FOD8316R2 [ONSEMI]

2.5A 输出电流,IGBT 驱动光耦合器,带去饱和检测和隔离故障传感;
FOD8316R2
型号: FOD8316R2
厂家: ONSEMI    ONSEMI
描述:

2.5A 输出电流,IGBT 驱动光耦合器,带去饱和检测和隔离故障传感

驱动 双极性晶体管 光电二极管 接口集成电路 驱动器
文件: 总28页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
2.5 A Output Current, IGBT  
Drive Optocoupler with  
Desaturation Detection and  
Isolated Fault Sensing  
SOIC16 W  
CASE 751EN  
FOD8316  
MARKING DIAGRAM  
Description  
The FOD8316 is an advanced 2.5 A output current IGBT drive  
optocoupler capable of driving most 1200 V /150 A IGBTs. It is ideally  
suited for fast−switching driving of power IGBTs and MOSFETs used  
in motor−control inverter applications and high−performance power  
systems. The FOD8316 offers critical protection features necessary for  
preventing fault conditions that lead to destructive thermal runaway of  
IGBTs.  
ON  
8316  
V
J
D X YY KK  
8316 = Device Number, e.g., ‘8316’ for FOD8316  
®
The device utilizes onsemi’s proprietary OPTOPLANAR coplanar  
V
= DIN EN/IEC60747−5−5 Option (Only Appears  
on Component Ordered with this Option)  
= Plant Code, e.g., ‘D’  
packaging technology, and optimized IC design to achieve high noise  
immunity, characterized by high common−mode rejection and power  
supply rejection specifications.  
D
X
= Last Digit Year Code, e.g., ‘E’ for 2014  
YY = Two Digit Work Week Ranging from ‘01’ to ‘53’  
KK = Lot Traceability Code  
The FOD8316 consists of an integrated gate drive optocoupler  
featuring low R  
CMOS transistors to drive the IGBT from  
J
= Package Assembly Code, e.g., ‘J’  
DS(ON)  
rail−to−rail and an integrated high−speed isolated feedback for fault  
sensing. The device is housed in a compact 16−pin small−outline plastic  
package which meets the 8 mm creepage and clearance requirements.  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 26 of  
this data sheet.  
Features  
High Noise Immunity Characterized by Common Mode Rejection −  
35 kV/ms Minimum, V = 1500 V  
CM  
PEAK  
2.5 A Peak Output Current Driving Capability for Most 1200 V /  
150 A IGBTs  
Features (continued)  
User−Configurable: Inverting, Non−inverting,  
Auto−reset, Auto−shutdown  
8 mm Creepage and Clearance Distances  
Optically Isolated Fault Sensing Feedback  
“Soft” IGBT Turn−off  
Built−in IGBT Protection  
Desaturation Detection  
Applications  
Under−Voltage Lockout (UVLO) Protection  
Wide Supply Voltage Range: 15 V to 30 V  
P−Channel MOSFETs at Output Stage Enables Output Voltage  
Swing Close to the Supply Rail (Rail−to−Rail Output)  
3.3 V / 5 V, CMOS/TTL Compatible Inputs  
Industrial Inverter  
Induction Heating  
Isolated IGBT Drive  
High Speed  
250 ns Maximum Propagation Delay Over Full Operating  
Temperature Range  
Extended Industrial Temperate Range, −40°C to 100°C  
Safety and Regulatory Approvals  
UL1577, 4,243 V  
for 1 Minute  
RMS  
DIN EN/IEC 60747−5−5:  
1,414 V  
8,000 V  
Working Insulation Voltage Rating  
Transient Isolation Voltage Rating  
PEAK  
PEAK  
R  
of 1 W (Typical) Offers Lower Power Dissipation  
DS(ON)  
© Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
February, 2023 − Rev. 3  
FOD8316/D  
FOD8316  
TRUTH TABLE  
V
V
UVLO (V  
− V )  
DESAT Detected?  
FAULT  
X
V
O
IN+  
IN−  
DD2  
E
X
X
Active  
X
Yes  
X
LOW  
LOW  
LOW  
LOW  
HIGH  
X
X
X
X
LOW  
X
LOW  
X
X
X
HIGH  
LOW  
X
X
HIGH  
Not Active  
No  
HIGH  
PIN CONFIGURATION  
VIN+  
VIN–  
1
2
3
4
5
6
7
8
16 VE  
VLED2+  
15  
VDD1  
14 DESAT  
GND1  
RESET  
FAULT  
VLED1+  
VLED1−  
VDD2  
13  
12  
11  
10  
9
VS  
VO  
VSS  
VSS  
Figure 1. Pin Configuration  
PIN DEFINITIONS  
Pin No.  
Name  
Description  
1
2
3
4
V
V
Non−inverting Gate Drive Control Input  
Inverting Gate−Drive Control Input  
Positive Input Supply Voltage (3 V to 5.5 V)  
Input Ground  
IN+  
IN−  
V
DD1  
GND1  
5
6
RESET  
FAULT  
FAULT Reset Input  
Fault Output (Open Drain)  
7
V
LED 1 Anode (Do not connect. Leave floating.)  
LED 1 Cathode (Must be connected to ground.)  
Output Supply Voltage (Negative)  
Output Supply Voltage (Negative)  
Gate−Drive Output Voltage  
LED1+  
LED1−  
8
V
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
SS  
V
O
V
S
Pull−up PMOS Transistor Source  
Positive Output Supply Voltage  
V
DD2  
DESAT  
Desaturation Voltage Input  
V
LED2+  
LED 2 Anode (Do not connect. Leave floating.)  
Output Supply Voltage / IGBT Emitter  
V
E
www.onsemi.com  
2
FOD8316  
BLOCK DIAGRAM  
VLED1+  
7
Output IC  
13  
12  
Input IC  
VDD2  
VS  
3
VDD1  
1
2
6
VIN+  
VIN–  
FAULT  
11  
UVLO  
VO  
Gate Drive  
Optocoupler  
LED1  
4
8
GND1  
VLED1–  
DESAT  
Shield  
9, 10  
VSS  
14  
16  
DESAT  
VE  
5
Fault  
LED2  
RESET  
Fault Sense  
Optocoupler  
Shield  
15  
VLED2+  
Figure 2. Block Diagram  
www.onsemi.com  
3
FOD8316  
SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 60747−5−5, this optocoupler is suitable for “safe electrical insulation”  
only within the safety limit data. Compliance with the safety ratings must be ensured by means of protective circuits.)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Installation Classifications per DIN VDE 0110/1.89 Table 1  
Rated Mains Voltage < 150 V  
Rated Mains Voltage < 300 V  
Rated Mains Voltage < 450 V  
Rated Mains Voltage < 600 V  
I−IV  
RMS  
RMS  
RMS  
RMS  
I−IV  
I−IV  
I−IV  
Rated Mains Voltage < 1000 V  
Climatic Classification  
I−III  
RMS  
40/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
2
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
175  
2651  
V
PR  
Input−to−Output Test Voltage, Method b, V  
x 1.875 = V  
,
V
peak  
IORM  
PR  
100% Production Test with t = 1 s, Partial Discharge < 5 pC  
m
Input−to−Output Test Voltage, Method a, V  
x 1.6 = V  
,
2262  
V
peak  
IORM  
PR  
Type and Sample Test with t = 10 s, Partial Discharge < 5 pC  
m
VI  
Maximum Working Insulation Voltage  
Highest Allowable Over Voltage  
External Creepage  
1414  
8000  
8.0  
V
V
ORM  
peak  
V
IOTM  
peak  
mm  
mm  
mm  
External Clearance  
8.0  
Insulation Thickness  
0.5  
Safety Limit Values − Maximum Values in Failure;  
Case Temperature  
T
150  
100  
600  
°C  
Case  
Safety Limit Values − Maximum Values in Failure;  
Input Power  
P
mW  
S,INPUT  
Safety Limit Values − Maximum Values in Failure;  
Output Power  
P
mW  
S,OUTPUT  
9
R
Insulation Resistance at T , V = 500 V  
10  
W
IO  
S
IO  
www.onsemi.com  
4
FOD8316  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
Symbol  
Parameter  
Value  
−40 to +125  
Unit  
°C  
T
STG  
Storage Temperature  
Operating Temperature  
Junction Temperature  
T
OPR  
−40 to +100  
°C  
T
J
−40 to +125  
°C  
T
SOL  
Lead Wave Solder Temperature (No Solder Immersion)  
Refer to Reflow Temperature Profile on Page 25.  
260 for 10 seconds  
°C  
I
Fault Output Current  
15  
3
mA  
A
FAULT  
I
Peak Output Current (Note 1)  
Negative Output Supply Voltage (Note 2)  
Positive Output Supply Voltage  
Gate Drive Output Voltage  
Output Supply Voltage  
O(PEAK)  
V
E
− V  
0 to 15  
V
SS  
V
− V  
−0.5 to 35 − (V − V  
)
SS  
V
DD2  
E
E
V
−0.5 to 35  
−0.5 to 35  
−0.5 to 6  
V
O(peak)  
V
− V  
V
DD2  
SS  
V
Positive Input Supply Voltage  
Input Voltages  
V
DD1  
V
IN+  
, V  
and V  
−0.5 to V  
V
IN−  
RESET  
DD1  
DD1  
V
Fault Pin Voltage  
−0.5 to V  
V
FAULT  
V
Source of Pull−up PMOS Transistor Voltage  
DESAT Voltage  
V
SS  
+ 6.5 to V  
DD2  
V
S
V
V to V + 25  
V
DESAT  
E
E
PD  
Input Power Dissipation (Note 3, 5)  
Output Power Dissipation (Note 4, 5)  
100  
mW  
mW  
I
PD  
600  
O
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Maximum pulse width = 10 ms, maximum duty cycle = 0.2%.  
2. This negative output supply voltage is optional. It’s only needed when negative gate drive is implemented. Refer to “Dual Supply Operation −  
Negative Bias at Vss” on page 23.  
3. No derating required across temperature range.  
4. Derate linearly above 64°C, free air temperature at a rate of 10.2 mW/°C  
5. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside  
these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
−40  
3
Max  
+100  
5.5  
Unit  
°C  
V
T
A
Ambient Operating Temperature  
Input Supply Voltage (Note 6)  
Total Output Supply Voltage  
Negative Output Supply Voltage  
V
DD1  
V
− V  
15  
0
30  
V
DD2  
SS  
V − V  
15  
V
E
SS  
V
DD2  
− V  
Positive Output Supply Voltage (Note 6)  
15  
30 − (V − V )  
SS  
V
E
E
V
S
Source of Pull−up PMOS Transistor Voltage  
V
SS  
+ 7.5  
V
DD2  
V
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. During power up or down, it is important to ensure that V  
remains low until both the input and output supply voltages reaches the proper  
IN+  
recommended operating voltages to avoid any momentary instability at the output state. See also the discussion in the “Time to Good Power”  
section on page 23.  
www.onsemi.com  
5
 
FOD8316  
ISOLATION CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at T = 25°C)  
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
ISO  
Input−Output Isolation Voltage T = 25°C, Relative Humidity < 50 %, t = 1.0 minute,  
4,243  
V
RMS  
A
I
10 mA, 50 Hz (Note 7, 8, 9)  
I−O  
11  
R
C
Isolation Resistance  
Isolation Capacitance  
V
V
= 500 V (Note 7)  
10  
W
ISO  
I−O  
= 0 V, Freq = 1.0 MHz (Note 7)  
1
pF  
ISO  
I−O  
7. Device is considered a two terminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
8. 4,243 VRMS for 1−minute duration is equivalent to 5,091 VRMS for 1−second duration.  
9. The input−output isolation voltage is a dielectric voltage rating as per UL1577. It should not be regarded as an input−output continuous  
voltage rating. For the continuous working voltage rating refer to your equipment−level safety specification or DIN EN/IEC 60747−5−5 Safety  
and Insulation Ratings Table.  
ELECTRICAL CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V  
= 5 V,  
DD1  
V
DD2  
− V = 30 V, V − V = 0 V, and T = 25°C; unless otherwise specified.)  
SS E SS A  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Figure  
V
V
,
,
Logic Low Input Voltages  
Logic High Input Voltages  
Logic Low Input Currents  
0.8  
V
IN+L  
IN−L  
V
RESETL  
V
V
,
,
2.0  
V
IN+H  
IN−H  
V
RESETH  
I
, I  
,
V
IN  
= 0.4 V  
−0.5  
−0.001  
mA  
IN+L IN−L  
I
RESETL  
I
FAULT Logic Low Output Current  
FAULT Logic High Output Current  
High Level Output Current  
V
V
V
V
V
V
V
= 0.4 V  
5.0  
−40  
−1  
12.0  
0.002  
−2.5  
mA  
mA  
A
3, 34  
34  
FAULTL  
FAULT  
I
= V  
FAULTH  
FAULT  
DD1  
I
= V  
= V  
− 3 V  
4, 9, 35  
OH  
O
O
O
O
O
DD2  
DD2  
− 6 V (Note 10)  
−2.5  
1
A
I
OL  
Low Level Output Current  
= V + 3 V  
3
A
5, 36  
6, 40  
SS  
= V + 6 V (Note 11)  
2.5  
70  
A
SS  
I
Low Level Output Current During  
Fault Condition  
− V = 14 V  
125  
170  
mA  
OLF  
SS  
V
High Level Output Voltage  
Low Level Output Voltage  
High Level Supply Current  
Low Level Supply Current  
High Level Output Supply Current  
Low Level Output Supply Current  
High Level Source Current  
Low Level Source Current  
I
I
= −100 mA (Note 12, 13, 14) V − 1.0 V V − 0.5 V  
0.5  
17  
3
V
7, 9, 37  
8, 10, 37  
11, 38  
OH  
O
S
S
V
= 100 mA  
0.1  
14  
V
OL  
O
I
I
V
V
V
V
= V  
= 5.5 V, V = 0 V  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
DD1H  
IN+  
IN+  
DD1  
IN−  
I
= V = 0 V, V = 5.5 V  
DD1  
2
DD1L  
IN−  
= Open (Note 14)  
= Open  
1.7  
1.8  
0.65  
0.6  
−0.5  
3
12, 13,  
39  
DD2H  
O
O
I
2.8  
1.5  
1.4  
DD2L  
I
I
O
I
O
= 0 mA  
= 0 mA  
39  
39  
SH  
I
SL  
EL  
EH  
I
V Low Level Supply Current  
E
−0.8  
−0.5  
15, 39  
I
V High Level Supply Current  
E
−0.25  
−0.25  
36  
I
Blanking Capacitor Charge Current  
Blanking Capacitor Discharge Current  
V
V
V
V
= 2 V (Note 14, 15)  
−0.13  
10  
−0.33  
14, 40  
40  
CHG  
DESAT  
I
= 7 V  
DSCHG  
DESAT  
V
Under Voltage Lockout Threshold  
(Note 14)  
> 5 V @ 25°C  
< 5 V @ 25°C  
10.8  
9.8  
11.7  
10.7  
1.0  
12.7  
11.7  
17, 31,  
41  
UVLO+  
UVLO−  
O
O
V
V
UVLO  
Under Voltage Lockout Threshold  
Hysteresis  
@ 25°C  
0.4  
V
HYS  
V
DESAT  
DESAT Threshold (Note 14)  
V
DD2  
− V > V  
, V < 5 V  
6.0  
6.5  
7.2  
V
18, 40  
E
ULVO−  
O
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
6
 
FOD8316  
10.Maximum pulse width = 10 ms, maximum duty cycle = 0.2%.  
11. Maximum pulse width = 4.99 ms, maximum duty cycle = 99.8%.  
12.V is measured with the DC load current in this testing (Maximum pulse width = 1 ms, maximum duty cycle = 20%).When driving capacitive  
OH  
loads, V will approach V as I approaches zero units.  
OH  
DD  
OH  
13.Positive output supply voltage (V  
− V ) should be at least 15 V to ensure adequate margin in excess of the maximum under−voltage  
DD2  
E
lockout threshold, V  
, of 13.5 V.  
UVLO+  
14.When V  
− V > V  
and output state V is allowed to go high, the DESAT detection feature is active and provides the primary source  
UVLO O  
DD2  
E
of IGBT protection. UVLO is needed to ensure DESAT detection is functional.  
15.The blanking time, t , is adjustable by an external capacitor (C ), where t  
= C  
x (V / I  
).  
BLANK  
BLANK  
BLANK  
BLANK  
DESAT CHG  
SWITCHING CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V  
= 5 V,  
DD1  
V
DD2  
− V = 30 V, V − V = 0 V, T = 25°C unless otherwise specified.)  
SS E SS A  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Figure  
t
Propagation Delay Time to Logic Low Rg = 10 W, Cg = 10 nF,  
140  
250  
ns  
ns  
ns  
ns  
19, 20,  
21, 22,  
23, 24,  
42, 50  
PHL  
Output (Note 17)  
f = 10 kHz, Duty Cycle = 50%  
(Note 16)  
t
Propagation Delay Time to Logic High  
Output (Note 18)  
160  
20  
250  
100  
150  
PLH  
PWD  
Pulse Width Distortion,  
| t  
PHL  
− t  
PLH  
| (Note 19)  
PDD Skew  
Propagation Delay Difference  
−150  
between Any Two Parts or Channels,  
(t  
PHL  
− t ) (Note 20)  
PLH  
t
Output Rise Time (10% to 90%)  
Output Fall Time (90% to 10%)  
25  
25  
ns  
ns  
ns  
42, 50  
25, 43  
R
t
F
t
t
DESAT Sense to 90% V Delay  
Rg = 10 W, Cg = 10 nF,  
450  
700  
DESAT(90%)  
O
(Note 21)  
V
DD2  
− V = 30 V  
SS  
DESAT Sense to 10% V Delay  
3
2.7  
1.4  
250  
6
4
5
ms  
ms  
ns  
ms  
26, 28,  
29, 43  
DESAT(10%)  
O
(Note 21)  
t
DESAT Sense to Low Level FAULT  
Signal Delay (Note 22)  
27, 43,  
51  
DESAT(FAULT)  
t
DESAT Sense to DESAT Low  
Propagation Delay (Note 23)  
43  
DESAT(LOW)  
t
RESET to High Level FAULT Signal  
Delay (Note 24)  
20  
30, 44,  
51  
RESET(FAULT)  
t
DESAT Input Mute  
10  
1.2  
22  
35  
ms  
ms  
ms  
ms  
ms  
DESAT(MUTE)  
PW  
RESET Signal Pulse Width  
UVLO Turn On Delay (Note 25)  
UVLO Turn Off Delay (Note 26)  
Time to Good Power (Note 27)  
RESET  
t
V
V
= 20 V in 1.0 ms Ramp  
4
31, 45  
UVLO ON  
DD2  
t
3
UVLO OFF  
t
= 0 to 30 V in 10 ms  
2.5  
32, 33,  
45  
GP  
DD2  
Ramp  
| CM  
|
Common Mode Transient Immunity at T = 25°C, V  
= 5 V,  
= 25 V, V = Ground,  
35  
35  
50  
50  
kV/ms  
kV/ms  
47, 48  
H
A
V
DD1  
Output High  
DD2 SS  
V
CM  
= 1500 Vpk (Note 28)  
| CM |  
Common Mode Transient Immunity at T = 25°C, V  
= 5V,  
46, 49  
L
A
V
DD1  
Output Low  
= 25 V, V = Ground,  
DD2 SS  
V
CM  
= 1500 Vpk (Note 29)  
16.This load condition approximates the gate load of a 1200 V / 150 A IGBT.  
17.Propagation delay t is measured from the 50% level on the falling edge of the input pulse (V , V ) to the 50% level of the falling edge  
PHL  
IN+ IN−  
of the V signal. Refer to Figure 50.  
O
18.Propagation delay t  
is measured from the 50% level on the rising edge of the input pulse (V , V ) to the 50% level of the rising edge  
PLH  
IN+ IN−  
of the V signal. Refer to Figure 50.  
O
19.PWD is defined as | t  
− t  
PLH  
| for any given device.  
PHL  
20.The difference between t  
and t  
between any two FOD8316 parts under same operating conditions with equal loads.  
PHL  
PLH  
21.This is the amount of time the DESAT threshold must be exceeded before V begins to go LOW. This is supply voltage dependent. See  
O
Figure 51.  
22.This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes LOW. See Figure 51.  
23.The length of time the DESAT threshold must be exceeded before V begins to go LOW, and the FAULT output begins to go LOW. See  
O
Figure 51.  
24.The length of time from when RESET is asserted LOW, until FAULT output goes HIGH. See Figure 51.  
www.onsemi.com  
7
 
FOD8316  
25.The UVLO turn−on delay, t  
, is measured from V  
threshold voltage of the output supply voltage (V  
threshold voltage of the output supply voltage (V  
) to the 5 V level of the  
) to the 5 V level of the  
UVLO ON  
UVLO+  
DD2  
rising edge of the V signal.  
O
26.The UVLO turn−off delay, t  
, is measured from V  
UVLO−  
UVLO OFF  
DD2  
falling edge of the V signal.  
O
27.The time to good power, t , is measured from 13.5 V level of the rising edge of the output supply voltage (V  
) to the 5 V level of the rising  
GP  
DD2  
edge of the V signal.  
O
28.Common−mode transient immunity at output HIGH state is the maximum tolerable negative dVCM/dt on the trailing edge of the  
common−mode pulse, V , to assure the output will remain in HIGH state (i.e., V > 15 V or FAULT > 2 V).  
CM  
O
29.Common−mode transient immunity at output LOW state is the maximum positive tolerable dVCM/dt on the leading edge of the  
common−mode pulse, V , to assure the output will remain in LOW state (i.e., V < 1.0 V or FAULT < 0.8 V).  
CM  
O
www.onsemi.com  
8
FOD8316  
TYPICAL PERFORMANCE CHARACTERISTICS  
50  
40  
30  
20  
10  
0
7
6
5
V
= V  
= V  
− 6 V  
− 3 V  
O
DD2  
4
3
2
1
0
V
O
DD2  
V
V
I
= 5 V  
= 5 V  
DD1  
IN+  
= 10 mA  
V
V
− V = 30 V  
LED2+  
DD2  
DD1  
SS  
= 5 V  
T = 25°C  
A
0
1
2
3
4
5
−40 −20  
0
20  
40  
60  
80  
100  
V
, FAULT VOLTAGE (V)  
T , TEMPERATURE (°C)  
A
FAULTL  
Figure 3. FAULT Logic Low Output Current (IFAULTL  
)
Figure 4. High Level Output Current (IOH) vs.  
Temperature  
vs. FAULT Logic Low Output Voltage (VFAULTL  
)
7
6
150  
T = −40 °C  
V
V
= V + 6 V  
A
O
SS  
125  
100  
75  
5
4
3
2
1
0
T = 25 °C  
A
T = 100 °C  
A
= V + 3 V  
O
SS  
V
DD2  
V
DD1  
− V = 30 V  
SS  
= 5 V  
V
V
− V = 30 V  
DD2  
DD1  
SS  
= 5 V  
50  
−40 −20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
T , TEMPERATURE (°C)  
A
V , OUTPUT VOLTAGE (V)  
O
Figure 5. Low Level Output Current (IOL) vs.  
Temperature  
Figure 6. Low Level Output Current During Fault  
Condition (IOLF) vs. Output Voltage (VOL  
)
0.1  
0.25  
I
= −650 mA  
O
0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0.20  
0.15  
0.10  
0.05  
0.00  
I
O
= −100 mA  
I
= 100 mA  
O
V
V
V
− V = 30 V  
V
V
V
− V = 30 V  
DD2  
DD1  
IN+  
SS  
DD2  
DD1  
IN+  
SS  
= 5 V  
= 5 V  
= 5 V  
= 0 V  
−40 −20  
0
20  
40  
60  
80  
100  
−40 −20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 7. High Level Output Voltage Drop  
(VOH − VDD) vs. Temperature  
Figure 8. Low Level Output Voltage (VOL) vs.  
Temperature  
www.onsemi.com  
9
FOD8316  
TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)  
30  
29  
28  
27  
26  
25  
4
V
DD2  
V
DD1  
V
IN+  
− V = 30 V  
= 5 V  
= 0 V  
SS  
3
2
1
0
T = −40 °C  
A
T = 100 °C  
A
25 °C  
25 °C  
100 °C  
−40 °C  
V
DD2  
V
DD1  
V
IN+  
− V = 30 V  
= 5 V  
= 5 V  
SS  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
I
, HIGH LEVEL OUTPUT CURRENT (A)  
I
OL  
, LOW LEVEL OUTPUT CURRENT (A)  
OH  
Figure 9. High Level Output Voltage (VOH) vs.  
High Level Output Current (IOH  
Figure 10. Low Level Output Voltage (VOL) vs.  
)
Low Level Output Current (IOL  
)
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
20  
15  
10  
5
V
V
= 5 V  
= 0 V (I  
V
V
V
− V = 30 V  
= 5 V  
DD1  
IN+  
DD2  
DD1  
IN+  
SS  
) / 5 V (I  
)
DD1L  
DD1H  
= 0 V (I  
) / 5 V (I  
)
DD2L  
DD2H  
I
I
DD2L  
I
DD1H  
DD2H  
I
DD1L  
0
−40 −20  
0
20  
40  
60  
80  
100  
−40 −20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 11. Supply Current (IDD1) vs. Temperature  
Figure 12. Output Supply Current (IDD2) vs.  
Temperature  
2.2  
−0.15  
−0.20  
−0.25  
−0.30  
V
DD1  
V
IN+  
= 5 V  
= 0 V (I  
V
V
V
V
− V = 30 V  
= 5 V  
= 5 V  
DD2  
SS  
) / 5 V (I  
)
DD1  
DD2L  
DD2H  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
IN+  
= 0 to 6 V  
DESAT  
I
DD2L  
I
DD2H  
15  
20  
25  
30  
−40 −20  
0
20  
40  
60  
80  
100  
V
DD2  
, OUTPUT SUPPLY VOLTAGE (V)  
T , TEMPERATURE (°C)  
A
Figure 13. Output Supply Current (IDD2) vs.  
Output Supply Voltage (VDD2  
Figure 14. Blanking Capacitor Charge Current  
(ICHG) vs. Temperature  
)
www.onsemi.com  
10  
FOD8316  
TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)  
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
3.0  
V
V
V
− V = 30 V  
SS  
= 5 V  
DD2  
DD1  
IN+  
−40°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25°C  
= 0 V (I ) / 5 V (I  
)
EL  
EH  
100°C  
I
EH  
I
EL  
V
DD2  
V
DD1  
V
IN+  
− V = 30 V  
= 5 V  
= 5 V  
SS  
−40 −20  
0
20  
40  
60  
80  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
T , TEMPERATURE (°C)  
A
I , OUTPUT CURRENT (mA)  
O
Figure 15. Supply Current (IE) vs. Temperature  
Figure 16. Source Current (IS) vs.  
Output Current (IO)  
15  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
V
V
UVLO+  
10  
5
UVLO−  
V
V
V
− V = 30 V  
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
V
V
= 5 V  
= 5 V  
DD1  
IN+  
0
−40 −20  
0
20  
40  
60  
80  
100  
−40 −20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 17. Under Voltage Lockout Threshold  
(VUVLO) vs. Temperature  
Figure 18. DESAT Threshold (VDESAT) vs.  
Temperature  
0.25  
0.20  
0.25  
0.20  
0.15  
0.10  
0.05  
t
t
PLH  
t
t
PLH  
0.15  
0.10  
0.05  
PHL  
PHL  
V
V
− V = 30 V  
= 5 V  
DD2  
SS  
V
DD1  
= 5 V  
DD1  
f = 10 kHz 50% Duty Cycle  
R = 10 W C = 10 nF  
f = 10 kHz 50% Duty Cycle  
R = 10 W C = 10 nF  
L
L
L
L
−40 −20  
0
20  
40  
60  
80  
100  
15  
20  
, SUPPLY VOLTAGE (V)  
DD2  
25  
30  
T , TEMPERATURE (°C)  
A
V
Figure 19. Propagation Delay (tP) vs. Temperature  
Figure 20. Propagation Delay (tP) vs.  
Supply Voltage (VDD2  
)
www.onsemi.com  
11  
FOD8316  
TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)  
0.20  
0.18  
0.16  
0.14  
0.12  
0.18  
V
− V = 30 V  
V
− V = 30 V  
DD2  
SS  
DD2 SS  
f = 10 kHz 50% Duty Cycle  
R = 10 W C = 10 nF  
f = 10 kHz 50% Duty Cycle  
R = 10 W C = 10 nF  
L
L
L
L
0.16  
0.14  
0.12  
0.10  
V
V
V
= 4.5 V  
= 5.0 V  
= 5.5 V  
V
V
V
= 4.5 V  
= 5.0 V  
= 5.5 V  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
−40 −20  
0
20  
40  
60  
80  
100  
−40 −20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 21. Propagation Delay Time to Logic High  
Output (tPLH) vs. Temperature  
Figure 22. Propagation Delay Time to Logic Low  
Output (tPHL) vs. Temperature  
0.20  
0.18  
0.20  
0.18  
t
t
PLH  
0.16  
0.14  
0.12  
0.10  
0.16  
0.14  
0.12  
0.10  
t
t
PLH  
PHL  
PHL  
V
V
− V = 30 V  
= 5 V  
V
V
− V = 30 V  
= 5 V  
DD2  
SS  
DD2  
SS  
DD1  
DD1  
f = 10 kHz 50% Duty Cycle  
R = 10 W  
f = 10 kHz 50% Duty Cycle  
C = 10 nF  
L
L
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
C , LOAD CAPACITANCE (nF)  
L
R , LOAD RESISTANCE (W)  
L
Figure 23. Propagation Delay (tP) vs.  
Load Capacitance (CL)  
Figure 24. Propagation Delay (tP) vs.  
Load Resistance (RL)  
0.8  
0.6  
0.4  
0.2  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
V
V
− V = 30 V  
= 5 V  
= 5 V  
V
V
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
DD1  
IN+  
R = 10 W C = 10 nF  
L
L
R = 10 W C = 10 nF  
L
L
V
V
− V = 30 V  
SS  
DD2  
− V = 15 V  
DD2  
SS  
−40 −20  
0
20  
40  
60  
80  
100  
−40 −20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 25. DESAT Sense to 90% VO Delay  
(tDESAT(90%)) vs. Temperature  
Figure 26. DESAT Sense to 10% VO Delay  
(tDESAT(10%)) vs. Temperature  
www.onsemi.com  
12  
FOD8316  
TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
10  
V
V
V
− V = 30 V  
= 5 V  
= 5 V  
V
V
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
DD1  
IN+  
8
6
4
2
0
R = 10 W  
L
R = 10 W C = 10 nF  
L
L
V
E
− V = 0 V  
SS  
V
− V = 30 V  
DD2  
SS  
V
E
− V = 15 V  
SS  
V
DD2  
− V = 15 V  
SS  
−40 −20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
T , TEMPERATURE (°C)  
A
C , LOAD CAPACITANCE (nF)  
L
Figure 27. DESAT Sense to Low Level FAULT  
Signal Delay (tDESAT(FAULT)) vs. Temperature  
Figure 28. DESAT Sense to 10% VO Delay  
(tDESAT(10%)) vs. Load Capacitance (CL)  
4.0  
9
V
V
= 5 V  
= 5 V  
V
V
− V = 30 V  
SS  
DD1  
DD2  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
= V  
IN+  
IN+  
DD1  
8
7
6
5
4
3
C = 10 nF  
R = 10 W C = 10 nF  
L
L
L
V
V
− V = 30 V  
SS  
DD2  
V
= 4.5 V  
DD1  
− V = 15 V  
DD2  
SS  
V
DD1  
= 5.5 V  
V
= 5.0 V  
DD1  
10  
20  
30  
40  
50  
−40 −20  
0
20  
40  
60  
80  
100  
R , LOAD RESISTANCE (W)  
L
T , TEMPERATURE (°C)  
A
Figure 29. DESAT Sense to 10% VO Delay  
(tDESAT(10%)) vs. Load Resistance (RL)  
Figure 30. RESET to High Level FAULT Signal Delay  
(tRESET(FAULT)) vs. Temperature  
5.0  
5
V
V
V
− V = 20 V  
= 5 V  
= 5 V  
V
V
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
DD1  
IN+  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
4
3
2
1
0
f = 50 Hz 50% Duty Cycle  
f = 50 Hz 50% Duty Cycle  
t
UVLO ON  
t
UVLO OFF  
−40 −20  
0
20  
40  
60  
80  
100  
15  
20  
25  
30  
T , TEMPERATURE (°C)  
A
V
DD2  
, SUPPLY VOLTAGE (V)  
Figure 31. Under Voltage Lockout Threshold Delay  
(tUVLO) vs. Temperature  
Figure 32. Time to Good Power (tGP) vs.  
Supply Voltage (VDD2  
)
www.onsemi.com  
13  
FOD8316  
TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)  
5
V
V
V
− V = 30 V  
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
4
3
2
1
0
f = 50 Hz 50% Duty Cycle  
−40 −20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
Figure 33. Time to Good Power (tGP) vs.  
Temperature  
www.onsemi.com  
14  
FOD8316  
TEST CIRCUITS  
FOD8316  
VE  
A
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
10 mA  
0.1 mF  
VLED2+  
DESAT  
VDD2  
VS  
VIN–  
+
5 V  
0.1 mF  
VDD1  
GND1  
RESET  
FAULT  
VLED1+  
+
VFAULT  
VO  
IFAULT  
VSS  
Switch A closed for I  
Switch A opened for I  
FAULTL  
FAULTH  
VSS  
VLED1−  
*
V
FAULT  
V
FAULT  
= 0.4 V for I  
= 5.0 V for I  
FAULTL  
FAULTH  
Figure 34. Fault Output Current (IFAULTL) and (IFAULTH) Test Circuit  
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
Pulse Gen  
PW = 10 ms  
Period = 5 ms  
+
+
VIN–  
VE  
0.1 mF  
+
5 V  
0.1 mF  
VDD1  
0.1 mF 47 mF  
0.1 mF 47 mF  
GND1  
RESET  
FAULT  
VLED1+  
VO  
+
+
30 V  
VO  
3 kW  
VSS  
VSS  
VLED1−  
*
Figure 35. High Level Output Current (IOH) Test Circuit  
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
Pulse Gen  
PW = 4.99 ms  
Period = 5 ms  
+
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
+
0.1 mF 47 mF  
30 V  
VO  
VO  
3 kW  
+
VSS  
VSS  
VLED1−  
*
0.1 mF 47 mF  
Figure 36. Low Level Output Current (IOL) Test Circuit  
www.onsemi.com  
15  
FOD8316  
TEST CIRCUITS (CONTINUED)  
A
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
B
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
100 mA  
pulsed  
VO  
30 V  
+
B
VO  
0.1 mF  
A
3 kW  
100 mA  
pulsed  
VSS  
VSS  
VLED1−  
*
Switch A for V  
test  
OH  
Switch B for V test  
OL  
Figure 37. High Level (VOH) and Low Level (VOL) Output Voltage Test Circuit  
A
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
B
VIN–  
+
5 V  
VDD1  
0.1 mF  
IDD1  
GND1  
RESET  
FAULT  
VLED1+  
VO  
VSS  
VSS  
VLED1−  
*
Switch A for I  
Switch B for I  
test  
test  
DD1H  
DD1L  
Figure 38. High Level (IDD1H) and Low Level (IDD1L) Supply Current Test Circuit  
IE  
A
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
B
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
IDD2  
IS  
GND1  
RESET  
FAULT  
VLED1+  
VO  
+
30 V  
VO  
0.1 mF  
VSS  
VSS  
VLED1−  
*
Switch A for I  
Switch B for I  
, I and I test  
EH  
DD2H SH  
, I and I test  
DD2L SL  
EL  
Figure 39. High Level (IDD2H), Low Level (IDD2L) Output Supply Current,  
High Level (ISH), Low Level (ISL) Source Current,  
VE High Level (IEH), and VE Low Level (IEL) Supply Current Test Circuit  
www.onsemi.com  
16  
FOD8316  
TEST CIRCUITS (CONTINUED)  
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VDESAT  
ICHG/DSCHG  
+
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VRL  
VO  
IOLF  
+
RL  
30 V  
VO  
0.1 mF  
3 kW  
10 nF  
VSS  
VSS  
VLED1−  
*
Figure 40. Low Level Output Current During Fault Conditions (IOLF), Blanking Capacitor Charge Current (ICHG),  
Blanking Capacitor Discharging Current (IDSCHG) and DESAT Threshold (VDESAT) Test Circuit  
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
DC Sweep  
0 to 15 V  
(100 steps)  
Parameter  
Analyzer  
VO  
+
VO  
0.1 mF  
VSS  
VSS  
VLED1−  
*
Figure 41. Under Voltage Lockout Threshold (VUVLO) Test Circuit  
F = 10 kHz  
DC = 50 %  
+
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VCL  
VO  
+
30 V  
VO  
0.1 mF  
RL  
3 kW  
VSS  
10 nF  
VSS  
VLED1−  
*
Figure 42. Propagation Delay (tPLH, tPHL), Pulse Width Distortion (PWD),  
Rise Time (tR) and Fall Time (tF) Test Circuit  
www.onsemi.com  
17  
FOD8316  
TEST CIRCUITS (CONTINUED)  
Low to High  
+
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
+
100 pF  
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VO  
+
30 V  
VO  
0.1 mF  
RL  
10 nF  
3 kW  
VSS  
VFAULT  
VSS  
VLED1−  
*
Figure 43. DESAT Sense (tDESAT(90%), tDESAT(10%)), DESAT Fault (tDESAT(FAULT)), and (tDESAT(LOW)) Test Circuit  
FOD8316  
VE  
VLED2+  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
+
Strobe 8 V  
VIN–  
VE  
0.1 mF  
+
5 V  
DESAT  
VDD2  
VS  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VO  
+
30 V  
VO  
0.1 mF  
RL  
3 kW  
VFAULT  
+
VSS  
10 nF  
VSS  
VLED1−  
*
Figure 44. Reset Delay (tRESET(FAULT)) Test Circuit  
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VO  
+
VDD2**  
VO  
0.1 mF  
3 kW  
VSS  
VSS  
VLED1−  
*
**1.0 ms ramp for t  
UVLO  
**10 ms ramp for t  
GP  
Figure 45. Under Voltage Lockout Delay (tUVLO) and Time to Good Power (tGP) Test Circuit  
www.onsemi.com  
18  
FOD8316  
TEST CIRCUITS (CONTINUED)  
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
5 V  
25 V  
VDD1  
0.1 mF  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
1 kW  
SCOPE  
VO  
10 W  
VSS  
300 pF  
10 nF  
VSS  
VLED1−  
*
VCM  
Floating GND  
Figure 46. Common Mode Low (CML) Test Circuit @ LED1 Off  
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
5 V  
25 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
0.1 mF  
1 kW  
VO  
SCOPE  
10 W  
VSS  
300 pF  
VSS  
VLED1−  
*
10 nF  
VCM  
Floating GND  
Figure 47. Common Mode High (CMH) Test Circuit @ LED1 On  
www.onsemi.com  
19  
FOD8316  
TEST CIRCUITS (CONTINUED)  
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
5 V  
25 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
0.1 mF  
1 kW  
VO  
SCOPE  
10 W  
10 nF  
VSS  
300 pF  
VSS  
VLED1−  
*
VCM  
Floating GND  
Figure 48. Common Mode High (CMH) Test Circuit @ LED2 Off  
FOD8316  
VE  
VLED2+  
DESAT  
VDD2  
VS  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
5 V  
750 W  
25 V  
VDD1  
0.1 mF  
+
GND1  
RESET  
FAULT  
VLED1+  
9 V  
0.1 mF  
1 kW  
VO  
SCOPE  
10 W  
VSS  
300 pF  
VSS  
VLED1−  
*
10 nF  
VCM  
Floating GND  
Figure 49. Common Mode Low (CML) Test Circuit @ LED2 On  
www.onsemi.com  
20  
FOD8316  
TIMING DIAGRAMS  
2.5 V  
0 V  
2.5 V  
VIN+  
VIN–  
tR  
tF  
90%  
50%  
10%  
VO  
tPLH  
tPHL  
Figure 50. Propagation Delay (tPLH, tPHL), Rise Time (tR), and Fall Time (tF) Timing Diagram  
RESET  
50%  
tDESAT (LOW)  
7 V  
VDESAT  
tRESET (FAULT)  
50%  
tDESAT (90%)  
90%  
VO  
10%  
tDESAT (10%)  
50% (0.5 x VDD1  
)
FAULT  
tDESAT (FAULT)  
Figure 51. Definitions for Fault Reset Input (RESET), Desaturation Voltage Input (DESAT), Output Voltage (VO),  
and Fault Output (FAULT) Timing Waveforms  
www.onsemi.com  
21  
FOD8316  
APPLICATION INFORMATION  
FOD8316  
V
VE  
VLED2+ 15  
1
2
3
4
5
6
7
8
16  
IN+  
C3  
10 mF  
C2  
1 mF  
V
IN–  
100 pF  
DDESAT  
VDD1  
14  
13  
12  
11  
10  
9
DESAT  
VDD2  
VS  
+
0.1 mF  
5 V  
100 W  
+
VF  
GND1  
RESET  
FAULT  
VLED1+  
VLED1−  
+
Q1  
Q2  
1 kW  
VDD2 = 15 V  
+
C1  
1 mF  
VCE  
Rg  
VO  
3−Phase  
Output  
330 pF  
+
VSS  
VSS = –8 V  
D1  
+
VSS  
VCE  
Figure 52. Recommended Application Circuit  
Functional Description  
The typical application circuit is shown in Figure 52 and  
the functional behavioral of the FOD8316 is illustrated by  
the detailed internal schematic shown in Figure 53. This  
helps explain the interaction and sequence of internal and  
external signals, together with the timing diagrams.  
The relationship between the inputs and output are  
illustrated in the Figure 54.  
During normal operation, when no fault is detected, the  
FAULT output, which is an open−drain configuration, will  
be latched to HIGH state. This allows the gate driver to be  
controlled by the input logic signal.  
Non−Inverting and Inverting Inputs  
When a fault is detected, the FAULT output will be latched  
to LOW state. This condition will remain until the RESET  
There are two CMOS/TTL compatible inputs, V  
and  
IN+  
V
IN−  
to control the IGBT, in non−inverting and inverting  
pin is also pulled low for a period longer than PW  
.
RESET  
configurations respectively. When V is set to LOW, V  
IN−  
IN+  
While setting the RESET pin to a low state, the input pins  
must be pulled to low to ensure an output state (V is low  
controls the driver output, V , in non−inverting con−  
O
IN+  
figuration. When V  
is set to HIGH, V  
controls the  
IN+  
IN−  
or V is HIGH).  
IN−  
driver output in inverting configuration.  
250 mA  
14  
16  
+
DESAT  
VDESAT  
VLED+  
3
VDD1  
7
Gate Drive  
Optocoupler  
1
VIN+  
VE  
2
VIN–  
UVLO Comparator  
6
13  
12  
FAULT  
VDD2  
VS  
+
12 V  
4
GND1  
Delay  
8
VLED1–  
Q
11  
VO  
R
S
Fault Sense  
Optocoupler  
50x  
9, 10  
5 ms Pulse  
5
RESET  
Generator  
1x  
VSS  
15  
VLED2+  
Figure 53. Detailed Internal Schematic  
www.onsemi.com  
22  
 
FOD8316  
Gate Driver Output  
see a heavy spike on the collector, resulting in a permanent  
damage to the device when it’s turned off immediately.  
A pair of PMOS and NMOS transistors made up the  
output driver stage, which facilitates close to rail−to−rail  
output swing. This feature allows a tight control of gate  
voltage during on−state and short circuit condition. The  
output driver is typically capable of sinking 2 A and sourcing  
2 A at room temperature. Due to the low RDS  
MOSFETs, the power dissipation is reduced as compared to  
those bipolar−type driver output stages. The absolute  
“Under Voltage Lockout (UVLO)  
Under voltage detection prevents the application of  
insufficient gate voltage to the IGBT. This could be  
dangerous, as it would drive the IGBT out of saturation and  
into the linear operation where the losses are very high and  
quickly overheats. This feature ensures proper operating of  
of the  
(ON)  
the IGBTs. The output voltage, V , remains LOW  
O
maximum rating of the output peak current, I  
thus the careful selection of the gate resistor, Rg, is required  
to limit the short circuit current of the IGBT.  
is 3 A,  
O(PEAK)  
irregardless of the inputs, as long as the supply voltage,  
V
DD2  
− V , is less than V  
. When the supply voltage  
E
ULVO+  
falls below V  
Figure 56.  
, V goes LOW, as illustrated in  
ULVO−  
O
As shown in Figure 53, the gate driver output is influenced  
by signals from the photodetector circuitry, the UVLO  
comparator, and the DESAT signals. Under no fault  
condition, normal operation resumes while the supply  
voltage is above the UVLO threshold, the output of the  
photodetector will drive the MOSFETs of the output stage.  
The logic circuitry of the output stage will ensure that the  
push−pull devices will never be turned “ON” simultaneously.  
When the output of the photodetector is HIGH, the output, V  
will be pulled to HIGH state by turning on the PMOS. When  
the output of the photodetector is LOW, V will be pulled to  
LOW state by turning on the NMOS.  
Time to Good Power  
At initial power up, the LED is off and the output of the  
gate driver should be in the LOW or OFF state. Sometimes  
race conditions exist that cause the output to follow V  
D
(assuming V  
and V are connected externally), until all  
DD2  
E
of the circuits in the output IC have stabilized. This  
condition can result in output transitions or transients that  
are coupled to the driven IGBT. These transients can cause  
the high− and low−side IGBTs to conduct shoot−through  
current that can damage power semiconductor devices.  
ON has introduced an initial turn−on delay, called “time  
to good power”. This delay, typically 2.5 ms, is only present  
during the initial power−up of the device. Once powered, the  
“time to good power” delay is determined by the delay of the  
UVLO circuitry. If the LED is ON during the initial turn−on  
activation, low−to−high transition at the output of the gate  
O
O
When V  
supply goes below V  
, which is the  
DD2  
UVLO  
designated ULVO threshold at the comparator, V will be  
pulled down to LOW state regardless of photodetector  
output.  
When desaturation is detected, V will turn off slowly as  
it is pulled low by the 1XNMOS device, the input to the Fault  
Sense circuitry will be latched to HIGH state and turns on the  
O
O
driver will only occur 2.5 ms after the V  
power is applied.  
DD2  
LED. When V goes below 2 V, the 50XNMOS device turns  
O
Dual Supply Operation − Negative Bias at V  
SS  
on again, clamping the IGBT gate firmly to V . The Fault  
SS  
The IGBT’s off−state noise immunity can be enhanced by  
providing a negative gate−to−emitter bias when the IGBT is  
in the OFF state. This static off−state bias can be supplied by  
connecting a separate negative voltage source between the  
Sense signal will remain latched in the HIGH state until the  
LED of the gate driver circuitry turns off.  
Desaturation Protection, FAULT Output  
V (pin 16) and V (pin 9 & 10). Figure 53 illustrates the  
E
SS  
Desaturation detection protection ensures the protection  
of the IGBT at short circuit by monitoring the  
collector−emitter voltage of the IGBT in the half bridge.  
When the DESAT voltage goes up and reaches above the  
threshold voltage, a short circuit condition is detected and  
the driver output stage will execute a “soft” IGBT turn−off  
and will be eventually driven low. This sequence is  
illustrated in Figure 55. The FAULT open−drain output is  
triggered active low to report a desaturation error. It could  
only be cleared by activating active low by the external  
controller to the RESET input.  
The DESAT fault detector should be disabled for a short  
time period (blanking time) before the IGBT turns on to  
allow the collector voltage to fall below DESAT threshold.  
This blanking period protects against false trigger of the  
DESAT while the IGBT is turning on.  
two distinct grounds. The primary ground reference is the  
IGBT’s emitter connection. V (pin 16). The under−voltage  
E
threshold and desaturation voltage detection are referenced  
to the IGBT’s emitter (V ) ground.  
E
The recommended application circuit, Figure 52, shows  
the interconnection of the V  
and V supplies. The  
DD2  
E
IGBT’s gate to emitter voltage is the absolute value sum of  
the V supply and the V reverse bias. The negative  
DD2  
SS  
voltage supply at V appears at the gate drive input, V ,  
SS  
O
when the FOD8316 is in the LOW state. When the input  
drives the output high, the output voltage, V , will have the  
O
potential of the V  
and V .  
DD2  
SS  
Figure 52 shows the operation with a dual or split power  
supply. The Vss supply provides the negative gate bias, and  
V
V
+ V supplies power to the output IC. The V and  
supplies require three power supply bypass  
DD2  
SS SS  
DD2  
“Soft” Turn−Off  
capacitors. These capacitors provide the low equivalent  
series resistant (ESR) paths for the instantaneous gate  
charging and discharging currents. Selecting capacitors with  
The soft turn−off feature ensures the safe turn off of the  
IGBT under fault condition. This reduces the voltage spike  
on the collector of the IGBT. Without this, the IGBT would  
www.onsemi.com  
23  
FOD8316  
low ESR will optimize the available output current. C3 is a  
low ESR 1812 style, 10 mF, multilayer ceramic capacitor.  
This capacitor is the primary filter for the Vss and V  
provide the primary gate charge and discharge paths. The  
Schottky diode, D1, is connected between V and V to  
E
SS  
protect against a reverse voltage greater than 0.5 V.  
DD2  
supplies. C1 and C2 are also low ESR capacitors. They  
VIN–  
VIN+  
VO  
Figure 54. Input/Output Relationship  
Normal  
Operation  
Fault Condition  
Reset  
VIN–  
0 V  
5 V  
0 V  
VIN+  
Blanking  
Time  
RESET  
VDESAT  
7 V  
VO  
FAULT  
Figure 55. Timing Relationship Among Desaturation Voltage (DESAT), Fault Output (FAULT) and  
Fault Reset Input (RESET)  
VIN–  
5 V  
0 V  
VIN+  
VUVLO+  
VUVLO–  
VDD2 − VE  
VO  
Figure 56. Under Voltage Lockout (UVLO) for Output Side  
www.onsemi.com  
24  
FOD8316  
REFLOW PROFILE  
Max. Ramp−up Rate = 3°C/S  
Max. Ramp−down Rate = 6°C/S  
TP  
TL  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
tP  
Tsmax  
tL  
Preheat Area  
Tsmin  
ts  
60  
40  
20  
0
120  
240  
360  
Time 25°C to Peak  
Time (seconds)  
Figure 57. Reflow Profile  
Table 1.  
Profile Freature  
Pb−Free Assembly Profile  
150°C  
Temperature Minimum (T  
)
smin  
Temperature Maximum (T  
)
200°C  
smax  
Time (t ) from (T  
to T )  
smax  
60 to 120 seconds  
3°C/second maximum  
217°C  
S
smin  
Ramp−up Rate (t to t )  
L
P
Liquidous Temperature (T )  
L
Time (t ) Maintained Above (T )  
60–150 seconds  
260°C +0°C / –5°C  
30 seconds  
L
L
Peak Body Package Temperature  
Time (t ) within 5°C of 260°C  
P
Ramp−Down Rate (T to T )  
6°C/second maximum  
8 minutes maximum  
P
L
Time 25°C to Peak Temperature  
www.onsemi.com  
25  
FOD8316  
ORDERING INFORMATION  
Part Number  
Package  
Shipping  
FOD8316  
SOIC16 W, SO 16−Pin  
(Pb−Free)  
50 Units / Tube  
750 Units / Tape & Reel  
50 Units / Tube  
FOD8316R2  
FOD8316V  
SOIC16 W, SO 16−Pin  
(Pb−Free)  
SOIC16 W, SO 16−Pin, DIN EN/IEC 60747−5−5 Option  
(Pb−Free)  
FOD8316R2V  
SOIC16 W, SO 16−Pin, DIN EN/IEC 60747−5−5 Option  
(Pb−Free)  
750 Units / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
30.All packages are lead free per JEDEC: J−STD−020B standard.  
OPTOPLANAR is registered trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States  
and/or other countries.  
www.onsemi.com  
26  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC16 W  
CASE 751EN  
ISSUE A  
DATE 24 AUG 2021  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
*This information is generic. Please refer to  
A
= Assembly Location  
WL = Wafer Lot  
= Year  
WW = Work Week  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
AWLYWW  
XXXXXXXXXX  
XXXXXXXXXX  
Y
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13751G  
SOIC16 W  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FOD8316R2V

2.5A Output Current, IGBT Drive Optocoupler
FAIRCHILD

FOD8316R2V

2.5A 输出电流,IGBT 驱动光耦合器,带去饱和检测和隔离故障传感
ONSEMI

FOD8316V

2.5A Output Current, IGBT Drive Optocoupler
FAIRCHILD

FOD8316V

2.5A 输出电流,IGBT 驱动光耦合器,带去饱和检测和隔离故障传感
ONSEMI

FOD8318

Half Bridge Based MOSFET Driver, PDSO16, LEAD FREE, PLASTIC, MS-013AA, SOP-16
FAIRCHILD

FOD8318

2.5 A 输出电流,IGBT 驱动光耦合器,带有源米勒箝位、去饱和检测和隔离故障传感
ONSEMI

FOD8318R2

2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing
FAIRCHILD

FOD8318R2

2.5 A 输出电流,IGBT 驱动光耦合器,带有源米勒箝位、去饱和检测和隔离故障传感
ONSEMI

FOD8318R2V

2.5 A 输出电流,IGBT 驱动光耦合器,带有源米勒箝位、去饱和检测和隔离故障传感
ONSEMI

FOD8318V

Half Bridge Based MOSFET Driver, PDSO16, LEAD FREE, PLASTIC, MS-013AA, SOP-16
FAIRCHILD

FOD8318V

2.5 A 输出电流,IGBT 驱动光耦合器,带有源米勒箝位、去饱和检测和隔离故障传感
ONSEMI

FOD8320

New Products, Tips and Tools for Power and Mobile Applications
FAIRCHILD