tPHL  
Figure 29. tPHL, tPLH, tr and tf Test Circuit and Waveforms  
1
2
3
4
8
7
6
5
IF  
A
B
0.1 mF  
+
V
DD  
= 30 V  
+
VO  
5 V  
+ −  
VCM = 2,000 V  
VCM  
0 V  
Dt  
VO  
VO  
VOH  
Switch at A: IF = 10 mA  
Switch at B: IF = 0 mA  
VOL  
Figure 30. CMR Test Circuit and Waveforms  
www.onsemi.com  
14  
FOD3182  
REFLOW PROFILE  
Max. Rampup Rate = 3°C/S  
Max. Rampdown Rate = 6°C/S  
TP  
TL  
260  
240  
tP  
220  
200  
180  
160  
140  
120  
100  
80  
Tsmax  
Tsmin  
tL  
Preheat Area  
t s  
60  
40  
20  
0
120  
240  
360  
Time 25°C to Peak  
Time (seconds)  
Figure 31. Reflow Profile  
Table 1.  
Profile Freature  
PbFree Assembly Profile  
150°C  
Temperature Min. (Tsmin)  
Temperature Max. (Tsmax)  
Time (t ) from (Tsmin to Tsmax)  
200°C  
60–120 seconds  
3°C/second max.  
217°C  
S
Rampup Rate (t to t )  
L
P
Liquidous Temperature (T )  
L
Time (t ) Maintained Above (T )  
60–150 seconds  
260°C +0°C / –5°C  
30 seconds  
L
L
Peak Body Package Temperature  
Time (t ) within 5°C of 260°C  
P
Rampdown Rate (T to T )  
6°C/second max.  
8 minutes max.  
P
L
Time 25°C to Peak Temperature  
www.onsemi.com  
15  
FOD3182  
ORDERING INFORMATION  
Part Number  
Package  
Shipping  
FOD3182  
PDIP8 9.655x6.61, 2.54P  
50 Units / Tube  
50 Units / Tube  
DIP 8Pin  
FOD3182S  
PDIP8 GW  
SMT 8Pin (Lead Bend)  
FOD3182SD  
FOD3182V  
PDIP8 GW  
1,000 / Tape and Reel  
50 Units / Tube  
SMT 8Pin (Lead Bend)  
PDIP8 9.655x6.61, 2.54P  
DIP 8Pin, IEC6074752 option  
FOD3182SV  
FOD3182SDV  
FOD3182TV  
FOD3182TSV  
FOD3182TSR2  
FOD3182TSR2V  
PDIP8 GW  
50 Units / Tube  
SMT 8Pin (Lead Bend), DIN EN/IEC 6074752 option  
PDIP8 GW  
1,000 / Tape and Reel  
50 Units / Tube  
SMT 8Pin (Lead Bend), DIN EN/IEC 6074752 option  
PDIP8 6.6x3.81, 2.54P  
DIP 8Pin, 0.4” Lead Spacing, DIN EN/IEC 6074752 option  
PDIP8 GW  
50 Units / Tube  
SMT 8Pin, 0.4” Lead Spacing, DIN EN/IEC 6074752 option  
PDIP8 GW  
SMT 8Pin, 0.4” Lead Spacing  
700 / Tape and Reel  
700 / Tape and Reel  
PDIP8 GW  
SMT 8Pin, 0.4” Lead Spacing, DIN EN/IEC 6074752 option  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
16  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8 6.6x3.81, 2.54P  
CASE 646BW  
ISSUE O  
DATE 31 JUL 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13445G  
PDIP8 6.6X3.81, 2.54P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8 9.655x6.6, 2.54P  
CASE 646CQ  
ISSUE O  
DATE 18 SEP 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13446G  
PDIP8 9.655X6.6, 2.54P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8 GW  
CASE 709AC  
ISSUE O  
DATE 31 JUL 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13447G  
PDIP8 GW  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8 GW  
CASE 709AD  
ISSUE O  
DATE 31 JUL 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13448G  
PDIP8 GW  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY