FUSB15101MNTWG [ONSEMI]

Programmable USB Type-C and Power Delivery 3.1 Source Controller with PPS Support;
FUSB15101MNTWG
型号: FUSB15101MNTWG
厂家: ONSEMI    ONSEMI
描述:

Programmable USB Type-C and Power Delivery 3.1 Source Controller with PPS Support

文件: 总22页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Programmable USBꢀType-C)  
and Power Delivery 3.1  
Source Controller with PPS  
Support  
1
QFN20 4x4, 0.5P  
CASE 485BH−01  
MARKING DIAGRAM  
FUSB15101  
6
The FUSB15101 is a highly integrated USB Power Delivery (PD)  
power source controller that can control the opto−coupler in the  
secondary side of an AC−DC adapter or a DC−DC port power  
regulator.  
11  
FUSB  
15101  
ALYWG  
G
The FUSB15101 enables a complete solution for USB power  
sources through optimized hardware peripherals and complete  
open−source embedded firmware all in a compact solution.  
1
®
®
It integrates a highly efficient Arm Cortex −M0+ processor with  
custom designed peripherals to seamlessly support USB PD 3.1 source  
applications. The FUSB15101 supports the PPS specification in USB  
PD, with a minimum of 3.3 V and a maximum of 21 V output voltage  
control. It includes Constant Voltage (CV) and Constant Current Limit  
(CL) control blocks, various protection mechanisms and high voltage  
tolerance on connector pins.  
16  
FUSB = Specific Device Code  
15101 = Specific Device Code  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
Key Features  
(Note: Microdot may be in either location)  
32−bit Arm Cortex−M0+ Processor  
32 KB OTP (One Time Programmable) Program Memory  
USB PD 3.1 with PPS Support  
Power Management Unit with VIN Support from 3.3 V to 24 V  
Integrated VCONN Supply for Interrogating E−Marked Cables  
Idle and Sleep Modes to Meet CoC and DoE Requirements  
ORDERING INFORMATION  
Device  
Package  
Shipping  
FUSB15101MNTWG  
QFN20  
(Pb−Free)  
4,000 / Tape &  
Reel  
Peripherals  
USB Type−C / PD Detection and Communication Layer  
VBUS NMOS Gate Driver for Load Switch Control  
VBUS Discharge Functionality  
Programmable Constant Voltage & Constant Current Control  
Two 10−bit DAC’s for Precise Voltage and Current Control  
Two NTC Temperature Measurements  
10−bit ADC for Voltage, Current and Temperature Reporting  
Two General Purpose 32−bit Timers  
Typical Applications  
Wall Chargers for Mobile Phones and  
Tablets and Computing Devices  
AC−DC USB PD Compliant Adapters  
Power Banks  
Watchdog Timer (WDT)  
2
I C Master/Slave Peripheral  
Cigarette Lighter Adapters  
UART on D+/− Pins  
Output Fault Protection  
Over−Voltage  
Under−Voltage  
Over−Current  
Over−Temperature  
20−pin QFN Package (4 mm x 4 mm, 0.5 P)  
© Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
FUSB15101/D  
June, 2022 − Rev. 0  
FUSB15101  
Introduction  
Current Sense Amplifier: Programmable for use  
with 5 mor 10 msense resistors.  
The FUSB15101 supports USB Type−C 2.1 and USB PD  
3.1 specifications for power source applications with VBUS  
voltages ranging from 3.3 V to 21 V.  
A highly flexible and open firmware environment allows  
hardware peripherals to be customized to meet a variety  
application needs.  
High Voltage Protection: 26 V DC tolerant BLD, CC and  
D+/−.  
ADC: 10−bit ADC for accurate monitoring of VBUS  
voltage and current, external temperatures or voltages.  
2
I C: Serial communication port capable of acting as  
Key integrated functions and peripherals are highlighted  
below:  
a host or device.  
UART: UART peripheral available via HVDP/DM.  
GPIOs: Fully programmable I/Os with internal  
terminations. Configurable as input or output (CMOS or  
open−drain).  
Multiple Timers: Three independent 32−bit timers are  
available: 1 General Purpose, 1 Watchdog, and  
1 Wake−up / General Purpose.  
Dual External NTC: Integrated current sources are used  
in conjunction with the ADC to monitor a variety of NTC  
resistors.  
Arm Cortex−M0+: A 32−bit core with flexible clocking  
up to 12 MHz.  
Memories: A total of 32 kB of One Time Programmable  
Memory (OTP) is available to store program code; 2 KB  
of SRAM program memory.  
USB Type−C and PD: Integrated USB PD PHY and  
Type−C termination/comparators supporting latest  
USB−IF specification. Open and customizable USB PD  
firmware stack allows for tailored vendor specific  
functions.  
Low Power Operation Modes: Programmable Sleep  
Modes allowing the device to minimize power usage as  
needed. Automatic USB−C detection and weak−up  
functionality from sleep modes.  
Temperature Range: Extended operating temperature  
range of −40°C to 105°C.  
Integrated VCONN Switch: Provides power to cable  
eMarkers to interrogate current capabilities.  
CC/CV Control: Firmware controlled feedback voltage  
and current loop operation with programmable voltage  
and current DACs, Cable Drop Compensation, OVP,  
UVP and OCP.  
www.onsemi.com  
2
FUSB15101  
HVDP  
HVDM  
VDD  
VIN LGATE BLD  
vdd  
GND  
Resistor  
Divider / BC 1.2  
Gate Driver  
vdd  
UART  
Rx  
vdd  
UART  
Tx  
VIN−ON  
VIN−OFF  
/
9R  
R
Discharge  
FAULT  
UART PHY  
HVCC1  
HVCC2  
VCS−AMP  
Trigger  
_BLD  
RESET  
Protection  
CVCC  
_mode  
vdd  
CC State Machine &  
Comparators  
vdd  
1.1 V REG  
IREF  
CSP  
X AVCCR  
VCS−AMP  
Cable Drop  
BMC  
Rcvr  
CSN  
VCCR  
vdd  
BMC  
Timers  
UART  
DRIVER  
ARM  
M0+  
Compensation  
USB PHY  
VREF  
Type−C  
I2C  
VCOMR  
HS OSC  
Band Gap  
LF Osc.  
SRAM  
2KB  
FAULT  
Protection  
Block  
SWD  
USB PD  
CC−CV  
VCVR  
VIN−1:10  
OVP/UVP/  
OCP  
Mode_  
change  
OTP  
32KB  
BC1.2  
VUVP  
V
vdd  
vdd  
OVP VCOMR  
Protection  
VCS−AMP  
VIN−1:10  
I2C_SCL  
I2C_SDA  
I2C_INT  
NTCA  
NTCB  
I2C  
GPIO  
SWD  
BLD−1:10  
Analog to Digital  
Converter  
vdd  
D+  
D−  
1.8 V LDO  
VCORE  
SFB  
Figure 1. Simplified Block Diagram  
VBUS  
Q1  
RBLD  
CC1  
CC2  
D2  
Input  
filter  
CBULK  
CBUS  
D+  
D−  
5m  
R5  
SZESD  
7241  
CVDD  
CSN  
C3  
CSP  
CVCORE  
1
FAULT  
FB  
HV 10  
6
5
4
1
2
3
DRV VCCL  
GND VCCH  
CS  
2
3
NC  
9
8
BLD  
R1  
CSP  
15  
14  
13  
12  
11  
1
2
3
4
5
CSP  
C4  
HVDP  
CSN  
ZCD  
CS  
VCCH  
VCCL  
DRV  
CS  
TRIG  
ZCD  
CS  
CSN  
D+  
D−  
FUSB15101  
QFN  
4mm x 4mm  
0.5mm pitch  
R2  
R3  
D1  
HVDM  
HVCC1  
HVCC2  
VREF  
IREF  
SFB  
NCP4307  
4
5
7
6
R6  
C2  
CC1  
CC2  
C1 R4  
GND  
NCP1345  
CC  
CC  
ZCD  
4 x  
SZESD  
7241  
Figure 2. AC/DC Application Schematic  
www.onsemi.com  
3
 
FUSB15101  
CSP2  
CSN2  
CSN1  
CSP1  
NVTFS4C10N  
VSW1_A  
NVTFS4C10N  
VSW2_A  
NVTFS002N04CL  
VBUS  
RBLD  
SZESD  
7241  
CC1  
CC2  
HSG2  
HSG1  
NFET  
C5  
D+  
D−  
2 x  
NSVR0240V2  
LSG1  
LSG2  
VCC  
NVTFS4C10N  
NVTFS4C10N  
VCC  
EN  
BST1  
BST2  
V1  
HSG1  
LSG1  
HSG2  
HSG1  
CVDD  
LSG1  
HSG2  
LSG2  
VCCD  
VDRV  
CVCORE  
VCC  
LSG2  
VCC  
NCV81599  
5m  
PGND 1  
PGND 2  
CSP1  
CSN1  
CSP2  
CSN2  
FB  
VSW1  
VSW2  
VSW1  
VSW2  
CSP1  
CSN1  
CSP2  
CSN2  
PDRV  
BLD  
CSP  
CSN  
INT  
15  
14  
13  
12  
11  
1
2
3
4
5
CSP  
SDA  
SCL  
HVDP  
CSN  
CSP  
CSN  
R2  
FUSB15101  
QFN  
4 mm x 4 mm  
0.5 mm pitch  
D+  
CLIND  
ADDR  
CS1  
CS2  
HVDM  
HVCC1  
HVCC2  
VREF  
IREF  
SFB  
D−  
R2  
COMP  
AGND GND  
R3  
R6  
C2  
CC1  
CC2  
C1 R4  
CC  
CC  
4 x  
SZESD  
7241  
Figure 3. DC/DC Application Schematic  
www.onsemi.com  
4
 
FUSB15101  
PIN CONNECTIONS  
15  
14  
13  
12  
11  
BLD  
1
2
3
4
5
CSP  
CSN  
FUSB15101  
QFN  
4 mm x 4 mm  
0.5mm pitch  
HVDP  
HVDM  
HVCC1  
HVCC2  
VREF  
IREF  
SFB  
GND  
Top View  
Figure 4. QFN20 Top−View  
PIN FUNCTION DESCRIPTION  
Pin #  
Name  
Description  
1
CSP  
Current Sensing Amplifier Positive Terminal. Connect this pin directly to the positive end of the current  
sense resistor with a short PCB trace.  
2
3
4
5
CSN  
VREF  
IREF  
SFB  
Current Sensing Amplifier Negative Terminal . Connect this pin directly to the negative end of the current  
sense resistor with a short PCB trace.  
Output Voltage Sensing Voltage. This pin is used for CV regulation, and it is tied to the internal CV loop  
amplifier non−inverting input terminal. It is tied to the output voltage resistor divider.  
Constant Current Amplifying Signal. The voltage level on this point is the amplified current sense signal.  
This pin is tied to the internal CC loop amplifier’s non−inverting input terminal.  
Secondary Feedback. Common output of the dual OTA open drain operational amplifiers. Typically,  
an opto−coupler is connected to this pin to provide feedback to the primary side PWM controller.  
2
6
7
I2C_INT/GPIO0  
I2C_SDA/GPIO1  
I2C_SCL/GPIO2  
NTC_A/GPIO3/SWCK  
NTC_B/GPIO4/SWD  
HVCC2  
I C Interrupt Signal / General Purpose I/O  
2
I C Data Signal / General Purpose I/O  
2
8
I C Clock Signal / General Purpose I/O  
9
An external NTC can be connected to this pin / General purpose I/O/SWCK.  
An external NTC can be connected to this pin / General purpose I/O/SWCK.  
10  
11  
Configuration Channel 2. This pin is used to detect USB Type−C devices and communicate over USB  
PD when applicable.  
12  
HVCC1  
Configuration Channel 1. This pin is used to detect USB Type−C devices and communicate over USB  
PD when applicable.  
13  
14  
15  
16  
17  
HVDM  
HVDP  
BLD  
USB Communication Interface. This pin is tied to the USB D− data line input.  
USB Communication Interface. This pin is tied to the USB D+ data line input.  
Bleeder pin. This pin is tied to VBUS after the load switch to discharge VBUS.  
Ground reference for IC  
GND  
VIN  
Output voltage (Input voltage to the FUSB15101). This pin is tied to the output of the adapter to monitor  
its output voltage and supply internal bias.  
18  
19  
LGATE  
VDD  
Load switch gate drive signal. This pin is tied to the gate of the load switch.  
Internal 5 V supply voltage.  
20  
VCORE  
GND  
Internal 1.8 V supply voltage for the MCU core.  
Connect to GND Plane for thermal dissipation.  
DAP  
www.onsemi.com  
5
FUSB15101  
ELECTRICAL SPECIFICATIONS  
MAXIMUM RATINGS (Notes 1, 2)  
Symbol  
Parameter  
Min  
−0.3  
−0.5  
−0.5  
−0.5  
−0.5  
−0.5  
−0.5  
−0.5  
−0.3  
−0.3  
−0.3  
−0.3  
4
Typ  
Max  
26  
Unit  
V
V
USB  
D+/− and CC Connector Pins  
I/O Voltage  
V
IO  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
2.0  
31  
V
V
NTC  
NTC_A and NTC_B Pin Voltage  
VREF Pin Input Voltage  
V
V
VREF  
V
V
IREF  
IREF Pin Input Voltage  
V
V
CSx  
CSP and CSN Pins Input Voltages  
VDD Pin Input Voltage  
V
V
DC  
V
V
CORE  
VCORE Pin Input Voltage  
V
V
LGATE  
LGATE Pin Input Voltage  
V
V
SFB  
SFB Pin Input Voltage  
26  
V
V
IN  
VIN Pin Input Voltage  
26  
V
V
BLD  
BLD Pin Input Voltage  
26  
V
ESD  
ESD  
Human Body Model, ANSI/ESDA/JEDEC JS−001−2012 (Note 2)  
Charged Device Model, JESD22−C101 (Note 2)  
kV  
kV  
HBM  
CDM  
2
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
2. Meets JEDEC standards JS−001−2012 and JESD 22−C101.  
OPERATING RATINGS  
Symbol  
Parameter  
Functional Range for Supply Input  
Min  
Typ  
5.0  
Max  
24  
Unit  
V
V
IN  
3.135  
V
HVCC  
Communication Channel Pins  
D+/− USB Voltage  
GPIO, I2C, RESET  
Junction Temperature  
Operating Ambient Temperature  
VCORE Pin Voltage  
VDD Pin Voltage  
0
0
5.5  
V
V
3.6  
V
HVDP/DM  
V
IO  
0
5.5  
V
T
J
−40  
−40  
0
+125  
+105  
1.9  
°C  
°C  
V
T
A
V
CORE  
V
VDD  
4.75  
0
5.5  
V
V
NTC_X  
NTC_/B Pin Voltage  
VREF Pin Voltage  
IREF Pin Voltage  
1.28  
2.2  
V
V
REF  
0
V
I
0
1.8  
V
REF  
V
V
CSP Voltage  
0
0.063  
V
CSP  
CSN Pin Voltage  
0
V
CSN  
V
SFB Pin Voltage  
0
22.5  
25  
V
SFB  
V
LGATE  
LGATE Pin Voltage  
BLD Pin Voltage  
0
V
V
BLD  
0
22.5  
V
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
6
 
FUSB15101  
THERMAL CHARACTERISTICS (Note 3)  
Symbol  
Characteristic  
Value  
38.6  
4.2  
Unit  
°C/W  
°C/W  
JA  
JC  
Junction−to−Ambient Thermal Resistance  
Junction−to−Case Thermal Resistance  
3. Junction−to−ambient thermal resistance is a function of application and board layout. This data is measured with two−layer 2s2p boards in  
accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature T (max) at a given ambient  
J
temperature T .  
A
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VIN = 3.135 V to 22.5 V, TA = −40°C to +105°C unless  
otherwise noted. Typical values are at TA = 25°C, VIN = 5.0 V)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INTERNAL POWER SUPPLY  
VIN  
I
Operating Supply Current  
at 5 V  
Attached, PD Communication  
in progress, ADCs enabled,  
3.5  
mA  
IN−OP−5V  
NTCs enabled, CC & CV enabled,  
Gate Driver Enabled. VIN = 5 V,  
VCS = −25 mV, RCS = 5 m  
I
Operating Supply Current at 20 V Attached, PD Communication  
in progress, ADCs enabled,  
4.4  
mA  
mA  
IN−OP−20V  
NTCs enabled, CC & CV enabled,  
Gate Driver Enabled. VIN = 20 V,  
VCS = −25 mV, RCS = 5 m  
I
Operating Supply Current  
at Sleep Mode  
No Device Attached, Type−C enabled  
& Gate Driver OFF or BC1.2 Detection  
enabled & Gate Driver ON; VIN = 5 V,  
VCS = 0 V excluding IP−CC1 and  
IP−CC2 Supply Current and ISFB  
Current  
0.75  
IN−Sleep  
V
IC Turn−On Threshold Voltage  
IC Turn−Off Threshold Voltage  
IC Turn−Off Debounce Time  
Increase VIN  
2.9  
2.75  
3.2  
2.875  
3.4  
3.0  
V
V
IN−ON  
V
VIN > VIN−ON then decrease VIN  
VIN > VIN−ON then decrease VIN  
IN−OFF  
VIN−off−Debounce  
t
200  
100  
s  
s  
t
t
Hardware OCP Debouce on Both Entering and exiting OCP Mode  
Edges  
50  
VIN−OCP−Debounce  
V
Output Voltage Release  
Latch Mode  
VIN Falling  
1.55  
V
LATCH−OFF  
VIN OVP Debounce Time  
35  
24  
75  
110  
26  
s  
VIN−OVP−Debounce  
V
VIN Maximum Overvoltage Pro-  
tection  
V
IN−OVP−MAX  
V
Turn−Off Threshold Voltage when VIN Falling in a PPS contract  
in a PPS Contract  
2.805  
2.97  
3.135  
V
IN−UVP−PPS  
VIN UVP SECTION  
K
K
K
K
K
K
Ratio VIN  
Under−Voltage−Protection (UVP)  
to VIN  
VCS = 0 mV  
VCS = 0 mV  
VCS = 0 mV  
VCS = 0 mV  
VCS = 0 mV  
VCS = 0 mV  
57.5  
60  
60  
65  
70  
80  
90  
95  
62.5  
70  
%
IN−UVP−60  
IN−UVP−65  
IN−UVP−70  
IN−UVP−80  
IN−UVP−90  
IN−UVP−95  
67.5  
77  
72.5  
83  
87  
93  
92  
98  
www.onsemi.com  
7
 
FUSB15101  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VIN = 3.135 V to 22.5 V, TA = −40°C to +105°C unless  
otherwise noted. Typical values are at TA = 25°C, VIN = 5.0 V) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIN OVP SECTION  
K
Ratio VIN  
Over−Voltage−Protection (OVP)  
to VIN  
VCS = 0 mV  
VCS = 0 mV  
VCS = 0 mV  
VCS = 0 mV  
VCS = 0 mV  
VCS = 0 mV  
VCS = 0 mV  
102  
107  
112  
117  
122  
127  
132  
105  
110  
115  
120  
125  
130  
135  
108  
113  
118  
123  
128  
133  
138  
%
IN−OVP−105  
K
K
IN−OVP−110  
IN−OVP−115  
IN−OVP−120  
IN−OVP−125  
IN−OVP−130  
IN−OVP−135  
K
K
K
K
VDD  
V
VDD Source Voltage > 6 V  
VIN = 6 V to 22.5 V, IVDD = 10 mA  
VIN = 3.3 V, VDD = 2.9 V  
4.75  
10  
5.125  
5.5  
V
DD  
I
VDD Source Current  
Capability  
mA  
DD  
TYPE−C AND PD  
USB PD PHY  
TRANSMITTER  
UI  
Unit Interval  
3.03  
3.33  
3.7  
s
p
Maximum Difference between the  
bit−rate During the Payload and  
Last 32 Bits of Preamble  
0.25  
%
BitRate  
t
Time to Cease Driving the Line  
after the End of the Last Bit of  
the Frame  
1
23  
s  
s  
s  
EndDriveBMC  
t
Time to Cease Driving the Line  
after the Final High−to−low  
Transition  
HoldLowBMC  
t
Any PD Transmission Cannot be  
Sent out before a Dead Time of  
at Least tInterFrameGap from  
Receiving or Sending a Packet  
25  
InterFrameGap  
t
Fall Time  
10 % and 90 % amplitude points,  
minimum is under an unloaded  
condition.  
300  
300  
−1  
1
ns  
ns  
s  
Fall−CC  
t
Rise Time  
10 % and 90 % amplitude points,  
minimum is under an unloaded  
condition.  
Rise−CC  
t
Time before the Start of the First  
Bit of the Preamble when the  
Transmitter Shall Start Driving  
the Line  
StartDrive  
V
Z
BMC Voltage Swing  
1.05  
33  
1.125  
1.2  
75  
V
Swing  
TX Output Impedance at 750 kHz  
with an External 220 pF or  
Equivalent Load  
Driver  
RECEIVER  
C
Receiver Capacitance when  
Driver isn’t Turned On  
Vrms = 0.371; Vdc = 0.5 V;  
Freq. = 1 MHz  
75  
pF  
Receiver  
t
Rx Bandwidth Limiting Filter  
100  
12  
ns  
RxFilter  
t
Time Window for Detecting  
Non−idle  
20  
s
TransitionWindow  
Z
(Note 5) Receiver Input Impedance  
1
Mꢀ  
BmcRx  
www.onsemi.com  
8
FUSB15101  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VIN = 3.135 V to 22.5 V, TA = −40°C to +105°C unless  
otherwise noted. Typical values are at TA = 25°C, VIN = 5.0 V) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TYPE−C FRONT END  
R
BLD Pin Impedance to GND  
when VBUS is not Sourced  
BLD = 0 V to 5.75 V; LGATE = OFF  
72.4  
kꢀ  
BLD−LEAK  
I
SRC 180 A CC Current (1.5 A)  
SRC 330 A CC Current (3 A)  
Device Pull−down Resistance  
Ra  
166  
304  
4.6  
180  
330  
5.1  
194  
356  
5.6  
A  
A  
180_CCX  
I
330_CCX  
R
kꢀ  
DEVICE  
R
A
800  
126  
1200  
Z
OPEN  
CC Resistance for Disabled  
State, when VDD is Valid  
kꢀ  
I
Maximum Current for VCONN  
Source  
VIN = 4.75 V  
34  
mA  
V
VCONN  
V
V
Source Attach Threshold for CC  
Pin at 3 A Current  
2.45  
0.75  
2.6  
0.8  
2.75  
0.85  
RdSRC3.0  
Source Ra Threshold for CC Pin  
at 3 A Current  
V
RaSRC3.0  
V
CCx OVP Threshold  
5.6  
2.5  
6.0  
4.5  
125  
V
OVP_CC  
VCONN−OCP  
CC−OVP−Debounce  
t
VCONN OCP Debounce Time  
CC1/CC2 OVP Debounce Time  
3.5  
100  
15  
ms  
s  
t
t
Debounce Time after CC OVP  
Event  
ms  
CC−OVP−  
Debounce−Recover  
I
Over Current Protection (OCP)  
Limit at which VCONN Switch  
Shuts Off  
50  
mA  
V
VCONN_OCP  
V
Voltage Range for VCONN  
Source  
3.0  
5.5  
VCONN  
VBUS CONTROL  
LOAD SWITCH  
V
Gate High Voltage at 3.3 V  
Gate High Voltage at 20 V  
VIN = 3.3 V  
8.1  
23.5  
V
V
V
LGATE−3.3V  
V
VIN = 20 V  
LGATE−20V  
LGATE−OVP−Max  
V
Gate High Voltage  
at VIN−OVP−Max  
VIN = VIN−OVP−Max  
31.5  
BLEEDER  
I
VIN Sinking Current During tBLD Bleeding current on VIN at VIN = 20 V  
BLD Sinking Current During tBLD Bleeding current on BLD at BLD = 20 V  
60  
mA  
mA  
VIN−Sink  
I
250  
BLD−Sink  
VBUS MEASUREMENT  
V
Safe Operating Voltage at  
“Zero Volts”.  
0.6  
0.8  
V
Safe0V−THR  
CLOCKS  
f
Low Speed Clock for Idle,  
Type−C and ADC  
232.8  
11.4  
240  
12  
247.2  
12.6  
kHz  
LS_CLK  
2
f
Internal Clock for PD, I C  
MHz  
HS_CLK  
and MCU Core  
TEMPERATURE PROTECTION  
Temperature Threshold for  
T
SHUT  
145  
10  
°C  
°C  
Internal Circuit Protection  
T
HYS  
Over Temperature Hysteresis  
www.onsemi.com  
9
FUSB15101  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VIN = 3.135 V to 22.5 V, TA = −40°C to +105°C unless  
otherwise noted. Typical values are at TA = 25°C, VIN = 5.0 V) (continued)  
Symbol  
BC1.2  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
R
DCP Emulation Resistance  
V
or V = 0 V, 1.0 V,  
HVDM  
75  
140  
DCP  
HVDP  
ION = 2 mA  
or V = 0 V − 3.6 V  
HVDM  
R
DP/DM Pull Down Resistance  
Sink Current to Dx  
V
HVDP  
16  
25  
19.5  
100  
700  
23  
kꢀ  
Dx−DWN  
I
VDD = 3.0 V to 5.5 V  
or V = 0 V to 3.6 V  
175  
1100  
A  
DX−SNK  
R
Resistor Weak Pull−Down on D+  
and D−  
V
HVDP  
300  
kꢀ  
DAT−LKG  
HVDM  
V
Source Voltage  
VDD = 3.0 V to 5.5 V  
0.5  
0.6  
0.7  
V
Dx−SRC  
USB2.0 PORT CHARACTERISTICS  
I
Power−Off Leakage Current  
All data ports, V  
3.6 V, VDD = 0 V  
or V =  
HVDM  
18  
A  
pF  
V
OFF−USB  
HVDP  
C
USB2  
HVDP/HVDM Capacitance  
f=240 MHz;  
2.4  
V
HVDP  
or V  
= 400 mV Vpk−pk  
HVDM  
V
HVDP/DM Rising over Voltage  
Threshold  
4.4  
4.55  
4.35  
4.7  
OVP−VIH−USB  
V
HVDP/DM Falling over Voltage  
Threshold  
OVP−VIL−USB  
t
USB OVP Event Recovery Time  
USB OVP Event Recovery Time  
HVDP/HVDM Over Voltage debounce  
USB OVP event removed  
100  
15  
125  
s
OVP−USB  
t
ms  
OVP−USB−Recover  
MOISTURE DETECTION (HVDM PIN)  
V
Voltage Source for Moisture  
Detection  
.9  
1.0  
300  
2.5  
1.1  
352  
2.75  
V
SRC−MOIS  
R
High Pull up Resistor for Moisture  
Detection  
250  
2.25  
k
PU−MOIS  
R
Low Pull Up Resistor for Moisture  
Detection  
k
PU−MOS−LO  
SERIAL WIRE DEBUG INTERFACE  
f
Serial Wire Debug Input Clock  
Frequency  
4
MHz  
ns  
SWD−CLK  
t
Serial Wire Debug Data Setup  
Timing  
0.25 x (1/  
SWD_CLK)  
SWDI−SET  
t
Serial Wire Debug Data Hold  
Timing  
0.25 x (1/  
SWD_CLK)  
ns  
SWDI−HOLD  
V
Serial Wire Debug Input Voltage  
Threshold  
VIN = 3.1 V to 22.5 V  
VIN = 3.1 V to 22.5 V  
VIN = 3.1 V to 22.5 V  
0.7 x VDD  
0.3 x VDD  
V
SWD−VIH  
V
SWD−VIL  
V
Serial Wire Debug Input Voltage  
Hysteresis  
300  
mV  
A  
V
SWD−HYS  
I
Serial Wire Debug Input Leakage VIN = 3.1 V to 22.5 V  
Input Voltage 0 V to 5.5 V  
−10  
VDD − 0.5  
+10  
SWD−LKG  
V
Serial Wire Debug Output  
Voltage High  
VIN = 3.1 V to 22.5 V, Iout = −2 mA  
SWD−VOH  
V
Serial Wire Debug Output  
Voltage Low  
VIN = 3.1 V to 22.5 V, Iout = +4 mA  
0.4  
V
SWD−VOL  
www.onsemi.com  
10  
FUSB15101  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VIN = 3.135 V to 22.5 V, TA = −40°C to +105°C unless  
otherwise noted. Typical values are at TA = 25°C, VIN = 5.0 V) (continued)  
Symbol  
I/OS  
GPIO  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
Output High Voltage  
Ouptut Low Voltage  
Input Hysteresis  
VIN = 3.1 V to 22.5 V  
0.7 x VDD  
V
V
GPIO−VIH  
V
VIN = 3.1 V to 22.5 V  
0.3 x VDD  
GPIO−IL  
V
VIN = 3.1 V to 22.5 V, Iout = −2 mA  
VIN = 3.1 V to 22.5 V, Iout = +4 mA  
VIN = 3.1 V to 22.5 V, 5.0 V Typ  
VDD − 0.5  
0.4  
V
GPIO−VOH  
V
V
V
GPIO−VOL  
GPIO−HYS  
300  
mV  
A  
I
Input Leakage  
VIN = 3.1 V to 22.5 V,  
−10  
5
IN−GPIO  
Input Voltage 0 V to 5.5 V  
I
Off Input Leakage  
Pull−Down Resistance  
Pull−Up Resistance  
Pin Capacitance  
VIN = 0 V, Input Voltage 0 V to 5.5 V  
PORT_PDx = 1  
−5  
5
A  
OFF−GPIO  
R
100  
100  
5
k
PD−GPIO  
PU−GPIO  
R
PORT_PUx = 1  
k
C
GPIO  
pF  
NTC  
I
I
Current Source on NTCA  
Current Source on NTCB  
55  
55  
60  
60  
65  
65  
A  
A  
NTCA  
NTCB  
2
I C  
IO  
I
VDD Current when SDA or SCL  
is HIGH  
VIN = 3.1 V to 22.5 V,  
VSDA/VSCL = 1.8 V  
−10  
−10  
10  
10  
A  
A  
CCTI2C  
I
Input Current of SDA and SCL  
Pins  
VIN = 3.1 V to 22.5 V,  
VI = 0 V to 5.5V  
I2C  
V
High−Level Input Voltage  
Low−Level Input Voltage  
VIN = 3.1 V to 22.5 V  
VIN = 3.1 V to 22.5 V  
VIN = 3.1 V to 22.5 V  
1.2  
V
V
V
IH−I2C  
V
0.4  
0.3  
IL−I2C  
V
Low−Level Output Voltage at  
OL1−I2C  
3 mA Sink Current (Open−Drain)  
V
Hysteresis of Schmitt Trigger  
Inputs  
VIN = 3.1 V to 22.5 V  
0.2  
V
hys−I2C  
OL−SDA  
I
Low−Level Output Current  
(Open−Drain)  
VIN = 3.1 V to 22.5 V,  
V_OL = 0.4 V (Note 4)  
20  
mA  
V
INT_N Output Low Voltage  
Capacitance for Each I/O Pin  
VIN = 3.1 V to 22.5 V, I_OL = 4 mA  
VIN = 3.1 V to 22.5 V  
5
0.4  
V
pF  
V
OL−INT  
C
I2C  
OL2−I2C  
V
Low−Level Output Voltage at  
VIN = 3.1 V to 22.5 V  
0.3  
2 mA Sink Current (Open−Drain)  
t
Pulse Width of Spikes that Must  
Be Suppressed by the Input Filter  
50  
ns  
SP−I2C  
V
High−Level Input Voltage  
Low−Level Input Voltage  
VIN = 3.1 V to 22.5 V  
VIN = 3.1 V to 22.5 V  
1.2  
V
V
IH_INT  
V
0.4  
IL_INT  
CV/CC CONTROL  
CONSTANT CURRENT SENSE SECTION  
A
Current Sense Amplifier Gain  
RCS = 5 m  
RCS = 10 m  
Constant Current Limit mode  
40  
20  
V/V  
A
V−CCR−40  
A
V−CCR−20  
I
Current Threshold on Sensing  
0.85  
1.00  
1.15  
CS−1A  
Resistor between CSP and CSN and VCC = 5 V, 20 V  
at IOUT = 1.00 A  
www.onsemi.com  
11  
FUSB15101  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VIN = 3.135 V to 22.5 V, TA = −40°C to +105°C unless  
otherwise noted. Typical values are at TA = 25°C, VIN = 5.0 V) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CONSTANT CURRENT SENSE SECTION  
I
I
I
I
Current Threshold on Sensing  
Resistor between CSP and CSN and VCC = 5 V, 20 V  
at IOUT = 2.00 A  
Constant Current Limit mode  
1.85  
2.00  
2.15  
A
CS−2A  
CS−3A  
CS−4A  
CS−5A  
Current Threshold on Sensing  
Resistor between CSP and CSN and VCC = 5 V, 20 V  
at IOUT = 3.00 A  
Constant Current Limit mode  
2.85  
3.80  
4.75  
48  
3.00  
4.00  
5.00  
50  
3.15  
4.20  
5.25  
52  
A
A
Current Threshold on Sensing  
Resistor between CSP and CSN and VCC = 5 V, 20 V  
at IOUT = 4.00 A  
Constant Current Limit mode  
Current Threshold on Sensing  
Resistor between CSP and CSN and VCC = 5 V, 20 V  
at IOUT = 5.00 A  
Constant Current Limit mode  
A
I
Current Threshold on Sensing  
Constant Current Limit mode  
mA  
CS−STEP  
Resistor between CSP and CSN and VCC = 5 V  
at IOUT = 50 mA  
I
t
Real Current Threshold to  
Enable Bleeder  
VBUS_BLD_EN = 1  
200  
450  
0.6  
700  
1
mA  
ms  
CS−EN−BLD  
Enable Bleeder Debounce Time  
VBUS_BLD_EN = 1  
CS−EN−BLD  
OVER CURRENT PROTECTION SENSING SECTION  
V
Voltage Difference between CSP Rcs = 5 m; ccdac_refp = 10b (120%);  
and CSN at Nominal 3.6 A  
csa_multiplier =1 (40x)  
16.92  
28.5  
18  
30  
19.08  
31.5  
mV  
mV  
CS−3.6A  
V
Voltage Difference between CSP Rcs = 5 m; ccdac_refp = 10b (120%);  
CS−6A  
and CSN at Nominal 6.0 A  
csa_multiplier =1 (40x)  
CONSTANT VOLTAGE SENSE SECTION  
V
V
V
CV Reference Voltage at 3.3 V  
CV Reference Voltage at 5.0 V  
CV Reference Voltage at 9.0 V  
CV Reference Voltage at 12 V  
CV Reference Voltage at 15 V  
CV Reference Voltage at 20 V  
VIN = 3.3 V, VCS = 0 V  
VIN = 5.0 V, VCS = 0 V  
VIN = 9.0 V, VCS = 0 V  
VIN = 12 V, VCS = 0 V  
VIN = 15 V, VCS = 0 V  
VIN = 20 V, VCS = 0 V  
delta VIN = 20 mV, VCS = 0 V  
0.32  
0.33  
0.5  
0.34  
V
V
CVR−3.3V  
CVR−5.0V  
CVR−9.0V  
0.485  
0.873  
1.164  
1.455  
1.940  
1.940  
0.515  
0.927  
1.236  
1.545  
2.060  
2.060  
0.9  
V
V
V
V
1.200  
1.500  
2.000  
2.000  
V
CVR−12V  
CVR−15V  
CVR−20V  
V
V
V
CV Reference Voltage of 20 mV  
Step  
mV  
CVR−STEP−20mV  
CABLE DROP COMPENSATION  
V
Cable Compensation Voltage on  
VCVR for VOUT = 0 mV/A  
RCS = 5 m, VCS = −5 mV  
RCS = 5 m, VCS = −5 mV  
RCS = 5 m, VCS = −5 mV  
RCS = 5 m, VCS = −5 mV  
RCS = 5 m, VCS = −5 mV  
RCS = 5 m, VCS = −5 mV  
0
mV  
mV  
mV  
mV  
mV  
mV  
COMR−CDC−0  
V
Cable Compensation Voltage on  
VCVR for VOUT = 50 mV/A  
5
COMR−CDC−50  
V
V
V
V
Cable Compensation Voltage on  
VCVR for VOUT = 100 mV/A  
10  
15  
20  
25  
COMR−CDC−100  
COMR−CDC−150  
COMR−CDC−200  
COMR−CDC−250  
Cable Compensation Voltage on  
VCVR for VOUT = 150 mV/A  
Cable Compensation Voltage on  
VCVR for VOUT = 200 mV/A  
Cable Compensation Voltage on  
VCVR for VOUT = 250 mV/A  
FEEDBACK SECTION  
I
SFB Maximum Sinking Current  
During Regulation  
Minimum guaranteed sink current  
expected from SFB pin  
2
mA  
SFB−Sink−MAX  
www.onsemi.com  
12  
FUSB15101  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VIN = 3.135 V to 22.5 V, TA = −40°C to +105°C unless  
otherwise noted. Typical values are at TA = 25°C, VIN = 5.0 V) (continued)  
Symbol  
UART  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
High−Level Input Voltage  
Low−Level Input Voltage  
Input Hysteresis  
VIN = 3.5 V − 22.5 V  
2
0.8  
V
V
UART−VIH  
V
VIN = 3.5 V − 22.5 V  
UART−VIL  
V
V
VIN = 3.5 V − 22.5 V  
200  
mV  
V
UART−HYS  
UART−VOL  
UART−VOH  
Output Low Voltage  
VIN = 3.5 V − 22.5 V, Iout = 2 mA  
VIN = 3.5 V − 22.5V, Iout = −2 mA  
0.4  
V
UART High Output Voltage  
Rise Time of UART Tx  
2.9  
V
t
10%−90%, VIN = 3.5 V − 22.5 V,  
Cl = 20 pF  
250  
ns  
UART−tR  
t
Fall Time of UART Tx  
90% to 10%, VIN = 3.5 V − 22.5 V,  
Cload = 20 pF  
250  
ns  
UART−tFall  
UART−BAUD  
(Note 5)  
UART BAUD Rate Range  
Supported  
Transmit and receive fall within 10% of  
BAUD Rate set, including min and max  
9600  
230400  
bps  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Note (20 mA guaranteed over −40°C to 85°C)  
5. Guaranteed by Design  
Arm Cortex−M0+ Processor  
Software Issued Reset − The software reset can be called  
The FUSB15101 integrates an Arm Cortex−M0+  
by writing to a given register in the Cortex address space.  
processor with Nested Vector Interrupt Controller (NVIC),  
It is typically called on exit from a processor exception.  
Wake−up Interrupt Controller (WIC), and Debug Access  
Software reset resets the entire chip including core,  
Port (DAP). The processor uses the Thumb instruction set  
peripherals, wakeup timer, and watchdog.  
and is optimized for high performance with reduced code  
Watchdog Timer Reset − The watchdog timer reset is  
size and low power operation. The Arm Cortex−M0+  
caused by the watchdog timeout and is used to prevent  
efficiently handles multiple parallel peripherals and has  
errant software from locking up the device. The watchdog  
integrated sleep modes. Test and debug capability are  
reset resets the entire chip including core, debug port,  
enhanced with the Arm Serial Wire Debug Port.  
peripherals, and watchdog. The watchdog timer is  
The Arm implementation in the FUSB15101 includes a  
disabled upon power up and must be enabled by software.  
32 kB OTP and 2 kB of SRAM. The MCU, Memory and  
The watchdog is not paused when the debugger halts the  
DAP are interconnected using the AMBA (Advanced  
processor.  
Microcontroller Bus Architecture) AHB−Lite interface and  
peripherals are connected to the AHB via APB interface  
(Advanced Peripheral Bus).  
In addition to the base Arm Cortex−M0+ processor  
Power and Sleep Behavior  
The FUSB15101 has been optimized to conserve power  
by utilizing peripheral interrupts and hardware autonomy.  
interrupts, the FUSB15101 implements multiple external  
The device can be configured via firmware to enter low  
source interrupts for peripheral devices. A powerful nested,  
power states, disable unneeded peripherals and scale clock  
pre−emptive and priority−based interrupt handling system  
frequencies based on different application needs.  
assures timely and flexible response to external events.  
The Type−C block is designed to function at the lowest  
Low power features on FUSB15101 include the WIC,  
power states and will automatically wake when a Type−C  
adjustable clock rates, and different software−controlled  
attach is detected. This minimizes total power consumption  
power modes to maximize opportunities to save power in the  
when no device is attached.  
final application.  
Clock Sources  
FUSB15101 implements a dual oscillator architecture to  
The FUSB15101 has various sources of reset including:  
minimize power consumption.  
Reset Sources  
Internal Power−On Reset − The Internal Power−On Reset  
asserts when VIN supply is below threshold levels for  
proper operation. It resets the entire chip including core,  
debug port, peripherals, wakeup timer, and watchdog.  
A 12 MHz internal RC oscillator to enable full  
functionality.  
A 240 kHz internal RC oscillator that can be used for very  
low power sleep modes  
www.onsemi.com  
13  
 
FUSB15101  
Timers  
Serial Wire Debug Interface (SWD)  
The Arm M0+ implementation includes a Debug Access  
Port (DAP). The debug mode implementation includes 4  
hardware breakpoints and 2 hardware watch points. The  
Debug Access Port interface implementation is the Arm  
Serial Wire Debug Port (SW−DAP) connected to Pins  
SWCLK and SWDIO. The Serial Wire Debug Port Interface  
uses a single bi−directional data connection. Each operation  
consists of three phases: Packet request, Acknowledge  
response, and Data transfer phase. Use any Serial Wire  
Debug (SWD) compliant hardware debugger interface to  
interact with the internals of the FUSB15101.  
32−bit General Purpose Timer − FUSB15101 has a 32−bit  
down−counter that can generate an interrupt request  
signal, status, when the counter reaches 0. The timing  
resolution depends on the programmable clock source  
and pre−scale ratios/  
32−bit Wake−up Timer (WUT) − The main purpose of the  
wakeup timer is to facilitate scheduled exit from low  
power modes. It can also be used for general purpose  
event timing.  
32−bit Watchdog Timer (WDT) − The watchdog timer  
applies a reset to the system in the event of a software  
failure, providing a way to recover from software crashes.  
The watchdog timer is disabled by default and must be  
enabled through software. The watchdog is protected  
with a lock mechanism to prevent rogue software from  
disabling the watchdog functionality. A special value has  
to be written to the lock register to access watchdog  
control. The watchdog timer is clocked from the same  
oscillator as the core, which can be LS_CLK or HS_CLK.  
USB Type−C & PD Peripheral Overview  
The USB Type−C and PD peripheral is a fully compliant  
USB solution. This peripheral consists of an analog front  
end and a digital state machine. Firmware implements the  
higher−level protocol and policy layers whereas the analog  
and digital components can perform lower−level PD  
protocol and PHY layer functions.  
The Type−C block includes all terminations and  
comparators required for Source/Sink/DRP operation: plug  
orientation detection, power capability advertisement and  
power role detection.  
VCONN Switch  
VDD  
Type−C Terminations  
HVCC1  
HVCC2  
VDD  
CC State Machine &  
Comparators  
LV REG  
USB PD PHY  
Timers  
ADC  
BMC  
Rcvr  
ARM  
M0+  
BMC  
DRIVER  
CRC32Tx  
BMC  
4B5B  
SRAM  
2KB  
Encode  
Type−C  
USB PD  
CDR  
BMC  
4B5B  
Decode  
OTP  
32KB  
CRC32Rx  
Figure 5. USB Type−C and PD  
www.onsemi.com  
14  
FUSB15101  
VCONN Switch  
VBUS Discharge  
Some applications require that a VCONN voltage be  
sourced in order to provide additional source capabilities  
when sourcing greater than 3 A on VBUS. The level of  
over−current protection on VCONN is fixed at 50 mA.  
VBUS is discharged through a resistor (RBLD) via the  
BLD pin of the FUSB15101 as shown in the highlighted  
section in Figure 6. The external resistor RBLD value is  
dependent on the total bulk capacitance (CBULK) of the  
power source so that VBUS is discharged within the time  
limits dictated by USB PD. A typical value for RBLD is  
30 , 1 W and in addition, there is internal resistance that  
limits the discharge current within the FUSB15101  
USB PD PHY State Machine Logic  
The FUSB15101 PD module includes the following  
digital functions to enable USB PD messaging:  
Serialization and de−serialization  
Clock and data recovery (CDR)  
4B5B coding  
(I  
in the electrical tables above).  
BLD−SINK  
When the load current to the Sink is sufficient (exceeds  
for t debounce time) such that the  
I
CS−EN−BLD  
CS−EN−BLD  
internal discharge is not needed, then the FUSB15101 will  
automatically disable internal discharge.  
BMC coding  
Packet CRC generation and checking  
Coding and detection of Power Delivery K−Codes  
Automatic GoodCRC packet response  
Upon power up, firmware in the FUSB15101 may  
discharge VBUS in case there is a voltage on VBUS since  
the only way a Sink can be attached per Type C specification  
is if VBUS is discharged to ground (below VSafe0V) upon  
attach.  
BC1.2 Support  
The FUSB15101 has the circuitry to enable emulation  
BC1.2, QC2.0 and 2.4A Divider Mode via firmware.  
The discharge resistance limits are governed by the  
Type C specification when not sourcing power on VBUS  
(R  
in the electrical tables above). It is preferred  
BLD−LEAK  
VBUS Operation  
that no external load/discharge resistor is connected to  
VBUS other than RBLD to the FUSB15101 discharge BLD  
pin. A TVS diode connected from VBUS to ground  
([SZ]ESD7241) allow operating voltages up to 24 V  
covering the entire VBUS range of 3.3 V to 21 V for a USB  
PD PPS contract. This can be replaced by a TVS that covers  
the VBUS range for the use case of this design if needed.  
Gate Driver  
VBUS from the USB−C connector is typically connected  
to a load switch NFET (Q1 in Figure 6) source terminal  
whose gate terminal is driven by the FUSB15101 gate driver  
via the LGATE pin. onsemi recommends NFETs with low  
I
leakages (<1 A) for optimal gate drive.  
GSS  
Voltage and Current Sensing Operation  
The resistor ratio from VIN to ground formed by resistors  
R2 and R3 in Figure 7 (typically 1:10 ratio) is sensed via  
FUSB15101 VREF pin to set the output voltage.  
For the offline design in Figure 2, this will be done via the  
FUSB15101 SFB pin, the opto−coupler, resistor R1 and the  
primary side PWM controller operation.  
For DC−DC design in Figure 3, this will be done via the  
FUSB15101 SFB pin controlling the buck−boost PWM via  
its COMP pin.  
The FUSB15101 will automatically control the SFB pin  
based on the desired voltage as determine by the USB PD  
contract and the existing VIN voltage sensed by VREF.  
The external compensation network formed by C2/R2 and  
R4/C1 need to be selected to achieve stable operation over  
the range of VBUS voltage and current transitions as shown  
in Figure 7.  
Figure 6. VBUS Discharge via BLD Pin  
www.onsemi.com  
15  
 
FUSB15101  
Figure 7. Compensation Network for AC/DC Constant Voltage / Constant Current (CC/CV) Feedback  
For the DC−DC design in Figure 3, there may be a need  
for additional compensation networks from COMP pin to  
ground or from COMP to the DC−DC’s supply.  
current sensing if the FUSB15101 ground connection is on  
the USC−C connector ground if it is more convenient in the  
Printed Circuit Board (PCB) layout.  
The current is sensed via a small resistor (5 mtypically)  
connected between the USB−C connector ground and the  
main ground plane of the power source (secondary side  
ground for offline design) as shown in Figure 7. The gain of  
the current sense amplifier can be adjusted to work with  
10 mresistors if desired.  
A low pass filter formed by R5/C3 provides a stable signal  
for CSP and CSN pins of the FUSB15101 to sense this  
current for over−current protection for fixed voltage PD  
contracts, constant current operation for PPS contracts and  
cable compensation (Table 1).  
When in a PPS contract, if a PPS_Status message is  
requested, the firmware in the FUSB15101 will measure the  
current with an internal 10−bit Analog to Digital Converter  
(ADC) based on the above description and report it back to  
the Sink on the PPS_Status message. The voltage is also  
reported back but it is measured off VIN with the ADC not  
VREF pin since the VREF pin is only used for voltage  
feedback. Thus, if the voltage feedback resistor divider  
connected to VREF is modified to be slightly different from  
the 1:10 ratio expected, the voltage sensing for this  
PPS_Status message will not be affected. BLD pin voltage  
can also be monitored by the ADC and it will be accurate as  
long as the discharge function is not enabled.  
Table 1. CABLE DROP COMPENSATION  
Symbol  
Cable Drop Compensation  
0 mV/A  
Protection Operation  
FUSB15101 has several ways it protects itself as shown  
in Table 2.  
V
V
COMR−CDC−0  
COMR−CDC−0  
50 mV/A  
OVP and UVP are sensed via an internal resistor divider  
that divides VIN by 10 to determine the voltage from the  
power source. HVCC1, HVCC2, HVDP and HVDM are  
directly sensed for over voltage. For external temperature  
monitoring (E_OTP), two NTC pins are available that are  
connected to NTC resistors to ground usually in parallel  
with another resistor to ground for linearity. An internal  
temperature monitor (I_OTP) is also used for protecting the  
devince under extreme die temperatures. For all faults  
capable of automatic hardware protection (when enabled),  
the FUSB15101 will disable the Type C connection with the  
Sink (no pull−up on CC), shut off VBUS load switch and  
discharge VIN to vSafe5V.  
V
V
V
V
100 mV/A  
COMR−CDC−100  
COMR−CDC15−0  
COMR−CDC−200  
COMR−CDC−250  
150 mV/A  
200 mV/A  
250 mV/A  
It is expected that the USB−C connector ground is  
connected only to the current sense network resistors and the  
connector TVS ground connections and not to the main  
ground plane of the DC/DC design or secondary side power  
ground for the offline design (FUSB15101 ground  
connection). However, the FUSB15101 consumes very little  
current and so it should have a negligible impact on this  
www.onsemi.com  
16  
 
FUSB15101  
Table 2. PROTECTION FEATURES  
Symbol  
Automatic Hardware  
Protection Capable?  
Description  
Pin(s) Used  
VIN  
OVP  
UVP  
Output Over Voltage Protection  
Output Under Voltage Protection  
Over Current Protection  
Yes  
VIN  
Firmware Controlled  
OCP  
CSP & CSN  
N/A  
Yes  
I_OTP  
Internal Temperature Protection  
External Temperature Protection  
HVCC1 or HVCC2 Over Voltage Protection  
HVDP or HVDM Over Voltage Protection  
VCONN Over Current Protection  
VBUS or HVDM Pollution Detection  
Yes  
E_OTP  
NTCA / NTCB  
HVCC1 / HVCC2  
HVDP / HVDM  
CC1 / CC2  
BLD / HVDM  
Firmware Controlled  
CC_OVP  
USB_OVP  
VCONN_OCP  
Cable Fault  
Yes  
Yes  
Yes  
Firmware Controlled  
Output Over−Voltage Protection (OVP)  
FUSB15101 has built−in OVP based on firmware  
programmable values. Whenever VIN, as sensed by an  
For compliance with the USB PD specification, the  
FUSB15101 will trigger UVP whenever VIN is below  
VIN−OFF. This allows protection for a direct short of VBUS  
to ground separately or in conjunction with the OCP fault  
described below. If VIN < VIN−OFF fault is triggered, then  
to resume normal operation, VIN has to go below  
VLATCH−OFF to reset the FUSB15101 to exit this fault  
condition.  
internal 1:10 resistor divider, exceeds by K  
(Table 3)  
IN−OVP  
of the requested VIN from the power source for a debounce  
time of t , then the OVP fault would be  
VIN−OVP−Debounce  
triggered. If hardware auto−protection is enabled, the  
FUSB15101 will disable the Type C connection with the  
Sink (no pull−up on CC), shut off VBUS load switch and  
discharge VIN to vSafe5V.  
Table 4. PROGRAMMABLE UVP SETTINGS  
During transitions between VIN voltages, the OVP  
circuitry can be blanked or disabled via firmware to ensure  
that false triggering of OVP doesn’t occur. To ensure safe  
operation over all voltages of VIN, the maximum VIN  
voltage is limited to VIN−OVP−MAX.  
Symbol  
VIN / VIN Requested  
K
105%  
60%  
65%  
70%  
80%  
90%  
95%  
IN−OVP−105  
K
IN−UVP−60  
IN−UVP−65  
IN−UVP−70  
IN−UVP−80  
IN−UVP−90  
IN−UVP−95  
K
K
K
K
K
Table 3. PROGRAMMABLE OVP SETTINGS  
Symbol  
VIN / VIN Requested  
K
105%  
110%  
115%  
120%  
125%  
130%  
135%  
IN−OVP−105  
K
K
IN−OVP−110  
IN−OVP−115  
IN−OVP−120  
IN−OVP−125  
IN−OVP−130  
IN−OVP−135  
Over−Current Protection (OCP) and Constant Current  
Limit (CL)  
K
K
K
K
If VBUS is shorted to ground, either the UVP fault  
described above could trigger or the OCP fault, or both.  
FUSB15101 senses the current via a small sense resistor  
(5 mtypical) as described in the Voltage and Current  
Sensing section above. The OCP fault is triggered at  
firmware programmed ratio of the maximum current for the  
requested Power Data Object (PDO). Once this OCP fault  
occurs, the FUSB15101 protects the system as described in  
the Protection Operation section above. For PPS APDO’s  
(Augmented Power Data Objects), Constant Current  
Limiting (CL) is used as specified in the USB PD  
specification where the voltage will drop to a low value  
based on keeping the current constant and equal to the  
requested PPS current. In this case UVP described above  
will trigger if VIN drops below VIN−OFF since any voltage  
from the lowest 3.3 V − 5% to the PPS requested voltage  
could occur with current limiting. If the PPS current limit is  
Output Under−Voltage Protection (UVP)  
FUSB15101 has a built−in firmware programmable UVP.  
Whenever VIN, as sensed internally, is below K  
IN−UVP  
(Table 4) of the requested output voltage from the power  
source, then the UVP fault would be triggered. During  
transitions between VIN voltages, the UVP circuitry can be  
blanked or disabled via firmware to ensure that false  
triggering of UVP doesn’t occur. For PPS contracts, if  
current limiting causes the voltage to decrease, the UVP  
fault will not trigger at a percentage of VIN since all voltages  
from the requested voltage to VIN−OFF, the lowest voltage,  
are valid.  
www.onsemi.com  
17  
 
FUSB15101  
Cable Fault  
changed with a new PD Request message, the VIN voltage  
may change accordingly to a new value based on the current  
limiting function.  
The FUSB15101 allows for foreign substance monitoring  
of the Type−C receptacle via the HVDM pin.  
Pollution detection on HVDM is done by applying a small  
voltage and resistance to the DM pin and measuring  
its voltage potential via the on−board ADC.  
Over−Temperature Protection (Internal and External)  
FUSB15101 has two different over temperature faults,  
External and Internal. For External OTP, there are two NTC  
pins that may be connected to NTC resistors in parallel with  
a regular resistor for linearity. The FUSB15101 provides  
separate INTC current sources (typically 60 A) on the NTC  
pins to bias these NTC resistors so that an internal A/D  
converter measures the external temperature as shown in  
Figure 8. The firmware can be customized to trigger a fault  
on the desired application specific temperature limits. If the  
second NTC pin is not used for measuring temperature, it  
can be used as a general−purpose ADC channel.  
+
!EN_RPMOS_HI  
EN_RPMOS_HI  
VSRC_MOS  
RPU_MOS_LO  
RPU_MOS_HI  
To ADC CH.4  
DM  
BC12_SW  
Figure 9. HVDM Pollution Detection  
There are two pull up resistors that are selectable:  
INTCA  
+
1. EN_RPMOS_HI = 1 (RPU_MOS_HI = 300 k)  
Moisture or pollutants on the Type−C connector  
have been characterized as resistance to ground  
smaller than ~300 kwhen nothing is attached.  
2. EN_RPMOS_HI = 0 (RPU_MOS_LO = 2.5 k)  
Certain applications prefer to detect pollution  
resistance in the 200 to ~400 range. For that a  
second pull−up resistor is included.  
ADC_CH5  
NTC_A/GPIO/SWCK  
MUX  
GPIO  
R_PAR  
R_NTC  
PORT_CONFIG  
INTCB  
+
ADC_CH6  
NTC_B/GPIO4/SWD  
I2C  
MUX  
GPIO  
R_PAR  
R_NTC  
The FUSB15101’s serial interface is compatible with  
2
Standard, Fast, and Fast Mode Plus I C bus specifications.  
PORT_CONFIG  
2
The I C peripheral can be configured for either host or  
device modes. The analog circuitry is firmware configurable  
for the function required by the application and follows the  
final BC1.2 specification.  
Figure 8. External Temperature Monitoring  
This NTC measured temperature is useful for dynamic  
monitoring by the Sink via FUSB15101 provided PD Status  
messages.  
Internal OTP monitors the internal die temperature. When  
the die temperature exceeds Tshut threshold for  
tOTP−Debounce time, an interrupt is set to alert the core and  
take action.  
Bus Timing  
6
As shown in Figure 10 below , for data bits, SDA must be  
stable while SCL is HIGH. SDA may only transition when  
SCL is LOW. Data is clocked in on the rising edge of SCL.  
Typically, data transitions shortly at or after the falling edge  
of SCL to allow ample time for the data to set up before the  
next SCL rising edge.  
2
6. Bus timing referenced from I C−bus specification Rev. 6−4 April 2014  
www.onsemi.com  
18  
 
FUSB15101  
Figure 10. I2C Bus Timing Definition  
2
Each bus transaction begins and ends with SDA and SCL  
HIGH. A transaction begins with a START condition, which  
is defined as SDA transitioning from 1 to 0 with SCL HIGH.  
A transaction ends with a STOP condition, which is defined  
as SDA transitioning from 0 to 1 with SCL HIGH. During  
a read from the FUSB15101, the host issues a Repeated Start  
after sending a data command and before resending the  
device address. The Repeated Start is a 1−to−0 transition on  
SDA while SCL is HIGH.  
a dedicated peripheral such as I C. A subset of these Pins  
can also be connected as an input to the ADC. Internal  
pull−up/down resistors are programmable. Pull−up resistors  
are always connected to VDD.  
When the PORT is configured as GPIOs it will have the  
following capabilities:  
Bi−directional capability  
Push pull or open drain configuration  
Individually configurable interrupt lines  
Rising or Falling edge interrupt  
High− or Low−level interrupt  
UART  
The FUSB15101 implements a UART transceiver that  
communicates via D+/− when enabled.  
When this peripheral is disabled, it should not interfere  
with D+/− charging protocols such as BC1.2− where the  
ADC is sensitive to loads.  
Table 5. PIN−PORT CONFIGURATION  
Pin #  
Name  
GPIO0  
Port  
6
PA0  
Clock Requirements and BAUD Rates  
I2C_INT  
GPIO1  
The max BAUD rate support is dependent on the  
CLK_HS speed setting. BAUD rates are supported from  
9,600 to 230,400.  
7
8
9
PA1  
PA2  
PA3  
I2C_SDA  
GPIO2  
Automatic BAUD Rate Detection  
The FUSB15101 implements automatic BAUD Rate  
detection based on the first character received in a message.  
The supported characters for automatic BAUD rate  
detection are 0xAA or 0x55.  
Automatic BAUD detection rate works up to 230,400 bps.  
BAUD Rates detected outside of this range will be flagged  
as errors to the core.  
I2C_SCL  
GPIO3  
ADC_CH5  
SWCK  
10  
GPIO4  
PA4  
ADC_CH6  
SWD  
Port Control and GPIOs  
The FUSB15101 includes a number of pins that can be  
configured to be used as standard GPIO or for use with  
www.onsemi.com  
19  
FUSB15101  
ADC  
Output Current, two NTC temperature channels and two  
The FUSB15101 allows for up to 7 signals to be measured  
and converted using the internal 10−bit ADC. For most  
applications, this will consist of VBUS and VIN voltages,  
D+/D− BC1.2 ports. Table 6 below shows the typical  
FUSB15101 configuration along with the expected settings  
for the ADC module.  
Table 6. ADC CONFIGURATION  
ADC Channel  
Pin Measurement  
Resolution  
10 mV  
20 mV  
40 mV  
10 mV  
20 mV  
40 mV  
10 mA  
4 mV  
Range  
Full Scale Voltage  
1.024 V  
2.048 V  
4.096 V  
1.024 V  
2.048 V  
4.096 V  
2.048 V  
4.096 V  
4.096 V  
1.28 V  
0
VIN  
0 V to 10.23 V  
0 V to 20.46 V  
0 V to 40.92 V  
0 V to 10.23 V  
0 V to 20.46 V  
0 V to 40.92 V  
0 A to 10.23 A  
0 V to 4.096 V  
0 V to 4.096 V  
0°C to 160°C  
0°C to 160°C  
1
BLD  
2
3
4
5
6
Output Current  
HVDP  
HVDM  
4 mV  
NTCA Temperature  
NTCB Temperature  
1°C  
1°C  
1.28 V  
Development Tools  
Specifications References  
FUSB15101 is supported by a full suite of comprehensive  
tools including:  
Universal Serial Bus Power Delivery specification  
revision 3.1 Version 1.0, dated May 2021  
An easy−to−use development board  
Software Development Kit (SDK) including: USB PD  
protocol stacks, sample code, libraries, and  
documentation  
Universal Serial Bus Type C Cable and Connection  
Specification release 2.1, dated May, 2021  
USB Battery Charging Specification, revision 1.2, dated  
December 7, 2010  
2
I C−bus specification Rev. 6 − 4 April 2014  
USB, USB−C, USB Type−C and the USB logos are registered trademarks of USB Implementers Forum, Inc.  
Arm, Cortex, and the Arm logo are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.  
2
onsemi is licensed by the Philips Corporation to carry the I C bus protocol.  
www.onsemi.com  
20  
 
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
QFN20 4x4, 0.5P  
CASE 485BH01  
ISSUE O  
1
DATE 19 FEB 2010  
SCALE 2:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND 0.30 MM  
FROM TERMINAL TIP.  
B
E
A
D
L
L
PIN ONE  
REFERENCE  
L1  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
DETAIL A  
MILLIMETERS  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
DIM MIN  
MAX  
1.00  
0.05  
A
A1  
A3  
b
0.80  
−−−  
0.20 REF  
0.20  
EXPOSED Cu  
MOLD CMPD  
0.30  
D
D2  
E
E2  
e
K
4.00 BSC  
0.15  
0.15  
C
2.60  
2.80  
4.00 BSC  
C
2.60  
2.80  
TOP VIEW  
DETAIL B  
0.50 BSC  
ALTERNATE  
0.20  
0.35  
0.00  
−−−  
0.45  
0.15  
A
CONSTRUCTION  
L
L1  
0.10  
C
C
A3  
GENERIC  
MARKING DIAGRAM*  
0.08  
DETAIL B  
NOTE 4  
A1  
K
SEATING  
PLANE  
XXXXX  
XXXXX  
ALYWG  
G
C
SIDE VIEW  
DETAIL A  
D2  
6
XXXXX = Specific Device Code  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
20X L  
11  
E2  
(Note: Microdot may be in either location)  
1
*This information is generic. Please refer  
to device data sheet for actual part  
marking. PbFree indicator, “G”, may  
or not be present.  
16  
20X  
b
0.10  
e
C
C
A
B
MOUNTING FOOTPRINT  
0.05  
NOTE 3  
BOTTOM VIEW  
4.30  
2.80  
20X  
0.60  
1
2.80  
4.30  
PACKAGE  
OUTLINE  
20X  
0.35  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON48317E  
QFN20 4X4, 0.5P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY