FSGM0565RLDTU [ONSEMI]

具有异常 OCP 功能的 650 V 集成电源开关,用于 60 W 离线反激式转换器;
FSGM0565RLDTU
型号: FSGM0565RLDTU
厂家: ONSEMI    ONSEMI
描述:

具有异常 OCP 功能的 650 V 集成电源开关,用于 60 W 离线反激式转换器

局域网 开关 电源开关 转换器
文件: 总18页 (文件大小:767K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FSGM0565R  
Green-Mode Power Switch  
Description  
The FSGM0565RB is an integrated Pulse Width Modulation  
®
(PWM) controller and SENSEFET specifically designed for offline  
SwitchMode Power Supplies (SMPS) with minimal external  
components. The PWM controller includes an integrated  
fixedfrequency oscillator, UnderVoltage Lockout (UVLO),  
LeadingEdge Blanking (LEB), optimized gate driver, internal  
softstart, temperaturecompensated precise current sources for loop  
compensation, and selfprotection circuitry. Compared with a discrete  
MOSFET and PWM controller solution, the FSGM series can reduce  
total cost, component count, size, and weight; while simultaneously  
increasing efficiency, productivity, and system reliability. This device  
provides a basic platform suited for costeffective design of a flyback  
converter.  
www.onsemi.com  
TO2206LD LF  
CASE 340BN  
Features  
Soft BurstMode Operation for Low Standby Power Consumption  
and Low Noise  
Precision Fixed Operating Frequency: 66 kHz  
PulsebyPulse Current Limit  
TO2206LD LF  
CASE 340BG  
Various Protection Functions: Overload Protection (OLP),  
OverVoltage Protection (OVP), Abnormal OverCurrent Protection  
(AOCP), Internal Thermal Shutdown (TSD) with Hysteresis,  
OutputShort Protection (OSP), and UnderVoltage Lockout  
(UVLO) with Hysteresis  
TO220 FULLPAK 6LD LF  
AutoRestart Mode  
Internal Startup Circuit  
CASE 340BP  
MARKING DIAGRAM  
Internal HighVoltage SENSEFET: 650 V  
Builtin SoftStart: 15 ms  
These Devices are PbFree and are RoHS Compliant  
Applications  
Power Supply for LCD TV and Monitor, STB and DVD  
$Y&Z&3&K  
GM0765R  
$Y&Z&3&K  
GM0765R  
Combination  
$Y  
&Z  
&3  
&K  
= ON Semiconductor Logo  
= Assembly Plant Code  
= 3Digit Date Code Format  
= 2Digit Lot Run Tracebility Code  
GM0765R = Specific Device Code Data  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
June, 2019 Rev. 2  
FSGM0565R/D  
FSGM0565R  
ORDERING INFORMATION  
Output Power Table (Note 2)  
85 265 V  
230V 15% (Note 3)  
AC  
AC  
Operating  
Junction  
Temperature  
Adapter  
(Note 4)  
Open Frame  
Adapter  
Open Frame  
R
Replaces  
Device  
DS(ON)  
(Note 5)  
(Note 4)  
(Note 5)  
Current Limit  
Part Number  
Package  
(Max.)  
Shipping  
FSGM0565RWDTU  
TO220F  
6Lead  
40°C ~  
+125°C  
2.20 A  
2.2 W  
70 W  
70 W  
70 W  
80 W  
80 W  
80 W  
41 W  
41 W  
41 W  
60 W  
60 W  
60 W  
FSDM0565RE  
FSDM0565RE  
FSDM0565RE  
400 / Tube  
(Note 1)  
WForming  
FSGM0565RUDTU  
FSGM0565RLDTU  
TO220F  
6Lead  
(Note 1)  
UForming  
40°C ~  
+125°C  
2.20 A  
2.20 A  
2.2 W  
2.2 W  
400 / Tube  
400 / Tube  
TO220F  
6Lead  
(Note 1)  
LForming  
40°C ~  
+125°C  
1. Pbfree package per JEDEC JSTD020B.  
2. The junction temperature can limit the maximum output power.  
3. 230 V or 100 / 115 V with voltage doubler.  
AC  
AC  
4. Typical continuous power in a nonventilated enclosed adapter measured at 50°C ambient temperature.  
5. Maximum practical continuous power in an openframe design at 50°C ambient temperature.  
Application Circuit  
VO  
AC  
IN  
VSTR  
Drain  
PWM  
GND  
VCC  
FB  
Figure 1. Typical Application Circuit  
www.onsemi.com  
2
 
FSGM0565R  
Internal Block Diagram  
N.C.  
V
STR  
V
CC  
Drain  
6
3
5
1
ICH  
V
ref  
V
burst  
VCC good  
7.5V / 12V  
0.5 V / 0.7 V  
Soft Burst  
Soft Start  
V
V
ref  
CC  
OSC  
IDELAY  
IFB  
S
Q
Q
PWM  
Gate  
Driver  
FB  
4
R
3R  
LEB (300 ns)  
R
t
< t  
OSP  
(1.2 ms)  
ON  
LPF  
2
GND  
V
AOCP  
V
OSP  
S
R
Q
TSD  
V
6SVD  
VCC good  
Q
V
CC  
V
OVP  
24.5 V  
Figure 2. Internal Block Diagram  
Pin Configuration  
6. V  
STR  
5. N.C.  
4. FB  
3. VCC  
2. GND  
1. Drain  
FSGM0565R  
Figure 3. Pin Configuration (Top View)  
www.onsemi.com  
3
FSGM0565R  
PIN DEFINITIONS  
Pin No.  
Name  
Drain  
GND  
Description  
1
2
3
SENSEFET Drain. Highvoltage power SENSEFET drain connection.  
Ground. This pin is the control ground and the SENSEFET source.  
V
CC  
Power Supply. This pin is the positive supply input, which provides the internal operating current for both startup and  
steadystate operation.  
4
FB  
Feedback. This pin is internally connected to the inverting input of the PWM comparator. The collector of an  
optocoupler is typically tied to this pin. For stable operation, a capacitor should be placed between this pin and  
GND. If the voltage of this pin reaches 6 V, the overload protection triggers, which shuts down the power switch.  
5
6
N.C.  
No connection.  
V
STR  
Startup. This pin is connected directly, or through a resistor, to the highvoltage DC link. At startup, the internal  
highvoltage current source supplies internal bias and charges the external capacitor connected to the V pin.  
CC  
Once V reaches 12 V, the internal current source (I ) is disabled.  
CC  
CH  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
Max  
650  
650  
26  
Unit  
V
V
STR  
V
STR  
Pin Voltage  
V
Drain Pin Voltage  
Pin Voltage  
V
DS  
V
CC  
V
V
CC  
V
Feedback Pin Voltage  
Drain Current Pulsed  
0.3  
12  
V
FB  
I
11  
A
DM  
I
Continuous Switching Drain Current (Note 6)  
T
T
= 25°C  
5.6  
3.4  
295  
45  
A
DS  
C
= 100°C  
A
C
E
Single Pulsed Avalanche Energy (Note 7)  
mJ  
W
°C  
°C  
°C  
V
AS  
P
Total Power Dissipation (T = 25°C) (Note 8)  
D
C
T
Maximum Junction Temperature  
Operating Junction Temperature (Note 9)  
Storage Temperature  
150  
+125  
+150  
J
40  
55  
2.5  
2
T
STG  
V
Minimum Isolation Range (Note 10)  
Electrostatic Discharge Capability  
ISO  
ESD  
Human Body Model, JESD22A114  
Charged Device Model, JESD22C101  
kV  
2
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
6. Repetitive peak switching current when the inductive load is assumed: Limited by maximum duty (D  
= 0.75) and junction temperature  
MAX  
(see Figure 4).  
7. L = 45mH, starting T = 25°C.  
J
8. Infinite cooling condition (refer to the SEMI G3088).  
9. Although this parameter guarantees IC operation, it does not guarantee all electrical characteristics.  
10.The voltage between the package back side and the lead is guaranteed.  
IDS  
DMAX  
fSW  
Figure 4. Repetitive Peak Switching Current  
www.onsemi.com  
4
 
FSGM0565R  
THERMAL IMPEDANCE T = 25°C unless otherwise specified.  
A
Symbol  
Characteristic  
Value  
62.5  
3
Unit  
°C/W  
°C/W  
q
JunctiontoAmbient Thermal Impedance (Note 11)  
JunctiontoCase Thermal Impedance (Note 12)  
JA  
q
JC  
11. Infinite cooling condition (refer to the SEMI G3088).  
12.Free standing with no heatsink under natural convection.  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
SENSEFET SECTION  
BV  
DrainSource Breakdown Voltage  
ZeroGateVoltage Drain Current  
DrainSource OnState Resistance  
Input Capacitance (Note 13)  
Output Capacitance (Note 13)  
Rise Time  
V
CC  
V
DS  
V
GS  
V
DS  
V
DS  
V
DS  
V
DS  
V
DS  
V
DS  
= 0 V, I = 250 mA  
650  
V
DSS  
D
250  
mA  
= 520 V, T = 125°C  
I
A
DSS  
R
= 10 V, I = 1 A  
1.8  
515  
75  
2.2  
W
pF  
pF  
ns  
ns  
ns  
ns  
DS(ON)  
D
C
= 25 V, V = 0 V, f = 1MHz  
GS  
ISS  
C
= 25 V, V = 0 V, f = 1MHz  
GS  
OSS  
t
= 325 V, I = 4 A, R = 25 W  
26  
r
D
G
t
Fall Time  
= 325 V, I = 4 A, R = 25 W  
25  
f
D
G
t
t
Turnon Delay Time  
= 325 V, I = 4 A, R = 25 W  
14  
d(on)  
d(off)  
D
G
Turnoff Delay Time  
= 325 V, I = 4 A, R = 25 W  
32  
D
G
CONTROL SECTION  
f
Switching Frequency  
V
= 14 V, V = 4 V  
60  
66  
5
72  
10  
75  
0
kHz  
%
S
CC  
FB  
25°C < T < +125°C  
Df  
Switching Frequency Variation (Note 13)  
Maximum Duty Ratio  
J
S
D
V
CC  
V
CC  
V
FB  
V
FB  
= 14 V, V = 4 V  
65  
70  
%
MAX  
FB  
D
Minimum Duty Ratio  
= 14 V, V = 0 V  
%
MIN  
FB  
FB  
I
Feedback Source Current  
UVLO Threshold Voltage  
= 0  
160  
11  
210  
12  
260  
13  
8.0  
mA  
V
V
= 0 V, V Sweep  
CC  
START  
V
After Turnon, V = 0 V  
7.0  
7.5  
V
STOP  
FB  
V
OP  
V
CC  
Operating Range  
13  
23  
V
t
Internal SoftStart Time  
V
V
= 40 V, V Sweep  
15  
ms  
S/S  
STR  
CC  
BURSTMODE SECTION  
BurstMode Voltage  
V
= 14 V, V Sweep  
0.6  
0.4  
0.7  
0.5  
0.8  
0.6  
V
V
BURH  
CC  
FB  
V
BURL  
Hys  
PROTECTION SECTION  
200  
mV  
I
Peak Drain Current Limit  
di/dt = 300 mA/ms  
2.0  
5.5  
2.5  
2.2  
6.0  
2.4  
6.5  
4.1  
A
V
LIM  
V
Shutdown Feedback Voltage  
Shutdown Delay Current  
V
CC  
V
CC  
= 14 V, V Sweep  
FB  
SD  
I
= 14 V, V = 4 V  
3.3  
mA  
ns  
V
DELAY  
FB  
Hys  
LeadingEdge Blanking Time (Note 13, 14)  
OverVoltage Protection  
300  
24.5  
V
V
CC  
Sweep  
23.0  
26.0  
OVP  
www.onsemi.com  
5
 
FSGM0565R  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (continued)  
J
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
PROTECTION SECTION  
t
Output Short  
Protection (Note 13)  
Threshold Time  
OSP Triggered when t < t &  
OSP  
1.0  
1.8  
2.0  
130  
1.2  
2.0  
2.5  
140  
30  
1.4  
2.2  
3.0  
150  
ms  
V
OSP  
ON  
V
t
> V  
(Lasts Longer than  
FB  
OSP_FB  
OSP  
)
V
Threshold V  
OSP  
FB  
t
V
FB  
Blanking Time  
ms  
°C  
°C  
OSP_FB  
T
Thermal Shutdown Temperature (Note 13)  
Shutdown Temperature  
Hysteresis  
SD  
Hys  
TOTAL DEVICE SECTION  
I
Operating Supply Current, (Control Part in  
Burst Mode)  
V
V
= 14 V, V = 0 V  
1.2  
2.0  
0.5  
1.6  
2.5  
0.6  
2.0  
3.0  
0.7  
mA  
mA  
mA  
OP  
CC  
FB  
I
Operating Switching Current, (Control Part  
and SENSEFET Part)  
= 14 V, V = 4 V  
FB  
OPS  
CC  
I
Start Current  
V
= 11 V (Before V Reaches  
CC CC  
START  
V
)
START  
I
Startup Charging Current  
V
V
= V = 0 V, V  
= 40 V  
Sweep  
1.00  
1.15  
26  
1.50  
mA  
V
CH  
CC  
FB  
STR  
V
STR  
Minimum V  
Supply Voltage  
= V = 0 V, V  
FB  
STR  
CC  
STR  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
13.Although these parameters are guaranteed, they are not 100% tested in production.  
14.t  
includes gate turnon time.  
LEB  
COMPARISON OF FSDM0565RE AND FSGM0565R  
Function  
Burst Mode  
Lightning Surge  
SoftStart  
FSDM0565RE  
FSGM0565R  
Advanced Soft Burst  
Strong  
Advantages of FSGM0565R  
Low noise and low standby power  
Advanced Burst  
Enhanced SENSEFET and controller against lightning surge  
Longer softstart time  
10 ms (Builtin)  
15 ms (Builtin)  
Protections  
OLP  
OVP  
TSD  
OLP  
OVP  
Enhanced protections and high reliability  
OSP  
AOCP  
TSD with Hysteresis  
Power Balance  
Long T  
Very Short T  
The difference of input power between the low and high input  
voltage is quite small  
CLD  
CLD  
www.onsemi.com  
6
 
FSGM0565R  
TYPICAL CHARACTERISTICS (Characteristic graphs are normalized at T = 25°C)  
A
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
Temperature [°C]  
Temperature [°C]  
Figure 5. Operating Supply Current (IOP) vs. TA  
Figure 6. Operating Switching Current (IOPS) vs. TA  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
Temperature [°C]  
Temperature [°C]  
Figure 7. Startup Charging Current (ICH) vs. TA  
Figure 8. Peak Drain Current Limit (ILIM) vs. TA  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
Temperature [°C]  
Temperature [°C]  
Figure 9. Feedback Source Current (IFB) vs. TA  
Figure 10. Shutdown Delay Current (IDELAY) vs. TA  
www.onsemi.com  
7
FSGM0565R  
TYPICAL CHARACTERISTICS (Characteristic graphs are normalized at T = 25°C)  
A
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
Temperature [°C]  
Temperature [°C]  
Figure 11. UVLO Threshold Voltage (VSTART) vs. TA  
Figure 12. UVLO Threshold Voltage (VSTOP) vs. TA  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
Temperature [°C]  
Temperature [°C]  
Figure 13. Shutdown Feedback Voltage (VSD) vs. TA  
Figure 14. OverVoltage Protection (VOVP) vs. TA  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
40°C 25°C  
0°C  
25°C  
50°C  
75°C  
100°C 125°C  
Temperature [°C]  
Temperature [°C]  
Figure 15. Switching Frequency (fS) vs. TA  
Figure 16. Maximum Duty Ratio (DMAX) vs. TA  
www.onsemi.com  
8
FSGM0565R  
FUNCTIONAL DESCRIPTION  
the required output voltage. This helps prevent transformer  
saturation and reduces stress on the secondary diode during  
startup.  
Startup  
At startup, an internal highvoltage current source  
supplies the internal bias and charges the external capacitor  
Feedback Control  
(CVcc) connected to the V pin, as illustrated in Figure 17.  
This device employs currentmode control, as shown in  
Figure 18. An optocoupler (such as the FOD817) and shunt  
regulator (such as the KA431) are typically used to  
implement the feedback network. Comparing the feedback  
CC  
When V reaches 12 V, the FSGM0465R begins switching  
CC  
and the internal highvoltage current source is disabled. The  
FSGM0465R continues normal switching operation and the  
power is supplied from the auxiliary transformer winding  
voltage with the voltage across the R  
resistor makes it  
SENSE  
unless V goes below the stop voltage of 7.5 V.  
possible to control the switching duty cycle. When the  
reference pin voltage of the shunt regulator exceeds the  
internal reference voltage of 2.5 V, the optocoupler LED  
current increases, pulling down the feedback voltage and  
reducing drain current. This typically occurs when the input  
voltage increases or the output load is decreases.  
CC  
VDC  
CVcc  
PulsebyPulse Current Limit  
Because currentmode control is employed, the peak  
current through the SENSEFET is limited by the inverting  
VCC  
VSTR  
3
6
input of PWM comparator (V *), as shown in Figure 18.  
FB  
ICH  
Assuming that the 210 mA current source flows only through  
the internal resistor (3R + R = 11.6 kW), the cathode voltage  
of diode D2 is about 2.4 V. Since D1 is blocked when the  
Vref  
VCC good  
7.5 V / 12 V  
feedback voltage (V ) exceeds 2.4 V, the maximum  
FB  
Internal  
Bias  
voltage of the cathode of D2 is clamped at this voltage.  
Therefore, the peak value of the current through the  
SENSEFET is limited.  
Figure 17. Startup Block  
LeadingEdge Blanking (LEB)  
SoftStart  
At the instant the internal SENSEFET is turned on, a  
highcurrent spike usually occurs through the SENSEFET,  
caused by primaryside capacitance and secondaryside  
rectifier reverse recovery. Excessive voltage across the  
RSENSE resistor leads to incorrect feedback operation in  
the current mode PWM control. To counter this effect, the  
FSGM0565RB employs a leadingedge blanking (LEB)  
circuit. This circuit inhibits the PWM comparator for tLEB  
(300 ns) after the SENSEFET is turned on.  
The FSGM0465R has an internal softstart circuit that  
increases PWM comparator inverting input voltage,  
together with the SENSEFET current, slowly after it starts.  
The typical softstart time is 15 ms. The pulse width to the  
power switching device is progressively increased to  
establish the correct working conditions for transformers,  
inductors, and capacitors. The voltage on the output  
capacitors is progressively increased to smoothly establish  
Drain  
1
Vref  
VCC  
IDELAY  
IFB  
OSC  
FB  
3R  
VOUT  
VFB  
PWM  
4
Gate  
Driver  
D1  
D2  
FOD817  
KA431  
*
CFB  
R
VFB  
LEB (300 ns)  
OSP  
OLP  
VOSP  
RSENSE  
GND  
AOCP  
V
AOCP  
2
VSD  
Figure 18. Pulse Width Modulation Circuit  
www.onsemi.com  
9
 
FSGM0565R  
Protection Circuits  
current, thus increasing the feedback voltage (V ). If V  
FB  
FB  
The FSGM0565RB has several selfprotective functions,  
such as Overload Protection (OLP), Abnormal  
OverCurrent Protection (AOCP), OutputShort Protection  
(OSP), OverVoltage Protection (OVP), and Thermal  
Shutdown (TSD). All the protections are implemented as  
autorestart. Once the fault condition is detected, switching  
is terminated and the SENSEFET remains off. This causes  
exceeds 2.4 V, D1 is blocked and the 3.3 mA current source  
starts to charge C slowly up In this condition, V  
continues increasing until it reaches 6.0 V, when the  
switching operation is terminated, as shown in Figure 20.  
The delay time for shutdown is the time required to charge  
FB  
.
FB  
C
FB  
from 2.4 V to 6.0 V with 3.3 mA. A 25 ~ 50 ms delay is  
typical for most applications. This protection is  
implemented in autorestart mode.  
V
CC  
to fall. When VB falls to the UnderVoltage Lockout  
CC  
(UVLO) stop voltage of 7.5 V, the protection is reset and the  
startup circuit charges the V capacitor. When V reaches  
the start voltage of 12.0 V, the FSGM0565RB resumes  
normal operation. If the fault condition is not removed, the  
VFB  
CC  
CC  
Overload Protection  
6.0 V  
2.4 V  
SENSEFET remains off and V drops to stop voltage  
CC  
again. In this manner, the autorestart can alternately enable  
and disable the switching of the power SENSEFET until the  
fault condition is eliminated. Because these protection  
circuits are fully integrated into the IC without external  
components, the reliability is improved without increasing  
cost.  
t
12  
= C x (6.0 2.4) / I  
FB delay  
t1  
t2  
t
Fault  
occurs  
Fault  
removed  
Power  
on  
VDS  
Figure 20. Overload Protection  
Abnormal OverCurrent Protection (AOCP)  
When the secondary rectifier diodes or the transformer  
pins are shorted, a steep current with extremely high di/dt  
can flow through the SENSEFET during the minimum  
turnon time. Even though the FSGM0565RB has overload  
protection, it is not enough to protect the FSGM0565RB in  
that abnormal case; since severe current stress is imposed on  
the SENSEFET until OLP is triggered. The FSGM0565RB  
internal AOCP circuit is shown in Figure 21. When the gate  
turnon signal is applied to the power SENSEFET, the  
AOCP block is enabled and monitors the current through the  
sensing resistor. The voltage across the resistor is compared  
with a preset AOCP level. If the sensing resistor voltage is  
greater than the AOCP level, the set signal is applied to the  
SR latch, resulting in the shutdown of the SMPS.  
VCC  
12.0 V  
7.5 V  
t
Normal  
operation  
Fault  
situation  
Normal  
operation  
Figure 19. AutoRestart Protection Waveforms  
Overload Protection (OLP)  
Drain  
Overload is defined as the load current exceeding its  
normal level due to an unexpected abnormal event. In this  
situation, the protection circuit should trigger to protect the  
SMPS. However, even when the SMPS is in normal  
operation, the overload protection circuit can be triggered  
during the load transition. To avoid this undesired operation,  
the overload protection circuit is designed to trigger only  
after a specified time to determine whether it is a transient  
situation or a true overload situation. Because of the  
pulsebypulse current limit capability, the maximum peak  
current through the SENSEFET is limited and, therefore, the  
maximum input power is restricted with a given input  
voltage. If the output consumes more than this maximum  
1
OSC  
3R  
PWM  
Gate  
Driver  
*
R
VFB  
LEB (300 ns)  
RSENSE  
VAOCP  
GND  
Q
Q
S
2
R
VCC good  
power, the output voltage (V  
voltage. This reduces the current through the optocoupler  
LED, which also reduces the optocoupler transistor  
) decreases below the set  
OUT  
Figure 21. Abnormal OverCurrent Protection  
www.onsemi.com  
10  
 
FSGM0565R  
OutputShort Protection (OSP)  
Thermal Shutdown (TSD)  
If the output is shorted, steep current with extremely high  
di/dt can flow through the SENSEFET during the minimum  
turnon time. Such a steep current brings highvoltage  
stress on the drain of the SENSEFET when turned off. To  
protect the device from this abnormal condition, OSP is  
The SENSEFET and the control IC on a die in one  
package makes it easier for the control IC to detect the over  
temperature of the SENSEFET. If the temperature exceeds  
~140°C, the thermal shutdown is triggered and the  
FSGM0465R stops operation. The FSGM0465R operates in  
autorestart mode until the temperature decreases to around  
110°C, when normal operation resumes.  
included. It is comprised of detecting V and SENSEFET  
FB  
turnon time. When the V is higher than 2 V and the  
FB  
SENSEFET turnon time is lower than 1.2 ms, the  
FSGM0565RB recognizes this condition as an abnormal  
Soft BurstMode Operation  
To minimize power dissipation in standby mode, the  
FSGM0465R enters burstmode operation. As the load  
decreases, the feedback voltage decreases. As shown in  
Figure 23, the device automatically enters burst mode when  
error and shuts down PWM switching until V reaches  
CC  
V
START  
again. An abnormal condition output short is shown  
in Figure 22.  
the feedback voltage drops below V  
(500 mV). At this  
BURL  
point, switching stops and the output voltages start to drop  
at a rate dependent on standby current load. This causes the  
MOSFET  
Rectifier  
Diode  
Current  
ILIM  
Drain  
V
FB  
* = 0.5 V  
Current  
*
feedback voltage to rise. Once it passes V  
(700 mV),  
V * = 2.0 V  
BURH  
FB  
VFB  
switching resumes. At this point, the drain current peak  
increases gradually. This soft burstmode can reduce  
audible noise during burstmode operation. The feedback  
voltage then falls and the process repeats. Burstmode  
operation alternately enables and disables switching of the  
SENSEFET, thereby reducing switching loss in standby  
mode.  
ILm  
0
t
1.2 ms  
1.2 ms  
tOFF tON  
output short occurs  
VOUT  
IOUT  
0
t
t
VO  
OSP triggered  
OSP  
0
t
VFB  
Figure 22. OutputShort Protection  
OverVoltage Protection (OVP)  
0.70 V  
If the secondaryside feedback circuit malfunctions or a  
solder defect causes an opening in the feedback path, the  
current through the optocoupler transistor becomes almost  
0.50 V  
t
IDS  
Soft Burst  
zero. Then V climbs up in a similar manner to the overload  
FB  
situation, forcing the preset maximum current to be supplied  
to the SMPS until the overload protection is triggered.  
Because more energy than required is provided to the output,  
the output voltage may exceed the rated voltage before the  
overload protection is triggered, resulting in the breakdown  
of the devices in the secondary side. To prevent this  
t
VDS  
situation, an OVP circuit is employed. In general, the V  
CC  
is proportional to the output voltage and the FSGM0565RB  
uses V instead of directly monitoring the output voltage.  
t
CC  
Switching  
disabled  
Switching  
disabled  
t4  
If V exceeds 24.5 V, an OVP circuit is triggered, resulting  
CC  
t1  
t2 t3  
in the termination of the switching operation. To avoid  
undesired activation of OVP during normal operation, V  
should be designed to be below 24.5 V.  
CC  
Figure 23. BurstMode Operation  
www.onsemi.com  
11  
 
FSGM0565R  
TYPICAL APPLICATION CIRCUIT  
Application  
Input Voltage  
85 265V  
Rated Output  
Rated Power  
LCD TV, Monitor Power Supply  
5.0 V (2 A)  
14.0 V (2.8 A)  
49.2 W  
AC  
Key Design Notes:  
2. The SMDtype capacitor (C106) must be placed  
1. The delay time for overload protection is designed  
to be about 40 ms with C105 (33 nF). OLP time  
between 25 ms (22 nF) and 50 ms (43 nF) is  
recommended.  
as close as possible to the V pin to avoid  
CC  
malfunction by abrupt pulsating noises and to  
improve ESD and surge immunity. Capacitance  
between 100 nF and 220 nF is recommended.  
Schematic  
L201  
5μH  
D201  
MBR20150CT  
T101  
EER3016  
14V, 2.8A  
1
2
10  
C201  
1000μF  
25V  
C202  
1000μF  
25V  
C206  
100nF  
SMD  
R103  
51kΩ  
1W  
C104  
3.3nF  
630V  
R102  
75kΩ  
6
D101  
1N 4007  
C103  
100μF  
400V  
3
2
BD101  
FSGM0465R  
G2SBA60  
C301  
4.7nF  
Y2  
6
1
1
3
VSTR  
3
Drain  
L202  
5μH  
R104  
51Ω  
0.5W  
C106  
220nF  
SMD  
C107  
47μF  
50V  
D202  
FYPF2006DN  
5
4
N.C.  
NTC101  
5D9  
VCC  
5V, 2A  
FB  
4
7, 8  
4
GND  
D102  
UF 4004  
C207  
100nF  
SMD  
C204  
1000μF  
16V  
C203  
2200μF  
10V  
C105  
33nF  
100V  
C102  
150nF  
275VAC  
2
5
6
ZD101  
1N4749A  
LF101  
20mH  
R201  
620Ω  
R101  
1.5MΩ  
1W  
R204  
8kΩ  
R202  
1.2kΩ  
R203  
18kΩ  
C205  
68nF  
IC301  
FOD817B  
IC201  
KA431LZ  
F101  
FUSE  
250V  
C101  
220nF  
R205  
275VAC  
8kΩ  
3.15A  
Figure 24. Schematic of Demonstration Board  
Transformer  
EER3019  
1
10  
N14V  
9
8
7
6
2
Np/2  
3
Np/2  
4
5
Na  
N5V  
BOT  
TOP  
Figure 25. Schematic of Transformer  
www.onsemi.com  
12  
FSGM0565R  
WINDING SPECIFICATION  
Barrier Tape  
BOT  
TOP  
Ts  
Pin (S F)  
Wire  
Turns  
Winding Method  
N /2  
3 2  
0.35 φ x 1  
22  
Solenoid Winding  
Solenoid Winding  
Solenoid Winding  
Solenoid Winding  
Solenoid Winding  
Solenoid Winding  
2.0 mm  
1
p
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
8 9  
0.4 φ x 3 (TIW)  
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
10 8  
0.4 φ x 3 (TIW)  
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
7 6  
0.4 φ x 3 (TIW)  
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
4 5  
0.15 φ x 1  
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
N /2 2 1  
0.35 φ x 1  
N
3
5V  
N
5
14V  
N
3
5V  
N
7
4.0 mm  
4.0 mm  
2.0 mm  
1
1
a
21  
p
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
ELECTRICAL CHARACTERISTICS  
Pin  
Specification  
Remark  
67 kHz, 1 V  
Short All Other Pins  
Inductance  
Leakage  
1 3  
1 3  
700 mH 7%  
15 mH Maximum  
Core & Bobbin  
Core: EER3019 (Ae = 134.0 mm )  
2
Bobbin: EER3019  
www.onsemi.com  
13  
FSGM0565R  
BILL OF MATERIALS  
Part #  
Value  
Fuse  
Note  
Part #  
Value  
Note  
Capacitor  
F101  
250 V 3.15 A  
C101  
220 nF / 275 V  
Box (Pilkor)  
NTC  
C102  
C103  
150 nF / 275 V  
Box (Pilkor)  
NTC101  
5D11  
DSC  
100 mF / 400 V  
Electrolytic (SamYoung)  
Resistor  
1.5 MW, J  
75 kW, J  
51 kW, J  
51 W, J  
C104  
C105  
C106  
C107  
C201  
C202  
C203  
C204  
C205  
C206  
3.3 nF / 630 V  
33 nF / 100 V  
220 nF  
Film (Sehwa)  
R101  
R102  
R103  
R104  
R201  
R202  
R203  
R204  
R205  
1 W  
Film (Sehwa)  
1/2 W  
SMD (2012)  
1 W  
47 mF / 50 V  
1000 mF / 25 V  
1000 mF / 25 V  
2200 mF / 10 V  
1000 mF / 16 V  
68 nF / 100 V  
100 nF  
Electrolytic (SamYoung)  
Electrolytic (SamYoung)  
Electrolytic (SamYoung)  
Electrolytic (SamYoung)  
Electrolytic (SamYoung)  
Electrolytic (SamYoung)  
Electrolytic (SamYoung)  
1/2 W  
620 W, J  
1.2 kW, F  
18 kW, F  
8 kW, F  
1/4 W, 1%  
1/4 W, 1%  
1/4 W, 1%  
1/4 W, 1%  
1/4 W, 1%  
8 kW, F  
C207  
C301  
100 nF  
4.7 nF / Y2  
Inductor  
20 mH  
Film (Sehwa)  
IC  
FSGM0565R  
KA431LZ  
FOD817B  
Diode  
FSGM0565R  
IC201  
ON Semiconductor  
ON Semiconductor  
ON Semiconductor  
Ycap (Samhwa)  
IC301  
LF101  
L201  
L202  
Line filter 0.7Ø  
5A Rating  
5 mH  
D101  
D102  
RGP15M  
Vishay  
Vishay  
5 mH  
5A Rating  
UF4004  
Jumper  
ZD101  
D201  
D202  
1N4749  
Vishay  
J101  
T101  
MBR20150CT  
FYPF2006DN  
ON Semiconductor  
ON Semiconductor  
Transformer  
700 mH  
BD101  
G3SBA60  
Vishay  
SENSEFET is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
www.onsemi.com  
14  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2206LD LF  
CASE 340BG  
ISSUE A  
DATE 01 SEP 2021  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13840G  
TO2206LD LF  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2021  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2206LD LF  
CASE 340BN  
ISSUE A  
DATE 22 JUL 2021  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13847G  
TO2206LD LF  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO220 FULLPAK 6LD LF  
CASE 340BP  
ISSUE A  
DATE 01 OCT 2021  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13848G  
TO220 FULLPAK 6LD LF  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY