FOD8318R2V [ONSEMI]

2.5 A 输出电流,IGBT 驱动光耦合器,带有源米勒箝位、去饱和检测和隔离故障传感;
FOD8318R2V
型号: FOD8318R2V
厂家: ONSEMI    ONSEMI
描述:

2.5 A 输出电流,IGBT 驱动光耦合器,带有源米勒箝位、去饱和检测和隔离故障传感

驱动 双极性晶体管 光电二极管 接口集成电路 驱动器
文件: 总29页 (文件大小:550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
2.5 A Output Current, IGBT  
Drive Optocoupler with  
Active Miller Clamp,  
SOIC16 W  
CASE 751EN  
Desaturation Detection,  
and Isolated Fault Sensing  
MARKING DIAGRAM  
FOD8318  
ON  
Description  
8318  
V
J
The FOD8318 is an advanced 2.5 A output current IGBT drive  
optocoupler capable of driving most 1200 V / 150 A IGBTs. It is  
ideally suited for fastswitching driving of power IGBTs and  
MOSFETs used in motor control inverter applications and  
highperformance power systems. It consists of an integrated gate  
D X YY KK  
8318 = Device Number, e.g., ‘8318’ for FOD8318  
drive optocoupler featuring low R  
CMOS transistors to drive  
V
= DIN EN/IEC6074755 Option (Only Appears  
on Component Ordered with this Option)  
= Plant code, e.g., ‘D’  
DS(ON)  
the IGBT from rail to rail and an integrated highspeed isolated  
feedback for fault sensing. The FOD8318 has an active Miller clamp  
fuction to shut off the IGBT during a high dv/dt situation without the  
need of a negative supply voltage. It offers critical protection features  
necessary for preventing fault conditions that lead to destructive  
thermal runaway of IGBTs.  
D
X
= Lastdigit Year Code, e.g., ‘B’ for 2011  
YY = Twodigit Work Week Ranging from ‘01’ to ‘53’  
KK = Lot Traceability Code  
J
= Package Assembly Code, J  
®
It utilizes onsemi’s proprietary OPTOPLANAR coplanar  
packaging technology and optimized IC design to achieve high noise  
immunity, characterized by high common mode rejection and power  
supply rejection specifications.  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 27 of  
this data sheet.  
The device is housed in a compact 16pin small outline plastic  
package that meets the 8 mm creepage and clearance requirements.  
Features (continued)  
Features  
Extended Industrial Temperate Range,  
40°C to 100°C Temperature Range  
Safety and Regulatory Approvals  
High Noise Immunity Characterized by Common Mode Rejection  
35 kV / ms Minimum Common Mode Rejection  
(Vcm = 1500 V  
)
peak  
2.5 A Peak Output Current Driving Capability for Most 1200 V /  
150 A IGBT  
UL1577, 4,243 V  
for 1 min.  
RMS  
DIN EN/IEC 6074755,1,414 V  
peak  
Working Insulation Voltage, 8000 V  
Transient Isolation Voltage Ratings  
Optically Isolated Fault Sensing Feedback  
Active Miller Clamp to Shut Off the IGBT During High dv/dt  
without Needing a Negative Supply Voltage  
“Soft” IGBT Turnoff  
peak  
R  
of 1 W (Typ.) Offers Lower Power  
DS(ON)  
Dissipation  
User Configurable: Inverting, Noninverting,  
Autoreset, Autoshutdown  
8 mm Creepage and Clearance Distances  
Builtin IGBT Protection  
Desaturation Detection  
Undervoltage Lock Out (UVLO) Protection  
Wide Supply Voltage Range from 15 V to 30 V  
Applications  
Use of PChannel MOSFETs at Output Stage Enables Output  
Voltage Swing Close to the Supply Rail (Railtorail Output)  
Industrial Inverter  
Induction Heating  
Isolated IGBT Drive  
3.3 V / 5 V, CMOS/TTLcompatible Inputs  
High Speed  
250 ns Max. Propagation Delay over Full Operating  
Temperature Range  
© Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
January, 2023 Rev. 4  
FOD8318/D  
FOD8318  
TRUTH TABLE  
V
V
UVLO (V  
– V )  
DESAT Detected?  
FAULT  
X
V
*
IN+  
IN–  
DD2  
E
OUT  
X
X
Active  
X
Yes  
X
LOW  
LOW  
LOW  
LOW  
HIGH  
X
X
X
X
LOW  
X
LOW  
X
X
X
HIGH  
LOW  
X
X
HIGH  
Not Active  
No  
HIGH  
*V  
OUT  
is always LOW with ‘clamp’ being active (gate voltage < 2 V above V ).  
SS  
PIN DEFINITIONS  
Pin No.  
Name  
Description  
1
2
3
4
V
V
Noninverting gate drive control input  
IN+  
IN–  
Inverting gate drive control input  
V
DD1  
Positive input supply voltage (3 V to 5.5 V)  
Input ground  
GND1  
5
6
RESET  
FAULT  
Fault reset input  
Fault output  
7
V
V
LED 1 anode (must be left unconnected)  
LED1+  
8
LED 1 cathode (must be connected to ground)  
Output supply voltage (negative)  
Active Miller clamp supply voltage  
Gate drive output voltage  
LED1  
9
V
SS  
10  
11  
12  
13  
14  
15  
16  
V
CLAMP  
V
O
V
S
Source of pullup PMOS transistor  
Positive output supply voltage  
V
DD2  
DESAT  
Desaturation voltage input  
V
LED2+  
LED 2 anode (must be left unconnected)  
Output supply voltage / IGBT emitter  
V
E
VIN+  
VIN–  
1
2
3
4
5
6
7
8
16 VE  
VLED2+  
15  
VDD1  
14 DESAT  
GND  
VDD2  
VS  
13  
12  
11  
10  
9
RESET  
FAULT  
VLED1+  
VO  
VCLAMP  
VSS  
VLED1−  
*
Figure 1.  
www.onsemi.com  
2
FOD8318  
BLOCK DIAGRAM  
VLED1+  
7
Output IC  
13  
12  
Input IC  
VDD2  
VS  
3
VDD1  
1
2
VIN+  
VIN–  
6
FAULT  
11  
UVLO  
VO  
Gate Drive  
Optocoupler  
LED1  
4
8
GND1  
VLED1–  
DESAT  
Shield  
9
VSS  
14  
16  
DESAT  
VE  
5
Fault  
LED2  
RESET  
10  
VCLAMP  
Miller  
Clamp  
Fault Sense  
Optocoupler  
VSS  
Shield  
15  
VLED2+  
Figure 2. Block Diagram  
www.onsemi.com  
3
FOD8318  
SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 6074755. This optocoupler is suitable for “safe electrical insulation”  
only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Installation Classifications per DIN VDE 0110/1.89 Table 1  
For Rated Mains Voltage < 150 Vrms  
I–IV  
For Rated Mains Voltage < 300 Vrms  
For Rated Mains Voltage < 450 Vrms  
For Rated Mains Voltage < 600 Vrms  
For Rated Mains Voltage < 1000 Vrms  
Climatic Classification  
I–IV  
I–IV  
I–IV  
I–III  
40/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
Comparative Tracking Index  
2
CTI  
175  
2,651  
V
PR  
Input to Output Test Voltage, Method b,  
V
peak  
V
x 1.875 = V , 100 % Production Test with t = 1 s,  
IORM  
PR m  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a,  
2,121  
V
peak  
V
x 1.5 = V , Type and Sample Test with t = 60 s,  
IORM  
PR m  
Partial Discharge < 5 pC  
Maximum Working Insulation Voltage  
Highest Allowable Over Voltage  
External Creepage  
V
1,414  
8,000  
8
V
V
IORM  
peak  
V
IOTM  
peak  
mm  
mm  
mm  
°C  
External Clearance  
8
Insulation Thickness  
0.5  
150  
T
Safety Limit Values – Maximum Values Allowed in the Event of a Failure Case  
Temperature  
Case  
P
Input Power  
100  
600  
mW  
mW  
W
S,INPUT  
P
Output Power  
S,OUTPUT  
R
Insulation Resistance at T , V = 500 V  
10  
9
IO  
S
IO  
www.onsemi.com  
4
 
FOD8318  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
Symbol  
Parameter  
Value  
Unit  
°C  
T
Storage Temperature  
Operating Temperature  
Junction Temperature  
40 to +125  
40 to +100  
40 to +125  
260 for 10 s  
STG  
OPR  
T
°C  
T
J
°C  
T
SOL  
Lead Wave Solder Temperature (No Solder Immersion)  
Refer to page 26 for reflow temperature profile.  
°C  
I
Fault Output Current  
15  
3
mA  
A
FAULT  
I
Peak Output Current (Note 1)  
Negative Output Supply Voltage (Note 2)  
Positive Output Supply Voltage  
Gate Drive Output Voltage  
Output Supply Voltage  
O(PEAK)  
V – V  
E
0 to 15  
V
SS  
V
– V  
0.5 to 35 – (V – V  
)
SS  
V
DD2  
E
E
V
0.5 to 35  
0.5 to 35  
0.5 to 6  
V
O(peak)  
V
– V  
V
DD2  
SS  
V
Positive Input Supply Voltage  
Input Voltages  
V
DD1  
V
IN+  
, V and V  
IN−  
0.5 to V  
V
RESET  
DD1  
DD1  
V
Fault Pin Voltage  
0.5 to V  
V
FAULT  
V
Source of Pullup PMOS Transistor Voltage  
DESAT Voltage  
V
SS  
+ 6.5 to V  
DD2  
V
S
V
V to V +25  
V
DESAT  
CLAMP  
E
E
I
Peaking Clamping Sinking Current  
Miller Clamping Voltage  
1.7  
A
V
0.5 to V  
100  
V
CLAMP  
DD2  
PD  
Input Power Dissipation (Note 3, 5)  
Output Power Dissipation (Note 4, 5)  
mW  
mW  
I
PD  
600  
O
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Maximum pulse width = 10 ms, maximum duty cycle = 0.2 %.  
2. This negative output supply voltage is optional. It’s only needed when negative gate drive is implemented. A schottky diode is recommended  
to be connected between V and V to protect against a reverse voltage greater than 0.5 V. Refer to application information, Active Miller  
E
SS  
Clamp Function” on page 24.  
3. No derating required across temperature range.  
4. Derate linearly above 64°C, free air temperature at a rate of 10.2 mW/°C.  
5. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside  
these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
40  
3
Max  
+100  
5.5  
Unit  
°C  
V
T
A
Ambient Operating Temperature  
Input Supply Voltage (Note 6)  
Total Output Supply Voltage  
Negative Output Supply Voltage  
V
DD1  
V
– V  
15  
0
30  
V
DD2  
SS  
V – V  
15  
V
E
SS  
V
DD2  
– V  
Positive Output Supply Voltage (Note 6)  
15  
30 – (V – V )  
SS  
V
E
E
V
S
Source of Pullup PMOS Transistor Voltage  
V
SS  
+ 7.5  
V
DD2  
V
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. During power up or down, it is important to ensure that VIN+ remains LOW until both the input and output supply voltages reach the proper  
recommended operating voltage to avoid any momentary instability at the output state. Refer to “Time to Good Power” section on page 24.  
www.onsemi.com  
5
 
FOD8318  
ISOLATION CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at T = 25°C)  
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
ISO  
InputOutput Isolation Voltage  
T = 25°C, R.H.< 50 %, t = 1.0 min, I  
< 10 mA,  
4,243  
V
RMS  
A
IO  
50 Hz (Note 7, 8, 9)  
11  
R
C
Isolation Resistance  
Isolation Capacitance  
V
IO  
V
IO  
= 500 V (Note 7)  
10  
W
ISO  
= 0 V, freq = 1.0 MHz (Note 7)  
1
pF  
ISO  
7. Device is considered a two terminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
8. 4,243 V for 1minute duration is equivalent to 5,091 V for 1second duration.  
RMS  
RMS  
9. The InputOutput Isolation Voltage is a dielectric voltage rating as per UL1577. It should not be regarded as an inputoutput continuous  
voltage rating. For the continuous working voltage rating, refer to the equipment level safety specification or DIN EN/IEC 6074755 Safety  
and Insulation Ratings Table on page 4.  
ELECTRICAL CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V  
= 5 V,  
DD1  
V
– V = 30 V, V – V = 0 V, T = 25°C unless otherwise specified.)  
DD2  
SS E SS A  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Figure  
V
V
,
Logic Low Input Voltages  
Logic High Input Voltages  
Logic Low Input Currents  
0.8  
V
IN+L  
INL  
,
V
RESETL  
V
V
,
,
2.0  
V
IN+H  
INH  
V
RESETH  
I
, I  
,
V
IN  
= 0.4 V  
0.5  
0.001  
mA  
IN+L INL  
RESETL  
I
I
FAULT Logic Low Output Current  
FAULT Logic High Output Current  
High Level Output Current  
V
V
V
V
V
V
V
= 0.4 V  
5.0  
40  
1  
12.0  
0.002  
2.5  
mA  
mA  
A
3, 37  
37  
FAULTL  
FAULT  
I
= V  
FAULTH  
FAULT  
DD1  
I
= V  
= V  
– 3 V  
4, 9, 38  
OH  
O
O
O
O
O
DD2  
DD2  
– 6 V (Note 10)  
2.5  
1
A
I
OL  
Low Level Output Current  
= V + 3 V  
3
A
5, 39  
SS  
= V + 6 V (Note 11)  
2.5  
70  
A
SS  
I
Low Level Output Current During  
Fault Condition  
– V = 14 V  
125  
170  
mA  
6, 43  
OLF  
SS  
V
High Level Output Voltage  
Low Level Output Voltage  
I
I
= –100 mA (Note 12, 13, 14) V – 1.0 V V – 0.5 V  
V
V
7, 9, 40  
OH  
O
S
S
V
= 100 mA  
0.1  
0.5  
8, 10,  
40  
OL  
O
I
I
High Level Supply Current  
Low Level Supply Current  
V
V
V
V
= V  
= 5.5 V, V = 0 V  
14  
2
17  
3
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
11, 41  
DD1H  
IN+  
DD1  
IN–  
I
= V = 0 V, V  
= 5.5 V  
DD1L  
DD2H  
IN+  
IN−  
DD1  
High Level Output Supply Current  
Low Level Output Supply Current  
High Level Source Current  
Low Level Source Current  
= Open (Note 14)  
= Open  
1.7  
1.8  
0.65  
0.6  
0.5  
3
12, 13,  
42  
O
O
I
2.8  
1.5  
1.4  
DD2L  
I
I
= 0 mA  
= 0 mA  
42  
42  
SH  
O
O
I
I
I
SL  
EL  
EH  
V Low Level Supply Current  
E
0.8  
0.5  
15, 42  
I
V High Level Supply Current  
E
0.25  
0.25  
36  
I
Blanking Capacitor Charge Current  
Blanking Capacitor Discharge Current  
V
V
V
V
= 2 V (Note 14, 15)  
0.13  
10  
0.33  
14, 43  
43  
CHG  
DESAT  
I
= 7 V  
DSCHG  
DESAT  
V
V
UnderVoltage Lockout Threshold  
(Note 14)  
> 5 V at 25°C  
< 5 V at 25°C  
10.8  
9.8  
11.7  
10.7  
1.0  
12.7  
11.7  
17, 31,  
44  
UVLO+  
O
O
V
UVLO−  
UVLO  
UnderVoltage Lockout Threshold  
Hysteresis  
At 25°C  
0.4  
V
HYS  
V
DESAT  
DESAT Threshold (Note 14)  
V
DD2  
– V > V  
, V < 5 V  
6.0  
6.5  
7.2  
V
18, 43  
E
UVLO−  
O
www.onsemi.com  
6
 
FOD8318  
ELECTRICAL CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V  
= 5 V,  
DD1  
V
– V = 30 V, V – V = 0 V, T = 25°C unless otherwise specified.) (continued)  
DD2  
SS E SS A  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Figure  
V
Clamping Threshold Voltage  
2.2  
V
35, 54  
CLAMP_  
THRES  
I
Clamp Low Level Sinking Current  
VO = VSS + 2.5 V  
0.35  
1.2  
A
34, 53  
CLAMPL  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
10.Maximum pulse width = 10 ms, maximum duty cycle = 0.2 %.  
11. Maximum pulse width = 4.99 ms, maximum duty cycle = 99.8 %.  
12.V is measured with the DC load current in this testing (maximum pulse width = 1 ms, maximum duty cycle = 20 %). When driving capacitive  
OH  
loads, V approaches V as I approaches zero units.  
OH  
DD  
OH  
DD2  
13.Positive output supply voltage (V  
– V ) should be at least 15 V. This ensures adequate margin in excess of the maximum undervoltage  
E
lockout threshold V  
of 13.5 V.  
UVLO+  
14.When V  
– V > V  
and output state V of the FOD8318 is allowed to go HIGH, the DESAT detection feature is active and provides  
DD2  
E
UVLO O  
the primary source of IGBT protection. UVLO is needed to ensure DESAT detection is functional.  
15.The blanking time, t , is adjustable by an external capacitor (C ) where t = C  
x (V / I  
).  
BLANK  
BLANK  
BLANK  
BLANK  
DESAT CHG  
SWITCHING CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V  
= 5 V,  
DD1  
V
– V = 30 V, V – V = 0 V, T = 25°C unless otherwise specified.)  
DD2  
SS E SS A  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Figure  
t
Propagation Delay Time to Logic Low Rg = 10 W Cg = 10 nF,  
140  
250  
ns  
ns  
ns  
ns  
19, 20,  
21, 22,  
23, 24,  
45, 53  
PHL  
Output (Note 17)  
f = 10 kHz,  
Duty Cycle = 50 % (Note 16)  
t
Propagation Delay Time to Logic High  
Output (Note 18)  
160  
20  
250  
100  
150  
PLH  
PWD  
PDD Skew  
Pulse Width Distortion, | t  
(Note 19)  
– t  
PLH  
|
PHL  
Propagation Delay Difference  
between Any Two Parts or Channels,  
(t – t ) (Note 20)  
–150  
PHL  
PLH  
t
Output Rise Time (10 % – 90 %)  
Output Fall Time (90 % – 10 %)  
25  
25  
ns  
ns  
ns  
45, 55  
25, 46  
R
t
F
t
t
DESAT Sense to 90 % V Delay  
Rg = 10 W, Cg = 10 nF,  
450  
700  
DESAT(90 %)  
O
(Note 21)  
V
– V = 30 V  
DD2  
SS  
DESAT Sense to 10 % V Delay  
3
2.7  
1.4  
250  
6
4.0  
5.0  
ms  
ms  
ns  
ms  
26, 28,  
29, 46  
DESAT(10 %)  
O
(Note 21)  
t
DESAT Sense to Low Level FAULT  
Signal Delay (Note 22)  
27, 46,  
56  
DESAT(FAULT)  
t
DESAT Sense to DESAT Low  
Propagation Delay (Note 23)  
46  
DESAT(LOW)  
FAULT  
t
RESET to High Level  
Delay (Note 24)  
Signal  
20  
30, 47,  
56  
RESET(FAULT)  
t
DESAT Input Mute  
10  
1.2  
22  
35  
ms  
ms  
ms  
ms  
ms  
DESAT(MUTE)  
PW  
RESET Signal Pulse Width  
RESET  
t
UVLO Turn On Delay (Note 25)  
UVLO Turn Off Delay (Note 26)  
Time to Good Power (Note 27)  
V
V
= 20 V in 1.0 ms Ramp  
4
31, 48  
UVLO ON  
DD2  
t
3
UVLO OFF  
t
= 0 to 30 V in 10 ms Ramp  
2.5  
32, 33,  
48  
GP  
DD2  
| CM  
|
Common Mode Transient Immunity at T = 25°C, V  
= 5 V,  
35  
35  
50  
50  
kV/ms  
kV/ms  
50, 51  
H
A
V
DD1  
Output High  
= 25 V, V = Ground,  
DD2 SS  
CM  
V
= 1500 V  
(Note 28)  
peak  
| CM |  
Common Mode Transient Immunity at T = 25°C, V  
= 5 V,  
49, 52  
L
A
V
DD1  
Output Low  
= 25 V, V = Ground,  
DD2 SS  
V
= 1500 V  
(Note 29)  
CM  
peak  
16.This load condition approximates the gate load of a 1200 V / 150 A IGBT.  
www.onsemi.com  
7
 
FOD8318  
17.t  
propagation delay is measured from the 50 % level on the falling edge of the input pulse (V , V ) to the 50 % level of the falling edge  
IN+ IN−  
PHL  
of the V signal. Refer to Figure 55.  
O
18.t  
propagation delay is measured from the 50 % level on the rising edge of the input pulse (V , V ) to the 50 % level of the rising edge  
PHL  
IN+ IN−  
of the V signal. Refer to Figure 55.  
O
19.PWD is defined as | t  
20.The difference between t  
– t  
PHL  
| for any given device.  
PLH  
PHL  
PLH  
and t  
between any two FOD8318 parts under same operating conditions, with equal loads.  
21.This is the amount of time the DESAT threshold must be exceeded before V begins to go LOW. This is supply voltage dependent. Refer  
O
to Figure 56.  
22.This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes LOW. Refer to Figure 56.  
23.This is the amount of time the DESAT threshold must be exceeded before V begins to go LOW and the FAULT output to go LOW. Refer  
O
to Figure 56.  
24.This is the amount of time from when RESET is asserted LOW, until FAULT output goes HIGH. Refer to Figure 56.  
25.t  
UVLO turnon delay is measured from V  
threshold voltage of the output supply voltage (V  
) to the 5 V level of the rising  
UVLO ON  
UVLO+  
DD2  
edge of the V signal.  
O
26.t  
UVLO turnoff delay is measured from V  
threshold voltage of the output supply voltage (V  
) to the 5 V level of the falling  
UVLO OFF  
UVLO–  
DD2  
edge of the V signal.  
O
27.t time to good power is measured from 13.5 V level of the rising edge of the output supply voltage (V  
) to the 5 V level of the rising edge  
GP  
DD2  
of the V signal.  
O
28.Common mode transient immunity at output HIGH state is the maximum tolerable negative dVcm / dt on the trailing edge of the common mode  
pulse, V , to assure that the output remains in HIGH state (i.e., V > 15 V or FAULT > 2 V).  
CM  
O
29.Common mode transient immunity at output LOW state is the maximum positive tolerable dVcm / dt on the leading edge of the common mode  
pulse, V , to assure that the output remains in a LOW state (i.e., V < 1.0 V or FAULT < 0.8 V).  
CM  
O
www.onsemi.com  
8
FOD8318  
TYPICAL PERFORMANCE CHARACTERISTICS  
50  
40  
30  
20  
10  
0
7
6
5
V
= V  
= V  
6 V  
3 V  
O
DD2  
4
3
2
1
0
V
O
DD2  
V
V
I
= 5 V  
= 5 V  
DD1  
IN+  
= 10 mA  
V
V
V = 30 V  
LED2+  
DD2  
DD1  
SS  
= 5 V  
T = 25°C  
A
0
1
2
3
4
5
40 20  
0
20  
40  
60  
80  
100  
V
, FAULT VOLTAGE (V)  
T , TEMPERATURE (°C)  
A
FAULTL  
Figure 3. FAULT Logic Low Output Current (IFAULTL  
)
Figure 4. High Level Output Current (IOH) vs.  
Temperature  
vs. FAULT Logic Low Output Voltage (VFAULTL  
)
7
6
150  
T = 40 °C  
V
V
= V + 6 V  
A
O
SS  
125  
100  
75  
5
4
3
2
1
0
T = 25 °C  
A
T = 100 °C  
A
= V + 3 V  
O
SS  
V
DD2  
V
DD1  
V = 30 V  
SS  
= 5 V  
V
V
V = 30 V  
DD2  
DD1  
SS  
= 5 V  
50  
40 20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
T , TEMPERATURE (°C)  
A
V , OUTPUT VOLTAGE (V)  
O
Figure 5. Low Level Output Current (IOL) vs.  
Temperature  
Figure 6. Low Level Output Current During Fault  
Condition (IOLF) vs. Output Voltage (VOL  
)
0.1  
0.25  
I
= 650 mA  
= 100 mA  
O
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.20  
0.15  
0.10  
0.05  
0.00  
I
O
I
= 100 mA  
O
V
V
V
V = 30 V  
V
V
V
V = 30 V  
DD2  
DD1  
IN+  
SS  
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
= 5 V  
= 0 V  
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 7. High Level Output Voltage Drop  
Figure 8. Low Level Output Voltage (VOL) vs.  
Temperature  
(VOH VDD) vs. Temperature  
www.onsemi.com  
9
FOD8318  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
30  
29  
28  
27  
26  
25  
4
V
DD2  
V
DD1  
V
IN+  
V = 30 V  
= 5 V  
= 0 V  
SS  
3
2
1
0
T = 40 °C  
A
T = 100 °C  
A
25 °C  
25 °C  
100 °C  
40 °C  
V
DD2  
V
DD1  
V
IN+  
V = 30 V  
= 5 V  
= 5 V  
SS  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
I
, HIGH LEVEL OUTPUT CURRENT (A)  
I
OL  
, LOW LEVEL OUTPUT CURRENT (A)  
OH  
Figure 9. High Level Output Voltage (VOH) vs.  
High Level Output Current (IOH  
Figure 10. Low Level Output Voltage (VOL) vs.  
)
Low Level Output Current (IOL  
)
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
20  
15  
10  
5
V
V
= 5 V  
= 0 V (I  
V
V
V
V = 30 V  
= 5 V  
DD1  
IN+  
DD2  
DD1  
IN+  
SS  
) / 5 V (I  
)
DD1L  
DD1H  
= 0 V (I  
) / 5 V (I  
)
DD2L  
DD2H  
I
I
DD2L  
I
DD1H  
DD2H  
I
DD1L  
0
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 11. Supply Current (IDD1) vs. Temperature  
Figure 12. Output Supply Current (IDD2) vs.  
Temperature  
2.2  
0.15  
0.20  
0.25  
0.30  
V
DD1  
V
IN+  
= 5 V  
= 0 V (I  
V
V
V
V
V = 30 V  
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
) / 5 V (I  
)
DD2L  
DD2H  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
= 0 to 6 V  
DESAT  
I
DD2L  
I
DD2H  
15  
20  
25  
30  
40 20  
0
20  
40  
60  
80  
100  
V
DD2  
, OUTPUT SUPPLY VOLTAGE (V)  
T , TEMPERATURE (°C)  
A
Figure 13. Output Supply Current (IDD2) vs.  
Output Supply Voltage (VDD2  
Figure 14. Blanking Capacitor Charge Current  
(ICHG) vs. Temperature  
)
www.onsemi.com  
10  
FOD8318  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
0.0  
0.2  
0.4  
0.6  
0.8  
3.0  
V
V
V
V = 30 V  
SS  
= 5 V  
DD2  
DD1  
IN+  
40°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25°C  
= 0 V (I ) / 5 V (I  
)
EL  
EH  
100°C  
I
EH  
I
EL  
V
DD2  
V
DD1  
V
IN+  
V = 30 V  
= 5 V  
= 5 V  
SS  
40 20  
0
20  
40  
60  
80  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
T , TEMPERATURE (°C)  
A
I , OUTPUT CURRENT (mA)  
O
Figure 15. Supply Current (IE) vs. Temperature  
Figure 16. Source Current (IS) vs.  
Output Current (IO)  
15  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
V
V
UVLO+  
10  
5
UVLO−  
V
V
V
V = 30 V  
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
V
V
= 5 V  
= 5 V  
DD1  
IN+  
0
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 17. Under Voltage Lockout Threshold  
(VUVLO) vs. Temperature  
Figure 18. DESAT Threshold (VDESAT) vs.  
Temperature  
0.25  
0.20  
0.25  
0.20  
0.15  
0.10  
0.05  
t
t
PLH  
t
t
PLH  
0.15  
0.10  
0.05  
PHL  
PHL  
V
V
V = 30 V  
= 5 V  
DD2  
SS  
V
DD1  
= 5 V  
DD1  
f = 10 kHz 50% Duty Cycle  
R = 10 W C = 10 nF  
f = 10 kHz 50% Duty Cycle  
R = 10 W C = 10 nF  
L
L
L
L
40 20  
0
20  
40  
60  
80  
100  
15  
20  
, SUPPLY VOLTAGE (V)  
DD2  
25  
30  
T , TEMPERATURE (°C)  
A
V
Figure 19. Propagation Delay (tP) vs. Temperature  
Figure 20. Propagation Delay (tP) vs.  
Supply Voltage (VDD2  
)
www.onsemi.com  
11  
FOD8318  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
0.20  
0.18  
0.16  
0.14  
0.12  
0.18  
V
V = 30 V  
V
V = 30 V  
DD2  
SS  
DD2 SS  
f = 10 kHz 50% Duty Cycle  
R = 10 W C = 10 nF  
f = 10 kHz 50% Duty Cycle  
R = 10 W C = 10 nF  
L
L
L
L
0.16  
0.14  
0.12  
0.10  
V
V
V
= 4.5 V  
= 5.0 V  
= 5.5 V  
V
V
V
= 4.5 V  
= 5.0 V  
= 5.5 V  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 21. Propagation Delay Time to Logic High  
Output (tPLH) vs. Temperature  
Figure 22. Propagation Delay Time to Logic Low  
Output (tPHL) vs. Temperature  
0.20  
0.18  
0.20  
0.18  
t
t
PLH  
0.16  
0.14  
0.12  
0.10  
0.16  
0.14  
0.12  
0.10  
t
t
PLH  
PHL  
PHL  
V
V
V = 30 V  
= 5 V  
V
V
V = 30 V  
= 5 V  
DD2  
SS  
DD2  
SS  
DD1  
DD1  
f = 10 kHz 50% Duty Cycle  
R = 10 W  
f = 10 kHz 50% Duty Cycle  
C = 10 nF  
L
L
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
C , LOAD CAPACITANCE (nF)  
L
R , LOAD RESISTANCE (W)  
L
Figure 23. Propagation Delay (tP) vs.  
Load Capacitance (CL)  
Figure 24. Propagation Delay (tP) vs.  
Load Resistance (RL)  
0.8  
0.6  
0.4  
0.2  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
V
V
V = 30 V  
= 5 V  
= 5 V  
V
V
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
DD1  
IN+  
R = 10 W C = 10 nF  
L
L
R = 10 W C = 10 nF  
L
L
V
V
V = 30 V  
SS  
DD2  
V = 15 V  
DD2  
SS  
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 25. DESAT Sense to 90% VO Delay  
(tDESAT(90%)) vs. Temperature  
Figure 26. DESAT Sense to 10% VO Delay  
(tDESAT(10%)) vs. Temperature  
www.onsemi.com  
12  
FOD8318  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
10  
V
V
V
V = 30 V  
= 5 V  
= 5 V  
V
V
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
DD1  
IN+  
8
6
4
2
0
R = 10 W  
L
R = 10 W C = 10 nF  
L
L
V
E
V = 0 V  
SS  
V
V = 30 V  
DD2  
SS  
V
E
V = 15 V  
SS  
V
DD2  
V = 15 V  
SS  
40 20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
T , TEMPERATURE (°C)  
A
C , LOAD CAPACITANCE (nF)  
L
Figure 27. DESAT Sense to Low Level FAULT  
Signal Delay (tDESAT(FAULT)) vs. Temperature  
Figure 28. DESAT Sense to 10% VO Delay  
(tDESAT(10%)) vs. Load Capacitance (CL)  
4.0  
9
V
V
= 5 V  
= 5 V  
V
V
V = 30 V  
SS  
DD1  
DD2  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
= V  
IN+  
IN+  
DD1  
8
7
6
5
4
3
C = 10 nF  
R = 10 W C = 10 nF  
L
L
L
V
V
V = 30 V  
SS  
DD2  
V
= 4.5 V  
DD1  
V = 15 V  
DD2  
SS  
V
DD1  
= 5.5 V  
V
= 5.0 V  
DD1  
10  
20  
30  
40  
50  
40 20  
0
20  
40  
60  
80  
100  
R , LOAD RESISTANCE (W)  
L
T , TEMPERATURE (°C)  
A
Figure 29. DESAT Sense to 10% VO Delay  
(tDESAT(10%)) vs. Load Resistance (RL)  
Figure 30. RESET to High Level FAULT Signal Delay  
(tRESET(FAULT)) vs. Temperature  
5.0  
5
V
V
V
V = 20 V  
= 5 V  
= 5 V  
V
V
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
DD1  
IN+  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
4
3
2
1
0
f = 50 Hz 50% Duty Cycle  
f = 50 Hz 50% Duty Cycle  
t
UVLO ON  
t
UVLO OFF  
40 20  
0
20  
40  
60  
80  
100  
15  
20  
25  
30  
T , TEMPERATURE (°C)  
A
V
DD2  
, SUPPLY VOLTAGE (V)  
Figure 31. Under Voltage Lockout Threshold Delay  
(tUVLO) vs. Temperature  
Figure 32. Time to Good Power (tGP) vs.  
Supply Voltage (VDD2  
)
www.onsemi.com  
13  
FOD8318  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
5
4
3
2
1
0
3.0  
V
V
V
V = 30 V  
= 5 V  
= 5 V  
V
V
V
V
– V = 30 V  
= 5 V  
= 5 V  
DD2  
DD1  
IN+  
SS  
DD2  
SS  
DD1  
2.5  
2.0  
1.5  
1.0  
0.5  
0
IN+  
f = 50 Hz 50% Duty Cycle  
= 2.5 V  
CLAMP  
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 33. Time to Good Power (tGP) vs.  
Temperature  
Figure 34. Clamp Low Level Sinking Current  
(ICLAMPL) vs. Temperature  
2.6  
3.0  
V
V
V
– V = 30 V  
= 5 V  
= 0 V  
V
DD2  
V
DD1  
V
IN+  
– V = 30 V  
= 5 V  
= 0 V  
DD2  
DD1  
IN+  
SS  
SS  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
2.5  
2.0  
1.5  
1.0  
0.5  
0
40 20  
0
20  
40  
60  
80  
100  
0
0.5  
V
1.0  
, CLAMP VOLTAGE (V)  
CLAMP  
1.5  
2.0  
2.5  
3.0  
T , TEMPERATURE (°C)  
A
Figure 35. Clamping Threshold Voltage (VCLAMP  
vs. Temperature  
)
Figure 36. Clamp Low Level Sinking Current  
(ICLAMPL) vs. Clamp Voltage (VCLAMP  
)
www.onsemi.com  
14  
FOD8318  
TEST CIRCUITS  
FOD8318  
VE  
A
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
10 mA  
0.1 mF  
VLED2+  
DESAT  
VDD2  
VS  
VIN–  
+
5 V  
0.1 mF  
VDD1  
GND1  
RESET  
FAULT  
VLED1+  
+
VFAULT  
VO  
IFAULT  
VCLAMP  
VSS  
Switch A closed for I  
Switch A opened for I  
FAULTL  
FAULTH  
VLED1−  
*
V
FAULT  
V
FAULT  
= 0.4 V for I  
= 5.0 V for I  
FAULTL  
FAULTH  
Figure 37. Fault Output Current (IFAULTL) and (IFAULTH) Test Circuit  
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
Pulse Gen  
PW = 10 ms  
Period = 5 ms  
+
+
VIN–  
VE  
0.1 mF  
+
5 V  
0.1 mF  
VDD1  
0.1 mF 47 mF  
0.1 mF 47 mF  
GND1  
RESET  
FAULT  
VLED1+  
V
O
+
VS  
+
30 V  
VO  
3 kW  
VCLAMP  
VSS  
VLED1−  
*
Figure 38. High Level Output Current (IOH) Test Circuit  
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
Pulse Gen  
PW = 4.99 ms  
Period = 5 ms  
+
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VS  
+
0.1 mF 47 mF  
30 V  
VO  
VO  
3 kW  
+
VCLAMP  
VSS  
VLED1−  
*
0.1 mF 47 mF  
Figure 39. Low Level Output Current (IOL) Test Circuit  
www.onsemi.com  
15  
FOD8318  
TEST CIRCUITS (Continued)  
A
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
B
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
100 mA  
pulsed  
VS  
VO  
30 V  
+
B
VO  
0.1 mF  
A
3 kW  
100 mA  
pulsed  
VCLAMP  
VSS  
VLED1−  
*
Switch A for V  
test  
OH  
Switch B for V test  
OL  
Figure 40. High Level (VOH) and Low Level (VOL) Output Voltage Test Circuit  
A
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
B
VIN–  
+
5 V  
VDD1  
0.1 mF  
IDD1  
GND1  
RESET  
FAULT  
VLED1+  
VS  
VO  
VCLAMP  
VSS  
VLED1−  
*
Switch A for I  
Switch B for I  
test  
test  
DD1H  
DD1L  
Figure 41. High Level (IDD1H) and Low Level (IDD1L) Supply Current Test Circuit  
IE  
A
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
B
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
IDD2  
IS  
GND1  
RESET  
FAULT  
VLED1+  
VS  
VO  
+
30 V  
VO  
0.1 mF  
VCLAMP  
VSS  
VLED1−  
*
Switch A for I  
Switch B for I  
, I and I test  
DD2H SH  
EH  
, I and I test  
DD2L SL  
EL  
Figure 42. High Level (IDD2H), Low Level (IDD2L) Output Supply Current,  
High Level (ISH), Low Level (ISL) Source Current,  
VE High Level (IEH), and VE Low Level (IEL) Supply Current Test Circuit  
www.onsemi.com  
16  
FOD8318  
TEST CIRCUITS (Continued)  
FOD8318  
VE  
16  
1
2
3
4
5
6
7
8
VIN+  
VDESAT  
ICHG/DSCHG  
+
+
VLED2+  
15  
VIN–  
VE  
0.1 mF  
+
5 V  
DESAT  
VDD2  
VS  
VDD1  
14  
13  
12  
11  
10  
9
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VRL  
VO  
IOLF  
+
RL  
30 V  
VO  
0.1 mF  
3 kW  
10 nF  
VCLAMP  
VSS  
VLED1−  
*
Figure 43. Low Level Output Current During Fault Conditions (IOLF), Blanking Capacitor Charge Current (ICHG),  
Blanking Capacitor Discharging Current (IDSCHG), and DESAT Threshold (VDESAT) Test Circuit  
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VS  
DC Sweep  
0 to 15 V  
(100 steps)  
Parameter  
Analyzer  
VO  
+
VO  
0.1 mF  
VCLAMP  
VSS  
VLED1−  
*
Figure 44. UnderVoltage Lockout Threshold (VUVLO) Test Circuit  
F = 10 kHz  
DC = 50 %  
+
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VCL  
VS  
VO  
+
30 V  
VO  
0.1 mF  
RL  
3 kW  
VCLAMP  
VSS  
10 nF  
VLED1−  
*
Figure 45. Propagation Delay (tPLH, tPHL), Pulse Width Distortion (PWD),  
Rise Time (tR), and Fall Time (tF) Test Circuit  
www.onsemi.com  
17  
FOD8318  
TEST CIRCUITS (Continued)  
LOW to HIGH  
+
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
+
100 pF  
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VS  
VO  
+
30 V  
VO  
0.1 mF  
RL  
10 nF  
3 kW  
VCLAMP  
VSS  
VFAULT  
VLED1−  
*
Figure 46. DESAT Sense (tDESAT(90 %), tDESAT(10 %)), DESAT Fault (tDESAT(FAULT)), and (tDESAT(LOW)) Test Circuit  
FOD8318  
VE  
VLED2+  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
+
Strobe 8 V  
VIN–  
VE  
0.1 mF  
+
5 V  
DESAT  
VDD2  
VS  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VO  
+
30 V  
VO  
0.1 mF  
RL  
3 kW  
VFAULT  
+
VCLAMP  
VSS  
10 nF  
VLED1−  
*
Figure 47. Reset Delay (tRESET(FAULT)) Test Circuit  
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
+
VIN–  
VE  
0.1 mF  
+
5 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
VS  
VO  
+
VDD2**  
VO  
0.1 mF  
3 kW  
VCLAMP  
VSS  
VLED1−  
*
**1.0 ms ramp for t  
UVLO  
**10 ms ramp for t  
GP  
Figure 48. UnderVoltage Lockout Delay (tUVLO) and Time to Good Power (tGP) Test Circuit  
www.onsemi.com  
18  
FOD8318  
TEST CIRCUITS (Continued)  
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
5 V  
25 V  
VDD1  
0.1 mF  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
1 kW  
VS  
SCOPE  
VO  
10 W  
VCLAMP  
VSS  
300 pF  
10 nF  
VLED1−  
*
VCM  
Floating GND  
Figure 49. Common Mode Low (CML) Test Circuit at LED1 Off  
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
5 V  
25 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
0.1 mF  
1 kW  
VS  
VO  
SCOPE  
10 W  
VCLAMP  
VSS  
300 pF  
VLED1−  
*
10 nF  
VCM  
Floating GND  
Figure 50. Common Mode High (CMH) Test Circuit at LED1 On  
www.onsemi.com  
19  
FOD8318  
TEST CIRCUITS (Continued)  
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
5 V  
25 V  
VDD1  
0.1 mF  
GND1  
RESET  
FAULT  
VLED1+  
0.1 mF  
1 kW  
VS  
VO  
SCOPE  
10 W  
VCLAMP  
VSS  
300 pF  
VLED1−  
*
10 nF  
VCM  
Floating GND  
Figure 51. Common Mode High (CMH) Test Circuit at LED2 Off  
FOD8318  
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
VIN–  
5 V  
750 W  
25 V  
VDD1  
0.1 mF  
+
GND1  
RESET  
FAULT  
VLED1+  
9 V  
0.1 mF  
1 kW  
VS  
VO  
SCOPE  
10 W  
VCLAMP  
VSS  
300 pF  
VLED1−  
*
10 nF  
VCM  
Floating GND  
Figure 52. Common Mode Low (CML) Test Circuit at LED2 On  
www.onsemi.com  
20  
FOD8318  
TEST CIRCUITS (Continued)  
FOD8318  
VE  
16  
1
2
3
4
5
6
7
8
VIN+  
+
VLED2+  
15  
VIN–  
0 V  
0.1 mF  
+
5 V  
0.1 mF  
DESAT  
14  
VDD1  
VDD2  
13  
GND1  
RESET  
FAULT  
VLED1+  
0.1 mF  
VS  
VO  
12  
11  
10  
9
+
ICLAMPL  
+
3 kW  
Pulsed  
VCLAMP  
VCLAMP  
VSS  
VLED1−  
*
Figure 53. Clamp Low Level Sinking Current (ICLAMPL  
)
FOD8318  
S1  
A
B
VE  
VLED2+  
DESAT  
VDD2  
1
2
3
4
5
6
7
8
VIN+  
16  
15  
14  
13  
12  
11  
10  
9
+
VIN–  
+
0 V  
0.1 mF  
5 V  
0.1 mF  
VDD1  
GND1  
RESET  
FAULT  
VLED1+  
0.1 mF  
VS  
+
30 V  
50 W  
VO  
3 kW  
Sweep from 3 V  
+
VCLAMP  
VSS  
to V  
CLAMP_THRES  
VLED1−  
*
Initially set S1 to A before connecting 3 V to clamp pin. Then switch to B before sweeping down  
to get the V , clamping threshold voltage.  
CLAMP_THRES  
Figure 54. Clamp Pin Threshold Voltage (VCLAMP  
)
www.onsemi.com  
21  
FOD8318  
TIMING DIAGRAMS  
2.5 V  
0 V  
2.5 V  
VIN+  
VIN–  
tR  
tF  
90%  
50%  
10%  
VO  
tPLH  
tPHL  
Figure 55. Propagation Delay (tPLH, tPHL), Rise Time (tR), and Fall Time (tF) Timing Diagram  
50%  
tDESAT (LOW)  
7 V  
RESET  
VDESAT  
tRESET (FAULT)  
50%  
tDESAT (90%)  
90%  
VO  
10%  
tDESAT (10%)  
50% (0.5 x VDD1  
)
FAULT  
tDESAT (FAULT)  
Figure 56. Definitions for Fault Reset Input (RESET), Desaturation Voltage Input (DESAT), Output Voltage (VO),  
and Fault Output (FAULT) Timing Waveforms  
www.onsemi.com  
22  
FOD8318  
APPLICATION INFORMATION  
FOD8318  
VIN+  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VE  
VLED2+  
DESAT  
VDD2  
CBLANK  
100 pF  
VIN–  
1 mF  
1 mF  
10 mF  
DDESAT  
VDD1  
GND1  
+
5 V  
1 kW  
+
0.1 mF  
VF  
+
3 kW  
Q1  
Q2  
VDD2 = 15 V  
+
VCE  
RESET  
FAULT  
VS  
Rg  
VO  
3Phase  
330 pF  
VLED1+  
VCLAMP  
VSS  
Output  
+
VLED1−  
*
VCE  
Figure 57. Recommended Application Circuit  
Functional Description  
The functional behavioral of FOD8318 is illustrated by  
the detailed internal schematic shown in Figure 58. This  
explains the interaction and sequence of internal and  
external signals, together with the timing diagrams.  
The relationship between the inputs and output are  
illustrated in the Figure 59.  
During normal operation, when no fault is detected, the  
FAULT output, which is an opendrain configuration, is  
latched to HIGH state. This allows the gate driver to be  
controlled by the input logic signal.  
When a fault is detected, the FAULT output is latched to  
LOW state. This condition remains until the input logic is  
pulled to LOW and the RESET pin is also pulled LOW for  
NonInverting and Inverting Inputs  
There are two CMOS/TTLcompatible inputs, V and  
IN+  
V , to control the IGBT in noninverting and inverting  
IN−  
configurations, respectively. When V is set to LOW state,  
IN−  
V
IN+  
controls the driver output, VO, in noninverting  
a period longer than PW  
.
RESET  
configuration. When VIN+ is set to HIGH state, V  
controls the driver output in inverting configuration.  
IN−  
250 mA  
14  
16  
+
DESAT  
VDESAT  
VLED+  
3
VDD1  
7
Gate Drive  
Optocoupler  
1
2
VIN+  
VIN–  
VE  
UVLO Comparator  
6
13  
12  
FAULT  
GND1  
VDD2  
VS  
+
12 V  
4
Delay  
8
5
11  
VLED1–  
VO  
Q
R S  
Fault Sense  
Optocoupler  
50x  
5 ms Pulse  
Generator  
RESET  
9, 10  
1x  
VSS  
15  
VLED2+  
Figure 58. Detailed Internal Schematic  
www.onsemi.com  
23  
 
FOD8318  
Gate Driver Output  
external capacitance (C ), FAULT threshold voltage  
BLANK  
A pair of PMOS and NMOS comprise the output driver  
stage, which facilitates close to railtorail output swing.  
This feature allows a tight control of gate voltage during  
onstate and shortcircuit condition. The output driver is  
typically to sink 2 A and source 2 A at room temperature.  
(V  
), and DESAT charge current (I  
) as:  
DESAT  
tBLANK + CBLANK   VDESAT ń ICHG  
CHG  
(eq. 1)  
With a recommended 100 pF DESAT capacitor, the  
nominal blanking time is:  
Due to the low R  
of the MOSFETs, the power  
100 pF   7 V ń 250 mA + 2.8 ms  
DS(ON)  
dissipation is reduced as compared to those bipolartype  
driver output stages. The absolute maximum rating of the  
“Soft” TurnOff  
The soft turnoff feature ensures the safe turn off of the  
IGBT under fault conditions. This reduces the voltage spike  
on the collector of the IGBT. Without this, the IGBT would  
see a heavy spike on the collector and result in permanent  
damage to the device.  
output peak current, I  
selection of the gate resistor, Rg, is required to limit the  
shortcircuit current of the IGBT.  
), is 3 A; therefore the careful  
O(PEAK  
As shown in Figure 58, gate driver output is influenced by  
signals from the photodetector circuitry, the UVLO  
comparator, and the DESAT signals. Under nofault  
condition, normal operation resumes while the supply  
voltage is above the UVLO threshold, the output of the  
photodetector drives the MOSFETs of the output stage.  
The logic circuitry of the output stage ensures that the  
pushpull devices are never “ON” simultaneously. When  
the output of the photodetector is HIGH, the output, V , is  
pulled to HIGH state by turning on the PMOS. When the  
output of the photodetector is LOW, V is pulled to LOW  
state by turning on the NMOS.  
UnderVoltage Lockout  
Undervoltage detection prevents the application of  
insufficient gate voltage to the IGBT. This could be  
dangerous, as it would drive the IGBT out of saturation and  
into the linear operation where the losses are very high and  
quickly overheated. This feature ensures the proper  
operating of the IGBTs. The output voltage, V , remains  
O
O
LOW regardless of the inputs as long as the supply voltage,  
V
DD2  
– V , is less than V  
. When the supply voltage  
O
E
UVLO+  
falls below V  
Figure 61.  
, V goes LOW, as illustrated in  
UVLO−  
O
When V  
supply goes below V  
, which is the  
DD2  
UVLO  
designated UVLO threshold at the comparator, V is pulled  
down to LOW state regardless of photodetector output.  
When desaturation is detected, V turns off slowly as it is  
pulled LOW by the 1XNMOS device. The input to the fault  
sense circuitry is latched to HIGH state and turns on the  
O
Active Miller Clamp Function  
An active Miller clamp feature allows the sinking of the  
Miller current to the ground or emitter of the IGBT during  
a highdV/dt situation. Instead of driving the IGBT gate to  
a negative supply voltage to increase the safety margin, the  
O
LED. When V goes below 2 V, the 50XNMOS device turns  
O
device has a dedicated V  
pin to control the Miller  
CLAMP  
on again, clamping the IGBT gate firmly to V . The Fault  
Sense signal remains latched in the HIGH state until the  
LED of the gate driver circuitry turns off.  
SS  
current. During turnoff, the gate voltage of the IGBT is  
monitored and the V output is activated when the gate  
CLAMP  
voltage goes below 2 V (relative to V ). The Miller clamp  
SS  
Desaturation Protection, FAULT Output  
NMOS transistor is then turned on and provides a low  
resistive path for the Miller current. This helps prevent a  
selfturnon due to the parasitic Miller capacitor in power  
Desaturation detection protection ensures the protection  
of the IGBT at shortcircuit by monitoring the  
collectoremitter voltage of the IGBT in the half bridge.  
When the DESAT voltage goes up and reaches above the  
threshold voltage, a shortcircuit condition is detected and  
the driver output stage executes a “soft” IGBT turnoff and  
is eventually driven LOW, as illustrated in Figure 60. The  
FAULT opendrain output is triggered active LOW to report  
a desaturation error. It is only cleared by activating active  
LOW by the external controller to the RESET input with the  
input logic is pulled to LOW.  
The DESAT fault detector should be disabled for a short  
period (blanking time) before the IGBT turns on to allow the  
collector voltage to fall below DESAT threshold. This  
blanking period protects against false trigger of the DESAT  
while the IGBT is turning on.  
switches. The clamp voltage is V + 2.5 V maximum for  
OL  
a Miller current up to 1200 mA. In this way, the V  
CLAMP  
function does not affect the turnoff characteristic. It helps  
to clamp the gate to the LOW level throughout the turnoff  
time. During turnon, where the input of the driver is  
activated, the V  
function is disabled or opened.  
CLAMP  
Time to Good Power  
At initial power up, the LED is off and the output of the  
gate driver should be in the LOW state. Sometimes race  
conditions exist that causes the output to follow the V  
E
(assuming V  
and V are connected externally), until all  
DD2  
E
of the circuits in the output IC have stabilized. This  
condition can result in output transitions or transients that  
are coupled to the driven IGBT. These glitches can cause the  
highside and lowside IGBTs to conduct shootthrough  
current that may result in destructive damage to the power  
semiconductor devices. ON has introduced a initial turnon  
The blanking time is controlled by the internal DESAT  
charge current, the DESAT voltage threshold, and the  
external DESAT capacitor (capacitor between DESAT and  
V pin). The nominal blanking time can be calculated using  
E
www.onsemi.com  
24  
FOD8318  
delay, generally called “timetogood power”. This delay,  
If the LED is “ON” during the initial turnon activation,  
LOWtoHIGH transition at the output of the gate driver  
typically 2.5 ms, is only present during the initial powerup  
of the device. Once powered, the “timetogood power”  
delay is determined by the delay of the UVLO circuitry.  
only occurs 2.5 ms after the V  
power is applied.  
DD2  
VIN–  
VIN+  
VO  
Figure 59. Input/Output Relationship  
Normal  
Operation  
Fault Condition  
Reset  
VIN–  
0 V  
5 V  
0 V  
VIN+  
Blanking  
Time  
RESET  
VDESAT  
7 V  
VO  
FAULT  
Figure 60. Timing Relationship Among DESAT, FAULT, and RESET  
VIN–  
5 V  
0 V  
VIN+  
VUVLO+  
VUVLO–  
V
V  
E
DD2  
VO  
Figure 61. UVLO for Output Side  
www.onsemi.com  
25  
FOD8318  
REFLOW PROFILE  
Max. Rampup Rate = 3°C/S  
Max. Rampdown Rate = 6°C/S  
TP  
TL  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
tP  
Tsmax  
tL  
Preheat Area  
Tsmin  
ts  
60  
40  
20  
0
120  
240  
360  
Time 25°C to Peak  
Time (seconds)  
Profile Freature  
Temperature Minimum (T  
PbFree Assembly Profile  
150°C  
)
smin  
Temperature Maximum (T  
)
200°C  
smax  
Time (t ) from (T  
to T )  
smax  
60 120 seconds  
3°C/second max.  
217°C  
S
smin  
Rampup Rate (t to t )  
L
P
Liquidous Temperature (T )  
L
Time (t ) Maintained Above (T )  
60 – 150 seconds  
260°C +0°C / –5°C  
30 seconds  
L
L
Peak Body Package Temperature  
Time (t ) within 5°C of 260°C  
P
Rampdown Rate (T to T )  
6°C/second max.  
8 minutes max.  
P
L
Time 25°C to Peak Temperature  
Figure 62. Reflow Profile  
www.onsemi.com  
26  
FOD8318  
ORDERING INFORMATION  
Part Number  
Package  
Shipping  
FOD8318  
SOIC16 W, SO 16Pin  
(PbFree)  
50 Units / Tube  
750 Units / Tape & Reel  
50 Units / Tube  
FOD8318R2  
FOD8318V  
SOIC16 W, SO 16Pin  
(PbFree)  
SOIC16 W, SO 16Pin, DIN EN/IEC 6074755 Option  
(PbFree)  
FOD8318R2V  
SOIC16 W, SO 16Pin, DIN EN/IEC 6074755 Option  
(PbFree)  
750 Units / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
30.All packages are lead free per JEDEC: JSTD020B standard.  
OPTOPLANAR is registered trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States  
and/or other countries.  
www.onsemi.com  
27  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC16 W  
CASE 751EN  
ISSUE A  
DATE 24 AUG 2021  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
*This information is generic. Please refer to  
A
= Assembly Location  
WL = Wafer Lot  
= Year  
WW = Work Week  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
AWLYWW  
XXXXXXXXXX  
XXXXXXXXXX  
Y
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13751G  
SOIC16 W  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FOD8318V

Half Bridge Based MOSFET Driver, PDSO16, LEAD FREE, PLASTIC, MS-013AA, SOP-16
FAIRCHILD

FOD8318V

2.5 A 输出电流,IGBT 驱动光耦合器,带有源米勒箝位、去饱和检测和隔离故障传感
ONSEMI

FOD8320

New Products, Tips and Tools for Power and Mobile Applications
FAIRCHILD

FOD8320

高抗扰性,2.5A 输出电流,门极驱动光耦合器,采用 Optoplanar® 宽体 SOP 5 引脚封装
ONSEMI

FOD8320R2

High Noise Immunity, 2.5A Output Current, Gate Drive Optocoupler
FAIRCHILD

FOD8320R2

高抗扰性,2.5A 输出电流,门极驱动光耦合器,采用 Optoplanar® 宽体 SOP 5 引脚封装
ONSEMI

FOD8320R2V

High Noise Immunity, 2.5A Output Current, Gate Drive Optocoupler
FAIRCHILD

FOD8320R2V

高抗扰性,2.5A 输出电流,门极驱动光耦合器,采用 Optoplanar® 宽体 SOP 5 引脚封装
ONSEMI

FOD8320V

High Noise Immunity, 2.5A Output Current, Gate Drive Optocoupler
FAIRCHILD

FOD8320V

高抗扰性,2.5A 输出电流,门极驱动光耦合器,采用 Optoplanar® 宽体 SOP 5 引脚封装
ONSEMI

FOD8321

New Products, Tips and Tools for Power and Mobile Applications
FAIRCHILD

FOD8321

2.5A 输出电流,Optoplanar® 宽体 5 引脚 SOP 封装的栅极驱动光电耦合器
ONSEMI