FSQ0365RN [ONSEMI]

650V 集成电源开关,带谷开关控制,用于 19W 离线反激转换器;
FSQ0365RN
型号: FSQ0365RN
厂家: ONSEMI    ONSEMI
描述:

650V 集成电源开关,带谷开关控制,用于 19W 离线反激转换器

开关 电源开关 光电二极管 转换器
文件: 总21页 (文件大小:709K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Green Mode Power Switch  
for Valley Switching  
Converter - Low EMI and  
High Efficiency  
FSQ0365, FSQ0265,  
FSQ0165, FSQ321  
www.onsemi.com  
Description  
A Valley Switching Converter generally shows lower EMI and  
higher power conversion efficiency than a conventional  
hard−switched converter with a fixed switching frequency. The  
FSQ−series is an integrated Pulse−Width Modulation (PWM)  
®
PDIP−8  
CASE 626−05  
PDIP8 GW  
CASE 709AJ  
controller and SENSEFET specifically designed for valley switching  
operation with minimal external components. The PWM controller  
includes an integrated fixed−frequency oscillator, under−voltage  
lockout, Leading−Edge Blanking (LEB), optimized gate driver,  
internal soft−start, temperature−compensated precise current sources  
for loop compensation, and self−protection circuitry.  
Compared with discrete MOSFET and PWM controller solutions,  
the FSQ−series reduces total cost, component count, size and weight;  
while simultaneously increasing efficiency, productivity, and system  
reliability. This device provides a basic platform for cost−effective  
designs of valley switching fly−back converters.  
MARKING DIAGRAM  
$Y&E&Z&2&K  
FSQxxxx  
$Y  
&E  
&Z  
= ON Semiconductor Logo  
= Designated Space  
= Assembly Plant Code  
Features  
&2  
&K  
FSQxxxx  
= 2−Digit Date code format  
= 2−Digits Lot Run Traceability Code  
= Specific Device Code Data  
Optimized for Valley Switching Converter (VSC)  
Low EMI through Variable Frequency Control and Inherent  
Frequency Modulation  
High Efficiency through Minimum Voltage Switching  
Narrow Frequency Variation Range Over Wide Load and Input  
Voltage Variation  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
Advanced Burst−Mode Operation for Low Standby Power  
Consumption  
Applications  
Pulse−by−Pulse Current Limit  
Protection Functions: Overload Protection (OLP), Over−Voltage  
Protection (OVP), Abnormal Over−Current Protection (AOCP),  
Internal Thermal Shutdown (TSD)  
Power Supplies for DVD Player,  
DVD Recorder, Set−Top Box  
Adapter  
Under−Voltage Lockout (UVLO) with Hysteresis  
Auxiliary Power Supply for PC, LCD TV,  
Internal Startup Circuit  
and PDP TV  
Internal High−Voltage SENSEFET: 650 V  
Built−in Soft−Start: 15 ms  
Related Application Notes  
http://www.onsemi.com/pub/Collateral/AN−4137.pdf.pdf  
http://www.onsemi.com/pub/Collateral/AN−4141.pdf.pdf  
http://www.onsemi.com/pub/Collateral/AN−4150.pdf.pdf  
https://www.onsemi.com/pub/Collateral/AN−4134.PDF  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
December, 2020 − Rev. 3  
FSQ0365/D  
FSQ0365, FSQ0265, FSQ0165, FSQ321  
Table 1. ORDERING INFORMATION  
(1)  
Maximum Output Table  
(2)  
230 V + 15%  
85 − 265 V  
AC  
AC  
Open  
Frame  
Open  
Frame  
Operating  
Temperature  
Current  
Limit  
R
DS(ON)  
(Max.) Adapter  
(4)  
(4)  
(3)  
(3)  
Adapter  
Part Number  
FSQ321  
Package  
Shipping  
3000 / Tube  
PDIP−8  
−40 to +85°C  
−40 to +85°C  
−40 to +85°C  
−40 to +85°C  
0.6 A  
0.9 A  
1.2 A  
1.5 A  
19 W  
10 W  
6 W  
8W  
12W  
7W  
10W  
FSQ321LX  
FSQ0165RN  
PDIP8 GW 1000 / Tape & Reel  
PDIP−8 3000 / Tube  
10W  
15W  
20W  
25W  
9W  
11W  
13W  
13W  
16W  
19W  
FSQ0165RLX PDIP8 GW 1000 / Tape & Reel  
FSQ0265RN PDIP−8 3000 / Tube  
FSQ0265RLX PDIP8 GW 1000 / Tape & Reel  
FSQ0365RN PDIP−8 3000 / Tube  
FSQ0365RLX PDIP8 GW 1000 / Tape & Reel  
14W  
4.5 W  
17.5W  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
1. The junction temperature can limit the maximum output power.  
2. 230 V or 100/115 V with voltage doubler. The maximum power with CCM operation.  
AC  
AC  
3. Typical continuous power in a non−ventilated, enclosed adapter measured at 50°C ambient temperature.  
4. Maximum practical continuous power in an open−frame design at 50°C ambient temperature.  
www.onsemi.com  
2
FSQ0365, FSQ0265, FSQ0165, FSQ321  
Application Circuit  
Vo  
AC  
IN  
Vstr  
Drain  
PWM  
Sync  
GND  
Vfb  
Vcc  
Figure 1. Typical Flyback Application  
Internal Block Diagram  
Vstr  
5
Vcc  
2
Sync  
4
Drain  
6
7 8  
+
OSC  
0.7V/0.2V  
+
+
Vref  
0.35/0.55  
VBurst  
VCC Good  
Vref  
VCC  
8V/12V  
IFB  
Idelay  
PWM  
Vfb  
3R  
S
R
Q
Q
3
Gate  
Driver  
Soft−  
Start  
LEB  
200ns  
R
AOCP  
1
TSD  
S
R
Q
VOCP  
6V  
GND  
VSD  
(1.1V )  
2.5ms Time  
Q
Delay  
Sync  
6V  
Vovp  
VCC Good  
FSQ0365RN Rev.00  
Figure 2. Internal Block Diagram  
www.onsemi.com  
3
 
FSQ0365, FSQ0265, FSQ0165, FSQ321  
Pin Assignments  
GND  
Drain  
V
Drain  
Drain  
CC  
8−DIP  
8−LSOP  
V
FB  
V
STR  
Sync  
Figure 3. Pin Configuration (Top View)  
Table 2. PIN DEFINITIONS  
Pin#  
Name  
Description  
1
GND  
SENSEFET source terminal on primary side and internal control ground.  
2
V
CC  
Positive supply voltage input. Although connected to an auxiliary transformer winding, current is supplied  
from pin 5 (Vstr) via an internal switch during startup (see Figure 2).  
It is not until V reaches the UVLO upper threshold (12 V) that the internal startup switch opens and de-  
CC  
vice power is supplied via the auxiliary transformer winding.  
3
Vfb  
The feedback voltage pin is the non−inverting input to the PWM comparator. It has a 0.9 mA current source  
connected internally while a capacitor and opto-coupler are typically connected externally. There is a time  
delay while charging external capacitor C from 3 V to 6 V using an internal 5 μA current source. This delay  
fb  
prevents false triggering under transient conditions, but still allows the protection mechanism to operate  
under true overload conditions.  
4
5
Sync  
Vstr  
This pin is internally connected to the sync−detect comparator for valley switching. Typically the voltage of  
the auxiliary winding is used as Sync input voltage and external resistors and capacitor are needed to make  
delay to match valley point. The threshold of the internal sync comparator is 0.7 V / 0.2 V.  
This pin is connected to the rectified AC line voltage source. At startup, the internal switch supplies internal  
bias and charges an external storage capacitor placed between the Vcc pin and ground. Once the V  
reaches 12 V, the internal switch is opened.  
CC  
6, 7, 8  
Drain  
The drain pins are designed to connect directly to the primary lead of the transformer and are capable of  
switching a maximum of 650 V. Minimizing the length of the trace connecting these pins to the transformer  
decreases leakage inductance.  
www.onsemi.com  
4
FSQ0365, FSQ0265, FSQ0165, FSQ321  
Table 3. ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
A
Symbol  
Parameter  
Min.  
Max.  
Unit  
V
500  
650  
V
V
V
V
V
A
Vstr Pin Voltage  
STR  
V
Drain Pin Voltage  
Supply Voltage  
DS  
V
20  
CC  
V
−0.3  
9.0  
Feedback Voltage Range  
Sync Pin Voltage  
FB  
V
Sync  
−0.3  
9.0  
I
12.0  
Drain Current Pulsed (Note 5)  
Single Pulsed Avalanche Energy (Note 6)  
Total Power Dissipation  
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
DM  
8.0  
4.0  
1.5  
E
230  
mJ  
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
AS  
140  
50  
10  
P
1.5  
Internally Limited  
+85  
W
°C  
°C  
°C  
D
T
−40  
−40  
−55  
Recommended Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature  
J
T
A
T
STG  
+150  
ESD  
CLASS 1C  
CLASS B  
Human Body Model; JESD22−A114  
Machine Model; JESD22−A115  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
5. Repetitive rating: pulse width limited by maximum junction temperature.  
6. L = 51 mH, starting T = 25°C.  
J
Table 4. THERMAL IMPEDANCE  
Symbol  
Parameter  
Value  
Unit  
8−DIP (Note 7)  
80  
20  
35  
°C/W  
q
Junction−to−Ambient Thermal Resistance (Note 8)  
Junction−to−Case Thermal Resistance (Note 9)  
Junction−to−Top Thermal Resistance (Note 10)  
JA  
q
JC  
q
JT  
7. All items are tested with the standards JESD 51−2 and 51−10 (DIP)  
8. Free−standing with no heat−sink, under natural convection  
9. Infinite cooling condition − refer to the SEMI G30−88  
10.Measured on the package top surface.  
www.onsemi.com  
5
 
FSQ0365, FSQ0265, FSQ0165, FSQ321  
Table 5. ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)  
A
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
SENSEFET Section  
BV  
I
650  
V
A
W
Drain−Source Breakdown Voltage  
Zero−Gate−Voltage Drain Current  
V
V
= 0 V, I = 100 mA  
DSS  
CC  
D
100  
4.5  
= 650 V  
DSS  
DS  
3.5  
5.0  
R
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
Drain−Source On−  
State Resistance  
(Note 11)  
T = 25°C, I = 0.5 A  
J
DS(ON)  
D
6.0  
8.0  
10.0  
19.0  
14.0  
315  
550  
250  
162  
47  
C
pF  
pF  
pF  
ns  
ns  
ns  
ns  
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
Input Capacitance  
Output Capacitance  
V
= 0 V, V = 25 V, f = 1 MHz  
ISS  
GS  
GS  
GS  
DD  
DD  
DD  
DD  
DS  
C
C
t
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
V
V
V
V
V
V
= 0 V, V = 25 V, f = 1 MHz  
OSS  
DS  
38  
25  
18  
9.0  
17.0  
10.0  
3.8  
11.2  
20.0  
12.0  
9.5  
34  
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
Reverse Transfer  
Capacitance  
= 0 V, V = 25 V, f = 1 MHz  
RSS  
DS  
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
Turn−On Delay  
= 350 V, I = 25 mA  
d(on)  
D
t
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
Rise Time  
= 350 V, I = 25 mA  
r
D
15  
4
19  
28.2  
55.0  
30.0  
33.0  
32  
t
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
Turn−Off Delay  
= 350 V, I = 25 mA  
d(off)  
D
t
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
Fall Time  
= 350 V, I = 25 mA  
f
D
25  
10  
42  
Burst−Mode Section  
V
0.45  
0.25  
0.55  
0.35  
0.65  
0.45  
V
V
Burst−Mode Voltage  
T = 25°C, t = 200 ns (Note 12)  
J PD  
BURH  
V
BURL  
V
200  
mV  
BUR(HYS)  
www.onsemi.com  
6
FSQ0365, FSQ0265, FSQ0165, FSQ321  
Table 5. ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified) (continued)  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Control Section  
t
10.5  
6.35  
13.2  
7.5  
12.0  
7.06  
15.0  
8.2  
13.5  
7.77  
16.8  
ms  
ms  
ms  
ms  
ms  
%
Maximum On Time1  
All but FSQ321 T = 25°C  
J
ON.MAX1  
ON.MAX2  
t
Maximum On Time2  
Blanking Time1  
FSQ321  
T = 25°C  
J
t
B1  
All but FSQ321  
FSQ321  
t
B2  
Blanking Time2  
t
W
3.0  
Detection Time Window  
T = 25°C, V  
J
= 0 V  
sync  
Df  
S
5
10  
1100  
0
Switching Frequency Variation (Note 14)  
Feedback Source Current  
Minimum Duty Cycle  
−25°C < T < 85°C  
J
I
FB  
700  
900  
mA  
%
V
V
= 0 V  
= 0 V  
FB  
D
MIN  
FB  
V
UVLO Threshold Voltage  
After Turn−on  
11  
7
12  
8
13  
9
V
V
START  
V
STOP  
t
15  
ms  
Internal Soft−Start Time 1 All but FSQ321  
Internal Soft−Start Time 2 FSQ321  
S/S1  
With Free−Running Frequency  
With Free−Running Frequency  
t
10  
ms  
S/S2  
Protection Section  
I
A
Peak Current Limit  
1.32  
1.06  
0.8  
1.50  
1.20  
0.9  
1.68  
1.34  
1.0  
FSQ0365  
FSQ0265  
FSQ0165  
FSQ321  
T = 25°C, di/dt = 240 mA/ms  
LIM  
J
T = 25°C, di/dt = 200 mA/ms  
J
T = 25°C, di/dt = 175 mA/ms  
J
0.53  
0.60  
0.67  
T = 25°C, di/dt = 125 mA/ms  
J
V
5.5  
4.0  
6.0  
5.0  
200  
6.0  
3
6.5  
6.0  
V
mA  
ns  
V
Shutdown Feedback Voltage  
Shutdown Delay Current  
Leading−Edge Blanking Time  
Over−Voltage Protection  
V
= 15 V  
= 5 V  
SD  
CC  
FB  
I
V
DELAY  
(13)  
t
LEB  
V
t
5.5  
2
6.5  
4
V
CC  
= 15 V, V = 2 V  
OVP  
FB  
ms  
°C  
Over−Voltage Protection Blanking Time  
Thermal Shutdown Temperature (Note 13)  
OVP  
T
SD  
125  
140  
155  
Sync Section  
V
Sync Threshold Voltage  
0.55  
0.14  
0.70  
0.20  
300  
0.85  
0.26  
V
V
SH  
V
SL  
t
ns  
Sync Delay Time (Notes 13, 14)  
Sync  
Total Device Section  
I
1
3
5
mA  
Operating Supply Current  
(Control Part Only)  
V
V
= 15 V  
OP  
CC  
I
270  
0.65  
360  
450  
1.00  
mA  
Start Current  
= V  
− 0.1 V  
START  
CC  
START  
(Before V Reaches V  
)
CC  
START  
I
0.85  
26  
mA  
V
Startup Charging Current  
V
CC  
= 0 V, V  
= Minimum 40 V  
CH  
STR  
V
STR  
Minimum V  
Supply Voltage  
STR  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
11. Pulse test: Pulse−Width = 300 ms, duty = 2%  
12.Propagation delay in the control IC.  
13.Though guaranteed, it is not 100% tested in production.  
14.Includes gate turn−on time.  
www.onsemi.com  
7
 
FSQ0365, FSQ0265, FSQ0165, FSQ321  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Characteristics graphs are normalized at T = 25°C)  
A
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
Temperature [ °C]  
Temperature [ °C]  
Figure 4. Operating Supply Current (IOP) vs. TA  
Figure 5. UVLO Start Threshold Voltage (VSTART  
vs. TA  
)
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
Temperature [ °C]  
Temperature [ °C]  
Figure 6. UVLO Stop Threshold Voltage (VSTOP  
vs. TA  
)
Figure 7. Startup Charging Current (ICH) vs. TA  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
Temperature [ °C]  
Temperature [ °C]  
Figure 8. Initial Switching Frequency (fS) vs. TA  
Figure 9. Maximum On Time (tON.MAX) vs. TA  
www.onsemi.com  
8
FSQ0365, FSQ0265, FSQ0165, FSQ321  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
(Characteristics graphs are normalized at T = 25°C)  
A
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
Temperature [ °C]  
Temperature [ °C]  
Figure 10. Blanking Time (tB) vs. TA  
Figure 11. Feedback Source Current (IFB) vs. TA  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
Temperature [ °C]  
Temperature [ °C]  
Figure 12. Shutdown Delay Current (IDELAY) vs. TA  
Figure 13. Burst Mode High Threshold Voltage  
(Vburh) vs. TA  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
Temperature [ °C]  
Temperature [ °C]  
Figure 14. Burst Mode Low Threshold Voltage  
(Vburl) vs. TA  
Figure 15. Peak Current Limit (ILIM) vs. TA  
www.onsemi.com  
9
FSQ0365, FSQ0265, FSQ0165, FSQ321  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
(Characteristics graphs are normalized at T = 25°C)  
A
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
Temperature [ °C]  
Temperature [ °C]  
Figure 16. Sync High Threshold (VSH) vs. TA  
Figure 17. Sync Low Threshold (VSL) vs. TA  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
Temperature [ °C]  
Temperature [ °C]  
Figure 18. Shutdown Feedback Voltage (VSD  
vs. TA  
)
Figure 19. Over−Voltage Protection (VOP) vs. TA  
www.onsemi.com  
10  
FSQ0365, FSQ0265, FSQ0165, FSQ321  
FUNCTIONAL DESCRIPTION  
R
sense  
resistor would lead to incorrect feedback operation in  
the Current Mode PWM control. To counter this effect, the  
power switch employs a leading−edge blanking (LEB)  
circuit. This circuit inhibits the PWM comparator for a short  
Startup  
At startup, an internal high−voltage current source  
supplies the internal bias and charges the external capacitor  
(C ) connected to the V pin, as illustrated in Figure 20.  
a
time (t ) after the SENSEFET is turned on.  
LEB  
CC  
When V reaches 12 V, the power switch begins switching  
CC  
Vref  
VCC  
Idelay  
and the internal high−voltage current source is disabled. The  
power switch continues its normal switching operation and  
the power is supplied from the auxiliary transformer  
IFB  
VFB  
VO  
SENSEFET  
OSC  
3
FOD817A  
D1  
D2  
CB  
winding unless V goes below the stop voltage of 8 V.  
3R  
R
CC  
+
Gate  
driver  
VDC  
VFB*  
KA431  
Ca  
OLP  
Rsense  
VSD  
FSQ0365RN Rev. 00  
VCC  
Vstr  
2
5
Figure 21. Pulse−Width−Modulation Circuit  
Synchronization  
ICH  
Vref  
The FSQ−series employs a valley switching technique to  
minimize the switching noise and loss. The basic waveforms  
of the valley switching converter are shown in Figure 22. To  
minimize the MOSFET’s switching loss, the MOSFET  
should be turned on when the drain voltage reaches its  
minimum value, as shown in Figure 22. The minimum drain  
8V/12V  
VCC good  
Internal  
Bias  
FSQ0365RN Rev.00  
Figure 20. Startup Circuit  
voltage is indirectly detected by monitoring the V  
winding voltage, as shown in Figure 22.  
CC  
Feedback Control  
Power Switch employs Current Mode control, as shown  
in Figure 21. An opto−coupler (such as FOD817A) and  
shunt regulator (such as KA431) are often used to  
implement the feedback network. Comparing the feedback  
Vds  
VRO  
voltage with the voltage across the R  
resistor makes it  
SENSE  
VRO  
VDC  
possible to control the switching duty cycle. When the  
reference pin voltage of the shunt regulator exceeds the  
internal reference voltage of 2.5 V, the opto−coupler LED  
current increases, pulling down the feedback voltage and  
reducing the duty cycle. This event typically occurs when  
input voltage is increased or output load is decreased.  
tF  
Vsync  
V
ovp (6V)  
0.7V  
Pulse−by−Pulse Current Limit  
Because Current Mode control is employed, the peak  
current through the SENSEFET is limited by the inverting  
0.2V  
300ns Delay  
input of PWM comparator (V *), as shown in Figure 21.  
MOSFET Gate  
ON  
FB  
Assuming that the 0.9mA current source flows only through  
the internal resistor (3R + R = 2.8 kW), the cathode voltage  
of diode D2 is about 2.5 V. Since D1 is blocked when the  
ON  
feedback voltage (V ) exceeds 2.5V, the maximum voltage  
FB  
FSQ0365RN Rev.00  
of the cathode of D2 is clamped at this voltage, clamping  
V
*. Therefore, the peak value of the current through the  
FB  
Figure 22. Valley Resonant Switching Waveforms  
Protection Circuits  
SENSEFET is limited.  
Leading−Edge Blanking (LEB)  
The FSQ−series has several self−protective functions,  
such as Overload Protection (OLP), Abnormal  
Over−Current protection (AOCP), Over−Voltage Protection  
(OVP), and Thermal Shutdown (TSD). All the protections  
At the instant the internal SENSEFET is turned on, a  
high−current spike usually occurs through the SENSEFET,  
caused by primary−side capacitance and secondary−side  
rectifier reverse recovery. Excessive voltage across the  
www.onsemi.com  
11  
 
FSQ0365, FSQ0265, FSQ0165, FSQ321  
are implemented as Auto−Restart Mode. Once the fault  
condition is detected, switching is terminated and the  
SENSEFET remains off. This causes V to fall. When V  
shutdown is the time required to charge CB from 2.8 V to  
6 V with 5 mA. A 20 ~ 50 ms delay is typical for most  
applications.  
CC  
CC  
falls down to the Under−Voltage Lockout (UVLO) stop  
voltage of 8 V, the protection is reset and the startup circuit  
FSQ0365RN Rev.00  
VFB  
Overload protection  
6.0V  
charges the V capacitor. When the V reaches the start  
voltage of 12 V, the FSQ−series resumes normal operation.  
If the fault condition is not removed, the SENSEFET  
CC  
CC  
remains off and V drops to stop voltage again. In this  
CC  
manner, the auto−restart can alternately enable and disable  
the switching of the power SENSEFET until the fault  
condition is eliminated. Because these protection circuits  
are fully integrated into the IC without external components,  
the reliability is improved without increasing cost.  
2.8V  
t12= CFB*(6.0−2.8)/dIelay  
t1  
t2  
t
Fault  
Figure 24. Overload Protection  
occurs  
Fault  
removed  
Power  
on  
VDS  
Abnormal Over−Current Protection (AOCP)  
When the secondary rectifier diodes or the transformer  
pins are shorted, a steep current with extremely high−di/dt  
can flow through the SENSEFET during the LEB time.  
Even though the FSQ−series has Overload Protection  
(OLP), it is not enough to protect the FSQ−series in that  
abnormal case, since severe current stress is imposed on the  
SENSEFET until OLP triggers. The FSQ−series has an  
internal Abnormal Over−Current Protection (AOCP) circuit  
as shown in Figure 25. When the gate turn−on signal is  
applied to the power SENSEFET, the AOCP block is  
enabled and monitors the current through the sensing  
resistor. The voltage across the resistor is compared with a  
preset AOCP level. If the sensing resistor voltage is greater  
than the AOCP level, the set signal is applied to the latch,  
resulting in the shutdown of the SMPS.  
VCC  
12V  
8V  
t
Normal  
operation  
Fault  
situation  
Normal  
operation  
FSQ0365RN Rev. 00  
Figure 23. Auto−Restart Protection Waveforms  
Overload Protection (OLP)  
3R  
OSC  
Overload is defined as the load current exceeding its  
normal level due to an unexpected abnormal event. In this  
situation, the protection circuit should trigger to protect the  
SMPS. However, even when the SMPS is in the normal  
operation, the overload protection circuit can be triggered  
during load transition. To avoid this undesired operation, the  
overload protection circuit is designed to trigger only after  
a specified time to determine whether it is a transient  
situation or a true overload situation. Because of the  
pulse−by−pulse current limit capability, the maximum peak  
current through the SENSEFET is limited, and therefore the  
maximum input power is restricted with a given input  
voltage. If the output consumes more than this maximum  
S
R
Q
Q
PWM  
Gate  
driver  
LEB  
200ns  
R
Rsense  
+
1
AOCP  
FSQ0365RN Rev.00  
GND  
VOCP  
Figure 25. Abnormal Over−Current Protection  
Over−Voltage Protection (OVP)  
If the secondary−side feedback circuit malfunctions or a  
solder defect causes an opening in the feedback path, the  
current through the opto−coupler transistor becomes almost  
power, the output voltage (V ) decreases below the set  
O
voltage. This reduces the current through the opto−coupler  
LED, which also reduces the opto−coupler transistor  
zero. Then V climbs up in a similar manner to the overload  
FB  
current, thus increasing the feedback voltage (V ). If V  
FB  
FB  
situation, forcing the preset maximum current to be supplied  
to the SMPS until the overload protection triggers. Because  
more energy than required is provided to the output, the  
output voltage may exceed the rated voltage before the  
exceeds 2.8 V, D1 is blocked and the 5 mA current source  
starts to charge CB slowly up to V . In this condition, V  
CC  
FB  
continues increasing until it reaches 6 V, when the switching  
operation is terminated, as shown in Figure 24. The delay for  
www.onsemi.com  
12  
 
FSQ0365, FSQ0265, FSQ0165, FSQ321  
overload protection triggers, resulting in the breakdown of  
VO  
set  
the devices in the secondary side. To prevent this situation,  
an OVP circuit is employed. In general, the peak voltage of  
the sync signal is proportional to the output voltage and the  
FSQ−series uses a sync signal instead of directly monitoring  
the output voltage. If the sync signal exceeds 6 V, an OVP  
is triggered, shutting down the SMPS. To avoid undesired  
triggering of OVP during normal operation, the peak voltage  
of the sync signal should be designed below 6 V.  
VO  
VFB  
0.55V  
0.35V  
IDS  
Thermal Shutdown (TSD)  
The SENSEFET and the control IC are built in one  
package. This makes it easy for the control IC to detect the  
abnormal over temperature of the SENSEFET. If the  
temperature exceeds ~150°C, the thermal shutdown  
triggers.  
VDS  
Soft−Start  
An internal soft−start circuit increases PWM comparator  
inverting input voltage with the SENSEFET current slowly  
after it starts up. The typical soft−start time is 15 ms. The  
pulsewidth to the power switching device is progressively  
increased to establish the correct working conditions for  
transformers, inductors, and capacitors. The voltage on the  
output capacitors is progressively increased with the  
intention of smoothly establishing the required output  
voltage. This helps prevent transformer saturation and  
reduces stress on the secondary diode during startup.  
time  
Switching  
disabled  
Switching  
disabled  
t4  
t2 t3  
t1  
FSQ0365RN Rev.00  
Figure 26. Waveforms of Burst Operation  
Switching Frequency Limit  
To minimize switching loss and Electromagnetic  
Interference (EMI), the MOSFET turns on when the drain  
voltage reaches its minimum value in valley switching  
operation. However, this causes switching frequency to  
increases at light load conditions. As the load decreases, the  
peak drain current diminishes and the switching frequency  
increases. This results in severe switching losses at  
light−load condition, as well as intermittent switching and  
audible noise. Because of these problems, the valley  
switching converter topology has limitations in a wide range  
of applications.  
Burst Operation  
To minimize power dissipation in Standby Mode, the  
power switch enters Burst−Mode operation. As the load  
decreases, the feedback voltage decreases. As shown in  
Figure 26, the device automatically enters Burst Mode when  
the feedback voltage drops below V  
(350 mV). At this  
BURL  
point, switching stops and the output voltages start to drop  
at a rate dependent on standby current load. This causes the  
To overcome this problem, FSQ−series employs a  
frequency−limit function, as shown in Figure 27 and  
Figure 28. Once the SENSEFET is turned on, the next  
feedback voltage to rise. Once it passes V  
(550 mV),  
BURH  
switching resumes. The feedback voltage then falls and the  
process repeats. Burst Mode alternately enables and disables  
switching of the power SENSEFET, reducing switching loss  
in Standby Mode.  
turn−on is prohibited during the blanking time (t ). After the  
B
blanking time, the controller finds the valley within the  
detection time window (t ) and turns on the MOSFET, as  
W
shown in Figure 27 and Figure 28 (cases A, B, and C). If no  
valley is found during t , the internal SENSEFET is forced  
W
to turn on at the end of t (case D). Therefore, FSQ devices  
W
have a minimum switching frequency of 55kHz and a  
maximum switching frequency of 67kHz, as shown in  
Figure 28.  
www.onsemi.com  
13  
 
FSQ0365, FSQ0265, FSQ0165, FSQ321  
tsmax=18ms  
When the resonant period is 2 ms  
67kHz  
IDS  
IDS  
C
Constant  
frequency  
A
B
59kHz  
55kHz  
A
B
D
tB=15ms  
Burst  
mode  
ts  
IDS  
IDS  
PO  
FSQ0365RN Rev. 00  
tB=15ms  
Figure 28. Switching Frequency Range  
ts  
IDS  
IDS  
C
tB=15ms  
ts  
IDS  
IDS  
D
tB=15ms  
tW=3ms  
tsmax=18ms  
Figure 27. Valley Switching with Limited Frequency  
FSQ0365RN Rev. 00  
www.onsemi.com  
14  
FSQ0365, FSQ0265, FSQ0165, FSQ321  
Typical Application Circuit of FSQ0365RN  
Output Voltage  
(Maximum Current)  
Application  
Power Switch Device  
Input Voltage Range  
85−265 V  
Rated Output Power  
DVD Player  
Power Supply  
FSQ0365RN  
19 W  
5.1 V (1.0 A)  
3.4 V (1.0 A)  
12 V (0.4 A)  
16 V (0.3 A)  
AC  
Features  
Key Design Notes  
High efficiency ( > 77% at universal input)  
The delay time for overload protection is designed to be  
about 30 ms with C107 of 47nF. If faster/slower  
triggering of OLP is required, C107 can be changed to  
a smaller/larger value (eg. 100 nF for 60 ms).  
Low standby mode power consumption (< 1 W at  
230 V input and 0.5 W load)  
AC  
Reduce EMI noise through Valley Switching operation  
Enhanced system reliability through various protection  
functions  
The input voltage of V  
must be higher than −0.3 V.  
By proper voltage sharing by R106 & R107 resistors,  
the input voltage can be adjusted.  
sync  
Internal soft−start: 15 ms  
The SMD−type 100 nF capacitor must be placed as  
close as possible to V pin to avoid malfunction by  
CC  
abrupt pulsating noises and to improved surge  
immunity.  
Schematic  
C209  
47pF  
T101  
L201  
EER2828  
16V, 0.3A  
11  
RT101  
5D−9  
1
2
D201  
UF4003  
C202  
470mF  
35V  
C201  
470mF  
35V  
C210  
47pF  
C104  
10nF  
630V  
R105  
100kΩ  
R102  
56kΩ  
L202  
D101  
1N 4007  
C103  
33mF  
400V  
R108  
62Ω  
12V, 0.4A  
3
10 D202  
UF4003  
C203  
470mF  
35V  
C204  
470mF  
35V  
2
IC101  
FSQ0365RN  
12  
6
5
4
8
7
BD101  
Bridge  
Diode  
Vstr  
Drain  
Drain  
1
3
L203  
6
C106 C107  
100nF 22mF  
SMD 50V  
Drain  
Sync  
FB  
5.1V, 1A  
R103  
5Ω  
2
3
C205  
1000mF  
10V  
C206  
1000mF  
10V  
Vcc  
4
D203  
SB360  
GND  
4
5
D102  
1N 4004  
C102  
100nF,275VAC  
C105  
47nF  
50V  
1
R104  
12kΩ  
L204  
9
3.4V, 1A  
ZD101  
1N4746A  
C208  
1000mF  
10V  
D204  
SB360  
C207  
1000mF  
10V  
C110  
33pF  
50V  
LF101  
40mH  
8
C302  
3.3nF  
R201  
510Ω  
C101  
100nF  
275VAC  
R203  
6.2kΩ  
R202  
1kΩ  
C209  
100nF  
R204  
20kΩ  
IC202  
FOD817A  
TNR  
10D471K  
F101  
FUSE  
IC201  
KA431  
R205  
6kΩ  
FSQ0365RN Rev:00  
AC IN  
Figure 29. Demo Circuit of FSQ0365RN  
www.onsemi.com  
15  
FSQ0365, FSQ0265, FSQ0165, FSQ321  
Transformer  
EER2828  
12  
Np/2  
1
Np/2  
Np/2  
11  
N16V  
N12V  
N3.4V  
N16V  
N12V  
Na  
2
3
4
5
10  
9
8
7
Na  
N5.1V  
N3.4V  
Np/2  
6mm  
3mm  
6
N5.1V  
FSQ0365RN Rev: 00  
Figure 30. Transformer Schematic Diagram of FSQ0365RN  
Table 6. WINDING SPECIFICATION  
No.  
Pin (s " f)  
3 2  
Wire  
Turns  
Winding Method  
φ
N /2  
p
0.25 x 1  
50  
Center Solenoid Winding  
Insulation: Polyester Tape t = 0.050 mm, 2−Layer  
9 8  
Insulation: Polyester Tape t = 0.050 mm, 2−Layer  
6 9  
Insulation: Polyester Tape t = 0.050 mm, 2−Layer  
4 5  
Insulation: Polyester Tape t = 0.050 mm, 2−Layer  
10 12  
Insulation: Polyester Tape t = 0.050 mm, 3−Layer  
11 12  
Insulation: Polyester Tape t = 0.050 mm, 2−Layer  
N /2  
2 1  
Insulation: Polyester Tape t = 0.050 mm, 2−Layer  
φ
N
0.33 x 2  
4
Center Solenoid Winding  
Center Solenoid Winding  
Center Solenoid Winding  
Center Solenoid Winding  
Center Solenoid Winding  
Center Solenoid Winding  
3.4V  
φ
N
0.33 x 1  
2
5V  
φ
N
0.25 x 1  
16  
14  
18  
50  
a
φ
N
0.33 x 3  
12V  
φ
N
0.33 x 3  
16V  
φ
0.25 x 1  
p
Table 7. TRANSFORMER ELECTRICAL CHARACTERISTICS  
Pin  
Specification  
1.4 mH 10%  
25 mH Maximum  
Remarks  
100 kHz, 1 V  
Inductance  
Leakage  
1 − 3  
1 − 3  
Short All Other Pins  
Core & Bobbin  
Core: EER2828 (Ae = 86.66 mm )  
Bobbin: EER2828  
2
www.onsemi.com  
16  
FSQ0365, FSQ0265, FSQ0165, FSQ321  
Table 8. EVALUATION BOARD PART LIST  
Part  
Value  
Note  
Part  
Value  
Note  
Resistor  
Inductor  
R102  
R103  
R104  
R105  
56 kW  
5 W  
1 W  
L201  
L202  
L203  
L204  
10 mH  
10 mH  
4.9 mH  
4.9 mH  
1/2 W  
1/4 W  
1/4 W  
12 kW  
100 kW  
R106  
6.2 kW  
1/4 W  
Diode  
R107  
R108  
R201  
R202  
R203  
R204  
R205  
6.2 kW  
62 W  
1/4 W  
1 W  
D101  
D102  
ZD101  
D103  
D201  
D202  
D203  
IN4007  
IN4004  
1N4746A  
1N4148  
UF4003  
UF4003  
SB360  
510 W  
1 kW  
1/4 W  
1/4 W  
1/4 W  
1/4 W  
1/4 W  
6.2 kW  
20 kW  
6 kW  
D204  
SB360  
Capacitor  
C101  
C102  
100 nF / 275 V  
Box Capacitor  
Box Capacitor  
AC  
100 nF / 275 V  
IC  
AC  
C103  
C104  
C105  
33 mF / 400 V  
10 nF / 630 V  
47 nF / 50 V  
Electrolytic Capacitor  
Film Capacitor  
IC101  
IC201  
IC202  
FSQ0365RN  
Power Switch  
Voltage reference  
Opto−coupler  
KA431 (TL431)  
FOD817A  
Mono Capacitor  
C106  
C107  
C110  
C201  
C202  
C203  
C204  
C205  
C206  
C207  
C208  
C209  
100 nF / 50 V  
22 mF / 50 V  
SMD (1206)  
Fuse  
NTC  
Electrolytic Capacitor  
Ceramic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Electrolytic Capacitor  
Ceramic Capacitor  
Fuse  
RT101  
BD101  
LF101  
T101  
2A/250V  
5D−9  
33 pF / 50 V  
470 mF / 35 V  
470 mF / 35 V  
470 mF / 35 V  
470 mF / 35 V  
1000 mF / 10 V  
1000 mF / 10 V  
1000 mF / 10 V  
1000 mF / 10 V  
100 nF / 50 V  
Bridge Diode  
2KBP06M2N257  
Bridge Diode  
Line Filter  
Transformer  
Varistor  
40 mH  
TNR  
10D471K  
SENSEFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
www.onsemi.com  
17  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8  
CASE 62605  
ISSUE P  
DATE 22 APR 2015  
SCALE 1:1  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCHES.  
E
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-  
AGE SEATED IN JEDEC SEATING PLANE GAUGE GS3.  
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH  
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE  
NOT TO EXCEED 0.10 INCH.  
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM  
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR  
TO DATUM C.  
H
8
5
4
E1  
1
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE  
LEADS UNCONSTRAINED.  
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE  
LEADS, WHERE THE LEADS EXIT THE BODY.  
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE  
CORNERS).  
NOTE 8  
c
b2  
B
END VIEW  
WITH LEADS CONSTRAINED  
TOP VIEW  
NOTE 5  
INCHES  
DIM MIN MAX  
−−−−  
A1 0.015  
MILLIMETERS  
A2  
A
MIN  
−−−  
0.38  
2.92  
0.35  
MAX  
5.33  
−−−  
4.95  
0.56  
e/2  
A
0.210  
−−−−  
NOTE 3  
A2 0.115 0.195  
L
b
b2  
C
0.014 0.022  
0.060 TYP  
0.008 0.014  
0.355 0.400  
1.52 TYP  
0.20  
9.02  
0.13  
7.62  
6.10  
0.36  
10.16  
−−−  
8.26  
7.11  
D
SEATING  
PLANE  
D1 0.005  
0.300 0.325  
E1 0.240 0.280  
−−−−  
A1  
D1  
E
C
M
e
eB  
L
0.100 BSC  
−−−− 0.430  
0.115 0.150  
−−−− 10°  
2.54 BSC  
−−−  
2.92  
−−−  
10.92  
3.81  
10°  
e
eB  
8X  
b
END VIEW  
M
NOTE 6  
M
M
M
0.010  
C A  
B
SIDE VIEW  
GENERIC  
MARKING DIAGRAM*  
STYLE 1:  
PIN 1. AC IN  
2. DC + IN  
3. DC IN  
4. AC IN  
XXXXXXXXX  
AWL  
YYWWG  
5. GROUND  
6. OUTPUT  
7. AUXILIARY  
8. V  
CC  
XXXX = Specific Device Code  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42420B  
PDIP8  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8 GW  
CASE 709AJ  
ISSUE O  
DATE 31 JAN 2017  
98AON13756G  
ON SEMICONDUCTOR STANDARD  
DOCUMENT NUMBER:  
STATUS:  
Electronic versions are uncontrolled except when  
accessed directly from the Document Repository. Printed  
versions are uncontrolled except when stamped  
“CONTROLLED COPY” in red.  
NEW STANDARD:  
DESCRIPTION: PDIP8 GW  
PAGE 1 OF2
DOCUMENT NUMBER:  
98AON13756G  
PAGE 2 OF 2  
ISSUE  
REVISION  
DATE  
O
RELEASED FOR PRODUCTION FROM FAIRCHILD MKT−MLSOP08A TO ON  
SEMICONDUCTOR. REQ. BY D. TRUHITTE.  
31 JAN 2017  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
© Semiconductor Components Industries, LLC, 2017  
Case Outline Number:  
January, 2017 − Rev. O  
709AJ  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY