FOD8343 [ONSEMI]

4.0 A Output Current, High Speed Gate Drive Optocoupler in Stretched Body SOP 6-Pin;
FOD8343
型号: FOD8343
厂家: ONSEMI    ONSEMI
描述:

4.0 A Output Current, High Speed Gate Drive Optocoupler in Stretched Body SOP 6-Pin

文件: 总17页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
4.0 A Output Current,  
High Speed Gate Drive  
Optocoupler in Stretched  
Body SOP 6-Pin  
SOIC6  
CASE 751EL  
SOIC6 W  
CASE 751EM  
FOD8343, FOD8343T  
MARKING DIAGRAM  
Description  
ON  
The FOD8343 series is a 4.0 A maximum peak output current gate  
drive optocoupler, capable of driving medium−power IGBT /  
MOSFETs. It is ideally suited for fast−switching driving of power  
IGBT and MOSFET used in motor−control inverter applications, and  
high−performance power systems.  
8343  
VXXYYP  
8343 = Device Number  
V
= DIN EN/IEC60747−5−5 Option (Only Appears  
on Component Ordered with this Option)  
The FOD8343 series utilizes stretched body package to achieve  
8 mm creepage and clearance distances (FOD8343T), and optimized  
IC design to achieve reliably high−insulation voltage and high−noise  
immunity.  
XX = Two Digit Year Code, e.g. ‘15’  
YY = Two Digit Work Week Ranging from ‘01’ to ‘53’  
P
= Assembly Package Code  
The FOD8343 series consists of an Aluminum Gallium Arsenide  
(AlGaAs) Light−Emitting Diode (LED) optically coupled to an  
integrated circuit with a high−speed driver for push−pull MOSFET  
output stage. The device is housed in a stretched body, 6−pin, small  
outline, plastic package.  
FUNCTIONAL SCHEMATIC  
ANODE  
1
2
3
6
5
4
VDD  
Features  
VO  
FOD8343T − 8 mm Creepage and Clearance Distance, and 0.4 mm  
Insulation Distance to Achieve Reliable and High−Voltage Insulation  
4.0 A Maximum Peak Output Current Driving Capability for  
CATHODE  
VSS  
Medium−Power IGBT/MOSFET  
Use of P−Channel MOSFETs at Output Stage Enables Output  
Voltage Swing Close to Supply Rail  
50 kV/ms Minimum Common Mode Rejection Wide Supply Voltage  
Range: 10 V to 30 V  
ORDERING INFORMATION  
Fast Switching Speed Over Full Operating Temperature Range  
See detailed ordering and shipping information on page 14 of  
this data sheet.  
210 ns Maximum Propagation Delay  
65 ns Maximum Pulse Width Distortion Under−Voltage Lockout  
(UVLO) with Hysteresis  
Extended Industrial Temperate Range: −40°C to 100°C  
Related Resources  
Safety and Regulatory Approvals:  
UL1577, 5,000 VRMS for 1 Minute  
DIN EN/IEC60747−5−5, 1,140 V Peak Working Insulation  
Voltage  
FOD3182, 3 A Output Current, High Speed  
MOSFET Gate Drive Optocoupler  
FOD8314, FOD8314T, 1.0 A Output  
Current, Gate Drive Optocoupler in  
Stretched Body SOP 6−Pin  
Application  
AC and Brushless DC Motor Drives  
Industrial Inverter  
Uninterruptible Power Supply Induction Heating  
Isolated IGBT/Power MOSFET Gate Drive  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
November, 2022 − Rev. 2  
FOD8343/D  
FOD8343, FOD8343T  
TRUTH TABLE  
V
DD  
− V “Positive Going”  
V
DD  
− V “Negative Going”  
SS  
SS  
(Turn−on)  
0 V to 30 V  
0 V to 7 V  
(Turn−off)  
0 V to 30 V  
0 V to 6.5 V  
6.5 V to 9 V  
9 V to 30 V  
LED  
Off  
V
O
LOW  
LOW  
On  
On  
On  
7 V to 9.5 V  
9.5 V to 30 V  
Transition  
HIGH  
PIN DEFINITIONS  
Pin No.  
Symbol  
Description  
1
2
3
4
5
6
ANODE  
N.C  
LED Anode  
Not Connection  
CATHODE  
LED Cathode  
Negative Supply Voltage  
Output Voltage  
V
SS  
V
O
Positive Supply Voltage  
V
DD  
PIN CONFIGURATION  
6
5
4
1
2
3
ANODE  
N.C  
VDD  
VO  
CATHODE  
VSS  
Figure 1. Pin Configuration  
www.onsemi.com  
2
FOD8343, FOD8343T  
SAFETY AND INSULATION RATINGS (As per DIN EN/IEC60747−5−5 , this optocoupler is suitable for “safe electrical insulation”  
only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)  
Characteristics  
FOD8343  
I−IV  
FOD8343T  
I−IV  
Parameter  
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated  
Mains Voltage  
<150 V  
<300 V  
<450 V  
<600 V  
RMS  
RMS  
RMS  
RMS  
I−IV  
I−IV  
I−III  
I−IV  
I−III  
I−III  
Climatic Classification  
40/100/21  
2
40/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Comparative Tracking Index  
175  
175  
Value  
FOD8343T  
FOD8343  
Symbol  
Parameter  
Unit  
V
PR  
Input−to−Output Test Voltage, Method B, V  
x 1.875 = V , 100% Production  
1,671  
2,137  
V
peak  
IORM  
PR  
Test with t = 1 s, Partial Discharge < 5 pC  
m
Input−to−Output Test Voltage, Method A, V  
x 1.6 = V , Type and Sample  
1,426  
1,824  
V
peak  
IORM  
PR  
Test with t = 10 s, Partial Discharge < 5 pC  
m
V
Maximum Working Insulation Voltage  
Highest Allowable Over−Voltage  
External Creepage  
891  
6,000  
8.0  
7.0  
0.4  
1,140  
8,000  
8.0  
V
V
IORM  
peak  
V
IOTM  
peak  
mm  
mm  
mm  
External Clearance  
8.0  
DTI  
Distance Through Insulation (Insulation Thickness)  
0.4  
Safety Limit Values − Maximum Values Allowed in the Event of a Failure,  
T
Case Temperature  
Input Current  
150  
200  
600  
150  
200  
600  
°C  
mA  
mW  
S
I
S,INPUT  
P
Output Power  
S,OUTPUT  
9
9
R
Insulation Resistance at T , V = 500 V  
10  
10  
W
IO  
S
IO  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified.)  
A
Symbol  
Parameter  
Value  
Unit  
°C  
°C  
°C  
°C  
mA  
V
T
STG  
Storage Temperature  
Operating Temperature  
Junction Temperature  
−40 to +125  
−40 to +100  
−40 to +125  
260 for 10 s  
25  
T
OPR  
T
J
T
SOL  
Lead Solder Temperature (Refer to Reflow Temperature Profile)  
Average Input Current  
I
F(AVG)  
V
R
Reverse Input Voltage  
5.0  
I
Peak Output Current (Note 1)  
Supply Voltage  
4
A
O(PEAK)  
V
−0.5 to 35  
V
DD  
O(PEAK)  
V
Peak Output Voltage  
0 to V  
V
DD  
t
, t  
Input Signal Rise and Fall Time  
Input Power Dissipation (Note 2) (Note 4)  
Output Power Dissipation (Note 3) (Note 4)  
250  
45  
ns  
R(IN) F(IN)  
PD  
mW  
mW  
I
PD  
500  
O
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Maximum pulse width = 10 ms  
2. No derating required across operating temperature range.  
3. Derate linearly from 25°C at a rate of 5.2 mW/°C.  
4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside  
these ratings.  
www.onsemi.com  
3
 
FOD8343, FOD8343T  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
−40  
10  
Max  
+100  
30  
Unit  
°C  
V
T
A
Ambient Operating Temperature  
Supply Voltage  
V
DD  
− V  
SS  
I
Input Current (ON)  
10  
16  
mA  
V
F(ON)  
V
F(OFF)  
Input Voltage (OFF)  
−3.0  
0.8  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
ISOLATION CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at T = 25°C.)  
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VAC  
V
ISO  
Input−Output Isolation Voltage  
T = 25°C, R.H. < 50%, t = 1.0 minute,  
5000  
A
RMS  
I
20 mA (Note 5) (Note 6)  
I−O  
11  
R
C
Isolation Resistance  
Isolation Capacitance  
V
V
= 500 V (Note 5)  
10  
W
ISO  
ISO  
I−O  
= 0 V, Frequency = 1.0 MHz (Note 5)  
1
pF  
I−O  
5. Device is considered a two terminal device: pins 1, 2 and 3 are shorted together and pins 4, 5 and 6 are shorted together.  
6. 5,000 VAC for 1 minute duration is equivalent to 6,000 VAC for 1 second duration.  
RMS  
RMS  
ELECTRICAL CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V = 30 V, V = Ground,  
DD  
SS  
T = 25°C unless otherwise specified.)  
A
Symbol  
Parameter  
Conditions  
Min  
1.1  
Typ  
Max  
Unit  
V
V
F
Input Forward Voltage  
I = 10 mA  
1.5  
−1.8  
1.8  
F
D(V /T )  
Temperature Coefficient of Forward Voltage  
Input Reverse Breakdown Voltage  
Input Capacitance  
mV/°C  
V
F
A
BV  
I
R
= 10 mA  
5.0  
R
C
f = 1 MHz, V = 0 V  
20  
pF  
A
IN  
F
I
High Level Output Current (Note 1)  
V
OH  
V
OH  
V
OL  
V
OL  
= V − 3 V  
1.0  
3.0  
1.0  
3.0  
OH  
DD  
= V − 10 V  
A
DD  
I
OL  
Low Level Output Current (Note 1)  
= V + 3 V  
A
SS  
= V + 10 V  
A
SS  
V
High Level Output Voltage (Note 7) (Note 8)  
Low Level Output Voltage (Note 7) (Note 8)  
High Level Supply Current  
I = 10 mA, I = −100 mA  
V
DD  
− 0.5  
V − 0.1  
DD  
V
OH  
F
O
V
I = 0 mA, I = 100 mA  
V
SS  
+ 0.1  
V + 0.5  
SS  
V
OL  
F
O
I
V
= Open, I = 10 to 16 mA  
2.9  
4.0  
4.0  
7.5  
mA  
mA  
mA  
V
DDH  
O
O
F
I
Low Level Supply Current  
V
= Open, V = −3.0 to 0.8 V  
2.8  
2.0  
DDL  
F
I
Threshold Input Current Low to High  
Threshold Input Voltage High to Low  
UnderVoltage Lockout Threshold  
I
I
= 0 mA, V > 5 V  
FLH  
O
O
V
FHL  
= 0 mA, V < 5 V  
0.8  
7.0  
6.5  
O
O
V
I = 10 mA, V > 5 V  
8.3  
7.7  
0.6  
9.5  
9.0  
V
UVLO+  
UVLO−  
F
O
V
I = 10 mA, V < 5 V  
V
F
O
UVLO  
UnderVoltage Lockout Threshold Hysteresis  
V
HYS  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. In this test, V is measured with a dc load current of 100 mA. When driving capacitive load V will approach V as I approaches 0 A.  
OH  
OH  
DD  
OH  
8. Maximum pulse width = 1 ms, maximum duty cycle = 20%.  
www.onsemi.com  
4
 
FOD8343, FOD8343T  
SWITCHING CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V = 30 V, V = Ground,  
DD  
SS  
T = 25°C unless otherwise specified.)  
A
Symbol  
Parameter  
Conditions  
I =10 mA, R = 10 W, C = 10 nF,  
Min  
Typ  
Max  
Unit  
t
Propagation Delay Time to Logic  
Low Output (Note 9)  
50  
145  
210  
ns  
PHL  
F
g
g
f = 250 kHz, Duty Cycle = 50%  
t
Propagation Delay Time to Logic  
High Output (Note 10)  
50  
120  
35  
210  
65  
ns  
ns  
PLH  
PWD  
Pulse Width Distortion (Note 11)  
| t  
PHL  
− t  
PLH  
|
PDD  
Propagation Delay Difference  
−90  
90  
(Skew)  
Between Any Two Parts (Note 12)  
t
Output Rise Time (10% to 90%)  
Output Fall Time (90% to 10%)  
ULVO Turn On Delay  
38  
24  
2.0  
0.3  
ns  
ns  
R
t
F
t
I = 10 mA, V > 5 V  
ms  
ULVO ON  
F
O
t
ULVO Turn Off Delay  
I = 10 mA, V < 5 V  
ms  
ULVO OFF  
F
O
| CM  
|
Common Mode Transient Immunity  
at Output High  
V
DD  
V
CM  
= 30 V, I = 10 mA to 16 mA,  
50  
kV/ms  
H
F
= 2000 V, T = 25°C (Note 13)  
A
| CM |  
Common Mode Transient Immunity  
at Output Low  
V
= 30 V, V = 0 V, V = 2000 V,  
50  
kV/ms  
L
DD  
F
CM  
T = 25°C (Note 14)  
A
9. Propagation delay t  
signal.  
is measured from the 50% level on the falling edge of the input pulse to the 50% level of the falling edge of the V  
O
PHL  
10.Propagation delay t  
is measured from the 50% level on the rising edge of the input pulse to the 50% level of the rising edge of the V signal.  
O
PLH  
11. PWD is defined as | t  
− t  
PLH  
| for any given device.  
PHL  
12.The difference between t  
and t  
between any two FOD8343 parts under the same operating conditions, with equal loads.  
PHL  
PLH  
13.Common mode transient immunity at output high is the maximum tolerable negative dVcm/dt on the trailing edge of the common mode  
impulse signal, V , to ensure that the output remains high (i.e., V > 15.0 V).  
CM  
O
14.Common mode transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal,  
V
CM  
, to ensure that the output remains low (i.e., V < 1.0 V).  
O
www.onsemi.com  
5
 
FOD8343, FOD8343T  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
−2  
0.00  
−0.05  
−0.10  
−0.15  
−0.20  
−4  
−6  
T = 100°C 25°C −40°C  
A
V
− V = 15 V to 30 V  
SS  
DD  
−8  
−0.25  
−0.30  
V
− V = 15 V to 30 V  
I = 10 mA to 16 mA  
F
I = −100 mA  
O
DD  
SS  
I = 10 mA  
F
−10  
0
1
2
3
4
5
6
7
−40 −20  
0
20  
40  
60  
80  
100  
100  
30  
I
, HIGH LEVEL OUTPUT CURRENT (A)  
T , AMBIENT TEMPERATURE (°C)  
OH  
A
Figure 2. High Level Output Voltage Drop vs.  
High Level Output Current  
Figure 3. High Level Output Voltage Drop vs.  
Ambient Temperature  
10  
0.30  
V
DD  
− V = 15 V to 30 V  
V
− V = 15 V to 30 V  
SS  
DD SS  
I = 0 A  
V = −3 to 0.8 V  
F
= 100 mA  
F
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
8
6
4
2
0
I
O
T = 100°C 25°C  
A
−40°C  
0
1
2
3
4
5
6
7
−40 −20  
0
20  
40  
60  
80  
I
OL  
, LOW LEVEL OUTPUT CURRENT (A)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 4. Low Level Output Voltage Drop vs.  
Low Level Output Current  
Figure 5. Low Level Output Voltage Drop vs.  
Ambient Temperature  
3.6  
3.6  
3.2  
I
(30 V)  
DDH  
3.2  
2.8  
2.4  
2.0  
I
(30 V)  
DDL  
I
DDH  
2.8  
2.4  
2.0  
I
I
(15 V)  
DDL  
DDH  
I
(15 V)  
DDL  
I = 0 A (for I  
I = 10 mA (for I  
= 0 V  
T = 25°C  
)
F
DDL  
)
V
− V = 15 V to 30 V  
F
V
DDH  
DD  
SS  
I = 0 A (for I  
)
SS  
F
DDL  
I = 10 mA (for I  
F
)
A
DDH  
−40 −20  
0
20  
40  
60  
80  
100  
15  
20  
, SUPPLY VOLTAGE (V)  
DD  
25  
T , AMBIENT TEMPERATURE (°C)  
A
V
Figure 6. Supply Current vs. Ambient Temperature  
Figure 7. Supply Current vs. Supply Voltage  
www.onsemi.com  
6
FOD8343, FOD8343T  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
3.0  
2.5  
2.0  
1.5  
1.0  
400  
V
V
− V = 15 V to 30 V  
= Open  
I = 10 mA to 16 mA  
F
R = 10 W C = 10 nF  
g g  
f = 250 kHz 50% Duty Cycle  
DD  
SS  
O
300  
200  
100  
0
t
t
PHL  
PLH  
−40 −20  
0
20  
40  
60  
80  
100  
15  
18  
21  
24  
27  
30  
T , AMBIENT TEMPERATURE (°C)  
A
V
DD  
− V , SUPPLY VOLTAGE (V)  
SS  
Figure 8. Low to High Input Current Threshold  
vs. Ambient Temperature  
Figure 9. Propagation Delay vs.  
Supply Voltage  
400  
400  
300  
200  
100  
0
V
− V = 15 V to 30 V  
I = 10 mA to 16 mA  
F
DD  
SS  
R = 10 W C = 10 nF  
f = 250 kHz 50% Duty Cycle  
V − V = 15 V to 30 V  
DD SS  
g
g
R = 10 W C = 10 nF  
g g  
f = 250 kHz 50% Duty Cycle  
300  
200  
100  
0
t
t
PHL  
PHL  
t
t
PLH  
PLH  
6
8
10  
12  
14  
16  
−40 −20  
0
20  
40  
60  
80  
100  
I , LED FORWARD CURRENT (mA)  
F
T , AMBIENT TEMPERATURE (°C)  
A
Figure 10. Propagation Delay vs.  
LED Forward Current  
Figure 11. Propagation Delay vs.  
Ambient Temperature  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
I = 10 mA to 16 mA  
I = 10 mA to 16 mA  
F
F
V
DD  
− V = 15 V to 30 V  
V − V = 15 V to 30 V  
DD SS  
SS  
C = 10 nF  
R = 10 W  
g
g
f = 250 kHz 50% Duty Cycle  
f = 250 kHz 50% Duty Cycle  
t
t
t
t
PHL  
PHL  
PLH  
PLH  
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
100  
R , SERIES LOAD RESISTANCE (W)  
g
C , SERIES LOAD CAPACITANCE (nF)  
g
Figure 12. Propagation Delay vs.  
Series Load Resistance  
Figure 13. Propagation Delay vs.  
Series Load Capacitance  
www.onsemi.com  
7
FOD8343, FOD8343T  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
100  
35  
30  
25  
20  
15  
10  
5
V
− V = 30 V  
SS  
DD  
T = 25°C  
A
10  
1
0.1  
T = 100°C  
A
25°C  
−40°C  
0.01  
0
0.001  
0
1
2
3
4
5
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
I , FORWARD CURRENT (mA)  
F
V , FORWARD VOLTAGE (V)  
F
Figure 14. Transfer Characteristics  
Figure 15. Input Forward Current vs.  
Forward Voltage  
15  
10  
5
(8.30 V)  
(7.80 V)  
0
0
5
10  
15  
V
DD  
− V , SUPPLY VOLTAGE (V)  
SS  
Figure 16. Under Voltage Lockout  
www.onsemi.com  
8
FOD8343, FOD8343T  
TEST CIRCUITS  
1
2
6
IOL  
I = 0 mA  
PW = 10 ms  
1 mF 47 mF  
F
+
VOL  
5
VDD  
+
1 mF 47 mF  
VIN  
VO  
3
4
Figure 17. IOL Test Circuit  
1
2
6
VO  
1 mF 47 mF  
IOH  
+
I = 10 mA  
PW = 10 ms  
F
+
VOH  
5
1 mF 47 mF  
VDD  
VIN  
3
4
Figure 18. IOH Test Circuit  
1
2
6
1 mF  
I = 10 mA  
F
+
VOH  
5
VDD  
100 mA  
3
4
Figure 19. VOH Test Circuit  
www.onsemi.com  
9
FOD8343, FOD8343T  
TEST CIRCUITS (Continued)  
1
2
6
1 mF  
100 mA  
+
5
VOL  
VDD  
3
4
Figure 20. VOL Test Circuit  
IDDH  
1
2
6
5
1 mF  
I = 10 mA to 16 mA  
F
+
VO  
VDD  
3
4
Figure 21. IDDH Test Circuit  
IDDL  
1
2
6
5
1 mF  
V = −3.0 V to 0.8 V  
F
+
VO  
+
VDD  
3
4
Figure 22. IDDL Test Circuit  
www.onsemi.com  
10  
FOD8343, FOD8343T  
TEST CIRCUITS (Continued)  
1
2
6
1 mF  
IF  
+
5
VO > 5 V  
VDD  
3
4
Figure 23. IFLH Test Circuit  
1
2
6
5
1 mF  
VF  
+
+
VO < 5 V  
VDD  
3
4
Figure 24. VFHL Test Circuit  
1
2
6
5
1 mF  
I = 10 mA  
F
+
VO = 5 V  
VDD Ramp  
3
4
Figure 25. IDDH Test Circuit  
www.onsemi.com  
11  
FOD8343, FOD8343T  
TEST CIRCUITS (Continued)  
1
2
6
5
1 mF  
VO  
f = 10 kHz  
Duty Cycle 50%  
10 nF  
10 W  
+
VDD  
IF MON  
3
4
IF  
tR  
tF  
50%  
10%  
VO  
tPLH  
tPHL  
Figure 26. tPLH, tPHL, tR and tF Test Circuit and Waveforms  
IF  
A
100 W  
1
2
6
5
1 mF  
B
5 V  
+
+
VO  
VDD = 30 V  
100 W  
3
4
VCM = 2,000 V  
VCM  
0 V  
VO  
Dt  
VOH  
Switch at A: IF = 10 mA  
VO  
VOL  
Switch at B: IF = 10 mA  
Figure 27. CMR Test Circuit and Waveforms  
www.onsemi.com  
12  
FOD8343, FOD8343T  
REFLOW PROFILE  
Maximum Ramp−up Rate = 35°C/s  
Maximum Ramp−down Rate = 65°C/s  
TP  
TL  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
tP  
Tsmax  
tL  
Preheat Area  
Tsmin  
ts  
60  
40  
20  
0
120  
240  
360  
Time 25°C to Peak  
Time (seconds)  
Profile Freature  
Pb−Free Assembly Profile  
150°C  
Temperature Minimum (T  
)
smin  
Temperature Maximum (T  
)
200°C  
smax  
Time (t ) from (T  
to T )  
smax  
60 s to 120 s  
3°C/second maximum  
217°C  
S
smin  
Ramp−up Rate (t to t )  
L
P
Liquidous Temperature (T )  
L
Time (t ) Maintained Above (T )  
60 s to 150 s  
260°C +0°C / −5°C  
30 s  
L
L
Peak Body Package Temperature  
Time (t ) within 5°C of 260°C  
P
Ramp−Down Rate (T to T )  
6°C/s maximum  
8 minutes maximum  
P
L
Time 25°C to Peak Temperature  
Figure 28. Reflow Profile  
www.onsemi.com  
13  
FOD8343, FOD8343T  
ORDERING INFORMATION  
Device Order Number  
FOD8343  
Package Type  
Shipping  
Stretched Body SOP 6−Pin  
Stretched Body SOP 6−Pin  
100 Units / Tube  
1,000 / Tape & Reel  
100 Units / Tube  
FOD8343R2  
FOD8343V  
Stretched Body SOP 6−Pin, DIN  
EN/IEC60747−5−5 Option  
FOD8343R2V  
Stretched Body SOP 6−Pin, DIN  
EN/IEC60747−5−5 Option  
1,000 / Tape & Reel  
FOD8343T  
Stretched Body SOP 6−Pin, Wide Lead  
Stretched Body SOP 6−Pin, Wide Lead  
100 Units / Tube  
1,000 / Tape & Reel  
100 Units / Tube  
FOD8343TR2  
FOD8343TV  
Stretched Body SOP 6−Pin, Wide Lead,  
DIN EN/IEC60747−5−5 Option  
FOD8343TR2V  
Stretched Body SOP 6−Pin, Wide Lead,  
DIN EN/IEC60747−5−5 Option  
1,000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
NOTE: All packages are lead free per JEDEC: J−STD−020B standard.  
www.onsemi.com  
14  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC6  
CASE 751EL  
ISSUE O  
DATE 30 SEP 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13745G  
SOIC6  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC6 W  
CASE 751EM  
ISSUE O  
DATE 30 SEP 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13749G  
SOIC6 W  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FOD8343R2

4.0 A Output Current, High Speed Gate Drive Optocoupler in Stretched Body SOP 6-Pin
ONSEMI

FOD8343T

4.0 A Output Current, High Speed Gate Drive Optocoupler in Stretched Body SOP 6-Pin
ONSEMI

FOD8343TR2

4.0 A Output Current, High Speed Gate Drive Optocoupler in Stretched Body SOP 6-Pin
ONSEMI

FOD8343TR2V

4.0 A Output Current, High Speed Gate Drive Optocoupler in Stretched Body SOP 6-Pin
ONSEMI

FOD8343TV

4.0 A Output Current, High Speed Gate Drive Optocoupler in Stretched Body SOP 6-Pin
ONSEMI

FOD8383

采用 Optoplanar® 宽体 SOP 5 引脚封装的 FOD8383 2.5 A 输出电流、高速、MOSFET/IGBT 栅极驱动光电耦合器
ONSEMI

FOD8383R2

采用 Optoplanar® 宽体 SOP 5 引脚封装的 FOD8383 2.5 A 输出电流、高速、MOSFET/IGBT 栅极驱动光电耦合器
ONSEMI

FOD8383R2V

采用 Optoplanar® 宽体 SOP 5 引脚封装的 FOD8383 2.5 A 输出电流、高速、MOSFET/IGBT 栅极驱动光电耦合器
ONSEMI

FOD8383V

采用 Optoplanar® 宽体 SOP 5 引脚封装的 FOD8383 2.5 A 输出电流、高速、MOSFET/IGBT 栅极驱动光电耦合器
ONSEMI

FOD8384

采用 Optoplanar® 宽体 SOP 5 引脚的 2.5 A 输出电流、高速、MOSFET/IGBT 栅极驱动光电耦合器
ONSEMI

FOD8384R2

采用 Optoplanar® 宽体 SOP 5 引脚的 2.5 A 输出电流、高速、MOSFET/IGBT 栅极驱动光电耦合器
ONSEMI

FOD8384R2V

采用 Optoplanar® 宽体 SOP 5 引脚的 2.5 A 输出电流、高速、MOSFET/IGBT 栅极驱动光电耦合器
ONSEMI