FUSB15200MNTWG [ONSEMI]

Dual Port USB Type-C & PD Controller for Sink and DRP Applications;
FUSB15200MNTWG
型号: FUSB15200MNTWG
厂家: ONSEMI    ONSEMI
描述:

Dual Port USB Type-C & PD Controller for Sink and DRP Applications

光电二极管
文件: 总23页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Dual Port USB Type-C & PD  
Controller for Sink and DRP  
Applications  
1
40  
QFN40 5x5, 0.4P  
CASE 485CR  
FUSB15200  
The FUSB15200 is a highly integrated dual port USB Type−C and  
Power Delivery Controller optimized for Sink and DRP applications.  
The FUSB15200 enables a complete solution through optimized  
hardware peripherals and complete open−source embedded firmware  
all in a compact solution. Maximizing total system power budgets is  
enabled through both hardware and firmware of the FUSB15200.  
onsemi offers a complete open−source embedded firmware  
solution. System designers can easily tailor this firmware to meet the  
specific needs of their end application through an easy to use API for  
the embedded firmware. The FUSB15200 also provides a completely  
USB PD3.1 compliant solution with interoperability with leading  
mobile and computing devices in the market.  
MARKING DIAGRAM  
1
FUSB  
15200  
AWLYYWW  
FUSB15200 = Specific Device Code  
A
= Assembly Location  
= Wafer Lot  
= Year  
WL  
YY  
WW  
= Work Week  
Features  
Small Footprint Dual−port USB PD Controller Supporting the Most  
Popular Peripherals  
ORDERING INFORMATION  
Device  
FUSB15200MNTWG  
Package  
Shipping  
USB PD 3.1 & USB Type−C 2.1  
2
QFN40  
5000 / Tape &  
Reel  
4x I C Host/Device  
Dual USB BC1.2 Consumer/Provider  
USB2.0 Isolation Switches  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
Fully Programmable and Upgradable Open−Source Firmware  
Providing API for Customer Specific Device Policy Manager  
Development  
Integrated LDOs from VBUS Allows Dead−Battery Functionality  
High Voltage Protection on CC and VBUS Pins (28 V DC)  
Up to 20 GPIOs  
10−bit ADC for High Performance System Measurements  
External Temperature Monitoring via NTC Resistors  
®
DisplayPort HPD Signal Conversion  
FastRole Swap Support  
40−pin QFN Package (5 mm x 5 mm, 0.4 mm Pitch)  
These are Pb−free Devices  
Typical Applications  
Sinks and DRP Devices  
Laptops  
Docks  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
March, 2022 − Rev. 0  
FUSB15200/D  
FUSB15200  
FEATURES  
[
[
Arm Cortex −M0+: A 32−bit core with flexible  
clocking up to 24 MHz.  
Programmable VBUS discharge: Internal programmable  
resistors capable of discharging up to 100 mF.  
Memories: A total of 132 KB of flash is available to store  
program code. 6 KB of SRAM program memory.  
Multiple Timers: Four independent 32−bit timers are  
available: 2 General Purpose, 1 Watchdog, and  
1 Wake−up/General Purpose  
External NTC: Integrated current sources are used in  
conjunction with the ADC to monitor a variety of NTC  
resistors.  
Low Power Operation Modes: Programmable sleep  
modes allowing device to minimize power usage as  
needed. Automatic USB−C detection and wake−up  
functionality from sleep modes.  
USB Type−C and PD: Integrated hardware USB PD PHY  
and Type−C termination/comparators supporting latest  
USB−IF specification.  
Integrated VCONN Switch: Provides the full 1.5 W power  
to interrogate cable eMarkers and power active cables.  
BC1.2 Support: Fully programmable and capable of  
presenting and detecting SDP, CDP or DCP.  
High Voltage Protection: Robust USB−C connector  
interface with 28 V DC tolerant VBUS, and CC pins.  
ADC: Multi−channel 10−bit ADC for accurate  
monitoring of VBUS, external temperature and voltages.  
DisplayPort Support: Configurable I/Os to support  
hot−plug detect in either display sinks or display source  
modes.  
Integrated LDO: Device can be powered from VBUS  
input of either port allowing complete USB PD  
capabilities and contract negotiation under dead battery  
or no battery conditions.  
2
I C: Four serial communication ports capable of acting as  
a host or device allowing control of external system  
peripherals by FUSB15200.  
GPIOs: Fully programmable I/Os with internal  
terminations. Configurable as input or output (CMOS or  
open−drain).  
www.onsemi.com  
2
FUSB15200  
FUSB15200 INTERNAL BLOCK DIAGRAM  
FUSB15200 – Dual Port USB PD Controller  
ARM Cortex −M0+  
(24 MHz)  
Interrupts  
3x Timers  
WDT  
Flash  
(132 KB)  
SRAM  
(6 KB)  
Serial Wire Debug  
AHB  
Peripheral Bus  
Type−C Port A  
Up to 20 GPIOs  
USB PD PHY  
VCONN FET w/ OCP  
Load Switch Control  
VBUS LDO  
4x I2C Master/Slave  
Power Management  
Internal Regulators  
Reset  
VBUS Discharge  
Type−C Port B  
USB PD PHY  
VCONN FET w/ OCP  
Load Switch Control  
DisplayPort HPD  
USB Switches  
VBUS LDO  
VBUS Discharge  
Figure 1. FUSB15200 Block Diagram  
www.onsemi.com  
3
FUSB15200  
PIN DIAGRAM  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
VBUS_A  
HVCC2_A  
VBUS_B  
HVCC2_B  
3
VCONN_B  
VCONN_A  
HVCC1_B  
HVCC1_A  
4
HPD_B/GPIO12  
I2C_SDA1/GPIO11  
I2C_SCL1/GPIO10  
I2C_INT1/GPIO9  
DP_B  
VDD  
5
GND  
I2C_INT2/GPIO2/SWD  
I2C_SDA2/GPIO3  
I2C_SCL2/GPIO4  
DP_A  
6
7
8
9
DM_B  
DM_A  
10  
Figure 2. Pin Diagram  
www.onsemi.com  
4
FUSB15200  
PIN DESCRIPTION  
Pin #  
Name  
VBUS_A  
HVCC2_A  
VCONN_A  
HVCC1_A  
VDD  
Port  
Power  
Analog  
Power  
Analog  
Power  
PA2  
Description  
1
2
3
4
5
Port A VBUS. Monitoring Discharge (28 V)  
Port A High Voltage Configuration Channel 2 (28 V)  
Port−A VCONN Supply  
Port A High Voltage Configuration Channel 1 (28 V)  
Power Supply  
2
6
7
I2C_INT2/GPIO2/SWD  
I2C_SDA2/GPIO3  
I2C_SCL2/GPIO4  
DP_A  
I C Port 2 Interrupt/ General Purpose I/O /Serial Wire Debug Data  
2
PA3  
I C Port 2 Data/ General Purpose I/O (Open Drain)  
2
8
PA4  
I C Port 2 Clock/ General Purpose I/O  
9
Analog  
Analog  
Analog  
Analog  
PA5  
Port A USB 2.0 D+ (Connector side)  
Port A USB 2.0 D− (Connector side)  
Port A USB 2.0 D− (Host side)  
Port A USB 2.0 D+ (Host side)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
DAP  
DM_A  
DM_HOST_A  
DP_HOST_A  
GPIO5/I2C_SDA4/SWCK  
GPIO6/I2C_SCL4  
GPIO7/I2C_INT4  
HPD_A/GPIO8  
VDDIO  
2
General Purpose I/O/ I C Port 4 Data/ Serial Wire Debug Port Clock  
2
PA6  
General Purpose I/O I C Port 4 Clock  
2
PA7  
General Purpose I/O/ I C Port 4 Interrupt  
PA8  
Hot Plug Detect/ General Purpose I/O  
I/O Voltage Supply  
Power  
Input  
RESET_N  
Active Low chip reset  
DP_HOST_B  
DM_HOST_B  
DM_B  
Analog  
Analog  
Analog  
Analog  
PA9  
Port B USB 2.0 D+ (Host side)  
Port B USB 2.0 D− (Host side)  
Port B USB 2.0 D− (Connector side)  
Port B USB 2.0 D+ (Connector side)  
DP_B  
2
I2C_INT1/GPIO9  
I2C_SCL1/GPIO10  
I2C_SDA1/GPIO11  
HPD_B/GPIO12  
HVCC1_B  
I C Port 1 Interrupt/ General Purpose I/O  
2
PA10  
PA11  
I C Port 1 Clock/ General Purpose I/O (Open Drain)  
2
I C Port 1 Data/ General Purpose I/O  
PA12  
Analog  
Power  
Analog  
Power  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
Analog  
PA20  
PA1  
Hot Plug Detect/ General Purpose I/O  
Port B High Voltage Configuration Channel 1 (28 V)  
Port−B VCONN Supply  
VCONN_B  
HVCC2_B  
Port B High Voltage Configuration Channel 2 (28 V)  
Port B VBUS. Monitoring Discharge (28 V)  
General Purpose I/O  
VBUS_B  
GPIO13  
SRC_SNK_B/GPIO14  
SNK_B/GPIO15  
GPIO16  
Port B Source/Sink load switch control/ General Purpose I/O  
Port B Sink Control/ General Purpose I/O  
General Purpose I/O  
2
I2C_INT3/GPIO17  
I2C_SDA3/GPIO18  
I2C_SCL3/GPIO19  
CAP  
I C Port 3 Interrupt/ General Purpose I/O  
2
I C Port 3 Data/ General Purpose I/O  
2
I C Port 3 Clock/ General Purpose I/O  
1.5 V capacitor  
SNK_A/GPIO20  
SRC_SNK_A/GPIO1  
GND  
Port A Sink Control/ General Purpose I/O  
Port A Source/Sink load switch control/ General Purpose I/O  
Ground  
GND  
www.onsemi.com  
5
FUSB15200  
APPLICATIONS DIAGRAM  
The figure below shows a typical dual port DRP application.  
Charger  
VIN  
FPF2895C+2595C  
FPF2895C+2595C  
5 V  
ILIM  
ILIM  
FLAGb SRC/SNKb ONb  
Supply  
ONb SRC/SNKb FLAGb  
VBUS_A  
VBUS_B  
SRC_SNK_A GPIO18  
VCONN_A  
VCONN_B GPIO17 SRC_SNK_B  
GPIO20  
GPIO19  
GPIO15  
GPIO13  
VBUS_B  
VBUS_A  
HVCC1_A  
HVCC2_A  
HVCC1_B  
HVCC2_B  
DP_A  
DM_A  
DP_B  
DM_B  
VDD  
VDD  
I2C_INT2  
I2C_SCL2  
I2C_SDA2  
I2C_INT2  
I2C_SCL2  
I2C_SDA2  
FUSB15200  
I2C_INT1  
I2C_SCL1  
I2C_SDA1  
EC  
Dual Port Controller  
ARM−M0+  
I2C_INT4  
I2C_SCL4  
I2C_SDA4  
I2C_INT4  
I2C_SCL4  
I2C_SDA4  
CAP  
RESET_N  
AC Present  
VDDIO  
GPIO16  
HPD_B  
VDDIO  
GND  
10  
10  
HPD_A  
Display Port  
Controller  
Display Port  
Controller  
10  
10  
MUX  
MUX  
4
4
USB3.1  
USB3.1  
Figure 3. Application Diagram  
www.onsemi.com  
6
FUSB15200  
ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2, 3)  
Symbol  
Parameter  
Min  
−0.3  
−0.3  
−0.5  
−0.5  
−0.5  
−0.5  
−0.3  
−0.5  
−40  
−40  
Max  
28  
Unit  
V
VBUS  
VBUS Pin Voltage  
HVCC1, HVCC2 Connector Pins  
DP, DM Connector Pins  
I/O Voltage  
V
28  
V
CONNECTOR−HV  
V
6.0  
6.0  
6.0  
6.0  
6.0  
2.0  
150  
150  
260  
V
CONNECTOR−LV  
VIO  
V
VDD  
VCONN  
VDDIO  
VCAP  
Supply Voltage  
V
Supply Voltage  
V
VDDIO Supply  
V
CAP Pin  
V
T
J
Junction Temperature  
Storage Temperature  
°C  
°C  
°C  
kV  
kV  
T
STG  
TL  
Lead Temperature, (Soldering, 10 Seconds)  
ESD  
ESD  
Human Body Model, ANSI/ESDA/JEDEC JS−001−2012 (Note 3)  
Charged Device Model, JESD22−C101 (Note 3)  
2
HBM  
CDM  
1
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. All voltage values, except differential voltages, are given with respect to the GND pin.  
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
3. Meets JEDEC standards JS−001−2012 and JESD 22−C101.  
RECOMMENDED ESD DEVICES  
Function  
Manufacturer  
onsemi  
Part Number  
Type−C Connector Pins ESD  
TBD  
OPERATING RATINGS  
Symbol  
Parameter  
Min  
3.0  
3.0  
3.1  
1.7  
0
Typ  
Max  
5.5  
Unit  
V
V
CONN  
Supply Voltage Range  
Supply Voltage Range  
3.3  
3.3  
V
DD  
5.5  
V
V
BUS  
V
BUS  
Voltage  
22.05  
5.5  
V
V
DDIO  
I/O Supply Voltage  
V
V
Communication Channel Pins  
DM, DP Pins  
5.5  
V
HVCCx  
V
USB  
0
3.6  
V
V
IO  
GPIO, I2C, RESET, HPD  
0
5.5  
V
T
A
Operating Ambient Temperature  
−40  
+85  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
7
 
FUSB15200  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VDD = 2.8 V to 5.5 V, TA = −40°C to +85°C unless  
otherwise noted. Typical values are at TA = 25°C, VDD = 3.3 V)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TYPE−C AND PD SECTION  
USB PD PHY  
TRANSMITTER  
UI  
Unit Interval  
3.03  
3.33  
3.7  
ms  
pBitRate  
Maximum Difference between the bit−rate  
During the Payload and Last 32 Bits of  
Preamble  
0.25  
%
tEndDriveBMC  
tHoldLowBMC  
tInterFrameGap  
Time to Cease Driving the Line after the  
End of the Last Bit of the Frame  
1
23  
ms  
ms  
ms  
Time to Cease Driving the Line after the  
Final High−to−low Transition  
Any PD Transmission Cannot be Sent  
Out before a Dead Time of at Least  
tInterFrameGap from Receiving or  
Sending a Packet  
25  
tFall  
tRise  
Fall Time  
300  
300  
−1  
1
ns  
ns  
ms  
Rise Time  
tStartDrive  
Time before the Start of the First Bit of  
the Preamble when the Transmitter Shall  
Start Driving the Line  
vSwing  
zDriver  
BMC Voltage Swing  
1.05  
33  
1.125  
1.2  
75  
V
TX Output Impedance at 750 kHz with  
an External 220 pF or Equivalent Load  
W
rFRSwapTx  
Fast Role Swap Request Transmit Driver VDD = 3.0 V to 5.5 V  
Resistance  
5
W
RECEIVER  
cReceiver  
Receiver Capacitance when Driver isn’t  
Turned On  
Vrms = 0.371; Vdc = 0.5 V;  
Freq. = 1 MHz  
75  
pF  
tRxFilter  
Rx Bandwidth Limiting Filter  
100  
12  
ns  
ms  
tTransitionWindow Time Window for Detecting Non−idle  
20  
vFRSwapCableTx The Fast Role Swap Request Has to be  
Below this Voltage Threshold to be  
Detected  
490  
520  
550  
mV  
tFRSwapRx  
Fast Role Swap Request Detection Time  
(Note 4)  
30  
1
50  
ms  
zBmcRx  
Receiver Input Impedance (Cannot be  
Tested but Can be Simulated and  
Guaranteed by Design)  
MW  
TYPE−C FRONT END  
I
SRC 80 mA CC Current (Default)  
SRC 180 mA CC Current (1.5 A)  
SRC 330 mA CC Current (3 A)  
Device Pull−down Resistance  
Powered Cable Termination  
64  
80  
180  
330  
5.1  
96  
194  
356  
5.6  
mA  
mA  
mA  
kW  
W
80_CCX  
I
166  
304  
4.6  
180_CCX  
330_CCX  
I
R
DEVICE  
R
A
800  
126  
1200  
zOPEN  
CC Resistance for Disabled State, when  
Vdd is Valid  
kW  
I
Over Current Protection (OCP) Limit at  
which VCONN Switch Shuts Off over the  
Entire VCONN Voltage Range  
VCONN_OCP = 800 mA  
600  
5.6  
800  
1000  
6.0  
mA  
V
SW_CCX  
V
CC1/2 Over−Voltage Protection  
CCx_OVP  
www.onsemi.com  
8
FUSB15200  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VDD = 2.8 V to 5.5 V, TA = −40°C to +85°C unless  
otherwise noted. Typical values are at TA = 25°C, VDD = 3.3 V)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TYPE−C FRONT END  
R
Rdson for VDD to CC1 or VDD to CC2  
I
= 0 to 600 mA,  
0.85  
2.7  
1.8  
5
W
W
V
V
V
V
V
V
V
V
V
SW_CCx  
SW_CCX  
VCONN_OCP > 80 mA  
R
Low OCP Setting Rdson for VDD to CC1  
or VDD to CC2  
I
= 0 to 80 mA,  
SW_CCx_LOW_OCP  
SW_CCX  
VCONN_OCP 80 mA  
vRdSRCUSB  
Source Attach Threshold for CC Pin at  
Default Current  
1.5  
1.6  
1.65  
1.65  
2.75  
0.25  
0.45  
0.85  
0.7  
vRdSRC1.5  
vRdSRC3.0  
vRaSRCUSB  
vRaSRC1.5  
vRaSRC3.0  
vRdSNKUSB  
vRdSNK1.5  
vRdSNK3.0  
Source Attach Threshold for CC Pin at  
1.5 A Current  
1.5  
1.6  
Source Attach Threshold for CC Pin at  
3 A Current  
2.45  
0.15  
0.35  
0.75  
0.61  
1.16  
2.04  
2.6  
Source Ra Threshold for CC Pin at  
Default Current  
0.2  
Source Ra Threshold for CC Pin at  
1.5 A Current  
0.4  
Source Ra Threshold for CC Pin at  
3 A Current  
0.8  
Attach Threshold for CC Pin SNK  
(Default Current)  
0.66  
1.23  
2.11  
Attach Threshold for CC Pin SNK  
(1.5 A Current)  
1.31  
2.18  
Attach Threshold for CC Pin SNK  
(3 A Current)  
vRaSNK  
vSafe0V  
Attach Threshold for CC Pin SRC or SNK  
Safe Operating Voltage at 0 V  
0.15  
0.6  
0.2  
0.25  
0.8  
V
V
VBUS DISCHARGE  
R
R
R
R
R
R
Pull−down Resistance Applied to VBUS  
when Selected  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
315  
420  
450  
600  
585  
780  
W
VBUS_DISCH_0  
VBUS_DISCH_1  
VBUS_DISCH_2  
VBUS_DISCH_3  
VBUS_DISCH_4  
VBUS_DISCH_5  
525  
750  
975  
700  
1000  
2000  
6.00  
1300  
2600  
7.80  
1400  
4.20  
kW  
mA  
CURRENT CONSUMPTION  
I
Current Consumption when in Deep  
Sleep  
VDD = VDDIO = 3.0 to 5.5 V  
VBUS = 0 V; Not Type−C  
attached, DRP Toggling; LSOSC  
enabled; BC1.2 disabled  
75  
SLEEP−UNATTACHE  
D
I
Sleep Current  
VDD = VDDIO = 3.0 to 5.5 V  
700  
mA  
SLEEP  
2
VBUS = 0; No I C traffic, LSOSC  
and HSOSC running; PD  
Peripheral and ADC enabled.  
No PD traffic.  
I
Port with PD Traffic  
POR Trip point  
Active and communicating via  
USB PD transmitting and receiving  
packets on both ports  
4.0  
mA  
PD−ACTIVE  
PMU  
V
VDD Rising  
1.0  
3.0  
2.4  
V
V
VDD_POR  
VDD_GOOD  
VDDIO_GOOD  
V
Minimum VDD Level for Enabling Device VDD Rising  
V
VDDIO Detection Threshold Used in  
Asserting PMU_STS when VDDIO is  
above it  
VDDIO Rising  
VDD Falling  
1.0  
V
VDD Brown Out Threshold  
2.6  
3.0  
V
VDD_BRWN  
www.onsemi.com  
9
FUSB15200  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VDD = 2.8 V to 5.5 V, TA = −40°C to +85°C unless  
otherwise noted. Typical values are at TA = 25°C, VDD = 3.3 V)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PMU  
V
VDD Voltage where the Device is  
Powered from VDD Instead of VBUS  
VDD Rising  
2.6  
3.0  
V
VDD_DBAT  
CLOCKS  
F
Low Speed Clock for Idle, Type−C Attach  
114  
120  
24  
126  
kHz  
LS_CLK  
HS_CLK  
F
Internal Clock for Active Core and Full  
Function  
22.8  
25.2  
MHz  
EXTERNAL TEMPERATURE PROTECTION  
I
I
Current Source on NTCA  
Current Source on NTCB  
55  
55  
60  
60  
65  
65  
mA  
mA  
NTCA  
NTCB  
INTERNAL TEMPERATURE MEASUREMENT  
Temperature for Internal Temperature  
T
SHUT  
VDD = 3.0 to 5.5  
VDD = 3.0 to 5.5  
145  
10  
°C  
°C  
Protection  
T
HYS  
Temp Hysteresis for Internal  
Temperature Protection  
BC1.2 DETECTION  
R
DCP Emulation Resistance  
DP/DM Pull Down Resistance  
DCD Source Current  
VD+/D− = 0 V, 1.0 V, ION = 2 mA  
VD+/− = 0 V − 3.6 V  
VDD = 3.0 V to 5.5 V  
VDD = 3.0 V to 5.5 V  
VDD = 3.0 V to 5.5 V  
5 mA pulled out of DP  
5 mA pulled out of DM  
V(sw) = 0 to 3.6 V  
16  
80  
19.5  
10  
180  
23  
W
kW  
mA  
mA  
V
DCP  
R
Dx_DWN  
DP_SRC  
I
7
13  
I
Sink Current to Dx  
25  
75  
175  
2.85  
36  
Dx_SNK  
V
Divider Mode Output Voltage  
Divider Mode Resistance on DP  
Divider Mode Resistance on DM  
Resistor Weak Pull−down on D+ and D−  
Source Voltage  
2.65  
24  
2.75  
30  
DIV  
R
kW  
kW  
kW  
V
DIVP  
DIVM  
R
24  
30  
36  
R
300  
0.5  
288  
0.9  
700  
0.6  
320  
1.0  
1100  
0.7  
352  
1.1  
DAT_LKG  
V
VDD = 3.0 V to 5.5 V  
Dx_SRC  
PU_MOS  
SRC_MOS  
R
Pull−Up Moisture Detection Resistor  
Voltage Source for Moisutre Detection  
kW  
V
V
SWITCH PATHS  
I
Power−Off Leakage Current  
USB Switch On Resistance  
All data ports, vsw = 3.6, vdd = 0  
5
18  
mA  
OFFUSB  
R
Vsw− =0 V, 0.4 V, ION = 8 mA,  
VDD = 3.0 to 5.0 V  
W
ONUSB  
C
ONUSB  
DP_x, DM_x On Capacitance  
Vsw = 400 mVpk−pk, f = 240 MHz,  
VDD = 3.8  
7.5  
pF  
C
DP/DM OFF Capacitance  
Differential −3 db Bandwidth  
f = 240 MHz, VDD = wc  
3.3  
pF  
OFFUSB  
BW  
Vsw = 400 mVpk−pk, RL = 50 W,  
650  
MHz  
USB  
CL = 0 pF, VDD = 3.0 to 5.0 V  
HPD  
HPD_Rx  
V
Low−Level Input Voltage  
High−Level Input Voltage  
Input Hysteresis  
VDD = 2.8 V to 5.5 V,  
VBUS = 3.1 V to 22.5 V, or  
VDD = 0 V and VBUS = 3.1 V to  
22.5 V  
2.0  
0.8  
V
V
IL−HPD  
V
VDD = 2.8 V to 5.5 V,  
VBUS = 3.1 V to 22.5 V, or  
VDD = 0 V and VBUS = 3.1 V to  
22.5 V  
IH−HPD  
V
VDD = 2.8 V to 5.5 V,  
280  
mV  
HYS−HPD  
VBUS = 3.1 V to 22.5 V, or  
VDD = 0 V and VBUS = 3.1 V to  
22.5 V. Typ VDD = 3.0 V  
www.onsemi.com  
10  
FUSB15200  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VDD = 2.8 V to 5.5 V, TA = −40°C to +85°C unless  
otherwise noted. Typical values are at TA = 25°C, VDD = 3.3 V)  
Symbol  
HPD_Rx  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I
Input Leakage  
VDD = 2.8 V to 5.5 V,  
−5  
5
mA  
IN−HPD  
VBUS = 3.1 V to 22.5 V, or  
VDD = 0 V and VBUS = 3.1 V to  
22.5 V, Input Voltage 0 V to 3.6 V  
I
Off Input Leakage  
Pin Capacitance  
VDD = 0 V, VBUS = 0 V,  
Input Voltage 0 V to 5.5 V  
−5  
5
5
mA  
OFF−HPD  
C
pF  
IN−HPD  
HPD_Tx  
V
Ouptut Low Voltage  
VDD = 2.8 V to 5.5 V,  
0.4 V  
3.6  
V
OL−HPD  
VBUS = 3.1 V to 22.5 V, or  
VDD = 0 V and VBUS = 3.1 V to  
22.5 V, Iout = +4 mA  
V
Output High Voltage for HPD Output  
VDD = 2.8 V to 5.5 V,  
2.25  
100  
OH−HPD  
VBUS = 3.1 V to 22.5 V, or  
VDD = 0 V and VBUS = 3.1 V to  
22.5 V, Iout = −2 mA  
R
Pull Down resistance on HPD Pin when  
Enabled  
PORT’s pull−down resistance is  
enabled and HPD peripheral is  
enabled  
kW  
PD−HPD  
SERIAL WIRE DEBUG INTERFACE  
F
Serial Wire Debug Input Clock Frequency Core frequency = 24 MHz  
Serial Wire Debug Data Setup Timing  
10  
MHz  
ns  
SWDCLK  
T
0.25 * (1 /  
SWCLK)  
SWDI_SET  
T
Serial Wire Debug Data Hold Timing  
0.25 * (1 /  
SWCLK)  
ns  
V
SWDI_HOLD  
V
Serial Wire Debug Input Voltage  
Threshold  
VDDIO = 1.7 V to 5.5 V  
VDDIO = 1.7 V to 5.5 V  
VDDIO = 1.7 V to 5.5 V  
0.7 x  
VDDIO  
IH−SWD  
V
0.3 x  
VDDIO  
IL−SWD  
V
Serial Wire Debug Input Voltage  
Hysteresis  
300  
+10  
mV  
mA  
V
HYS−SWD  
I
Serial Wire Debug Input Leakage  
VDDIO = 1.7 V to 5.5 V,  
Input Voltage 0 V to 5.5 V  
−10  
LKG−SWD  
V
Serial Wire Debug Output Voltage High  
Serial Wire Debug Output Voltage Low  
VDDIO = 1.7 V to 5.5 V,  
Iout = −2 mA  
VDDIO −  
0.5 V  
OH−SWD  
V
VDDIO = 1.7 V to 5.5 V,  
Iout = +4 mA  
0.4 V  
V
OL−SWD  
RESET  
RESET_N_VIL1  
Low Level Input Voltage  
High Level Input Voltage  
VDD = 2.8 V to 5.5 V  
VDD = 2.8 V to 5.5 V  
0.3 x  
VDD  
V
V
RESET_N_VIH1  
0.7 x  
VDD  
RESET_N_RPU  
RESET_N_ILKG  
GPIO  
Internal Pull−Up Resistor to VDD  
Input Leakage  
100  
kW  
mA  
−120  
VI  
High Level Input Voltage  
Low level Input Voltage  
VDDIO = 1.7 V to 5.5 V  
VDDIO = 1.7 V to 5.5 V  
0.7 x  
VDDIO  
V
V
V
H−GPIO  
V
0.3 x  
VDDIO  
IL−GPIO  
V
Output High Voltage (Not Applicable to  
Open−Drain GPIO3 and GPIO10)  
VDDIO = 1.7 V to 5.5 V,  
Iout = −2 mA  
VDDIO −  
0.5  
OH−GPIO  
www.onsemi.com  
11  
FUSB15200  
ELECTRICAL CHARACTERISTICS (Minimum and maximum values are at VDD = 2.8 V to 5.5 V, TA = −40°C to +85°C unless  
otherwise noted. Typical values are at TA = 25°C, VDD = 3.3 V)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
GPIO  
V
Output Low Voltage  
VDDIO = 1.7 V to 5.5 V,  
Iout = +4 mA  
0.4  
V
OL−GPIO  
V
SNKx Pin Output High Voltage  
SNKx Pin Output Low Voltage  
Output High Voltage for PA4 and PA8  
2.5  
0.4  
V
V
V
OH−SNK  
V
OL−SNK  
OH−NTC  
V
VDD = 2.8 V to 5.5 V, Iout = −2mA  
VDD –  
0.5  
V
Output Low Voltage for PA4 and PA8  
Input Hysteresis  
VDD = 2.8 V to 5.5 V, Iout = +4mA  
VDDIO = 1.7 V to 5.5 V, 3.6 V Typ  
300  
0.4  
V
OL−NTC  
V
mV  
mA  
HYS−GPIO  
I
Input Leakage  
VDDIO = 1.7 V to 5.5 V, Input  
Voltage 0 V to 5.5 V  
−5  
5
IN−GPIO  
I
Off Input Leakage  
VDDIO = 0 V, VDD = 0 V to 5.5 V,  
Input Voltage 0 V to 5.5 V  
−5  
5
mA  
OFF−GPIO  
R
R
Pull−Down Resistance  
PORT_PDx = 1  
PORT_PUx = 1  
100  
100  
kW  
kW  
PD−GPIO  
Pull−Up Resistance (Not Applicable to  
Open−Drain GPIO3 and GPIO10)  
PU−GPIO  
C
GPIO  
Pin Capacitance  
5
pF  
2
I C I/O  
I
VDD Current when SDA or SCL is HIGH  
Input Current of SDA and SCL Pins  
High−Level Input Voltage  
VDD = 2.8 to 5.5, VIN = 1.8 V  
VDD = 2.8 to 5.5, VIN = 0 to 5.5 V  
VDD = 2.8 to 5.5  
−10  
−10  
1.2  
10  
10  
mA  
mA  
V
CCTI2C  
I
i2C  
V
IH−I2C  
V
Low−Level Input Voltage  
VDD = 2.8 to 5.5  
0.4  
0.3  
V
IL−I2C  
V
Low−Level Output Voltage at 3 mA Sink  
Current (Open−Drain)  
VDD = 2.8 to 5.5  
0
V
OL1−I2C  
OL2−I2C  
HYS−I2C  
V
Low−Level Output Voltage at 2 mA Sink  
Current (Open−Drain)  
VDD = 2.8 V − 5.5 V  
0
0.3  
V
V
Hysteresis of Schmitt Trigger Inputs  
Low−Level Output Current (Open−Drain)  
INT_N Output Low Voltage  
VDD = 2.8 to 5.5  
0.1  
20  
0.2  
V
mA  
V
I
VDD = 2.8 to 5.5, VOL = 0.4 V  
VDD = 2.8 to 5.5, IOL = 4 mA  
VDD = 2.8 to 5.5  
OLSDA  
V
0.4  
OL_INT  
C
Capacitance for Each I/O Pin  
5
pF  
ns  
I−I2C  
t
SP  
Pulse Width of Spikes that Must be  
Suppressed by the Input Filter  
0
50  
V
High−Level Input Voltage  
Low−Level Input Voltage  
VDD = 2.8 to 5.5  
VDD = 2.8 to 5.5  
1.2  
V
V
IH_INT  
V
0.4  
IL_INT  
FLASH  
NEND  
Sector Endurance  
Data Retention  
20,000  
Erase/  
write  
cycles  
T
DR  
T = 25°C  
T = 105°C  
T = 125°C  
100  
20  
years  
Years  
Years  
10  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. (SRC/SNK I/Os will switch to its new configuration based on USB_IO_CONFIG setting within tFRSwapRx(max))  
www.onsemi.com  
12  
FUSB15200  
Arm Cortex−M0+ Processor  
Low power features on FUSB15200 include the WIC,  
adjustable clock rates, and different software controlled  
power modes to maximize opportunities to save power in the  
final application.  
The FUSB15200 integrates an ARM Cortex−M0+  
processor with Nested Vector Interrupt Controller (NVIC),  
Wake−up Interrupt Controller (WIC), and Debug Access  
Port (DAP). The processor uses the Thumb instruction set  
and is optimized for high performance with reduced code  
size and low power operation. The ARM Cortex−M0+  
efficiently handles multiple parallel peripherals and has  
integrated sleep modes. Test and debug capability is  
enhanced with the ARM Serial Wire Debug Port.  
Power Management Unit  
The Power Management Unit (PMU) provides  
appropriate power to all the blocks in the FUSB15200.  
The FUSB15200 is able to power from either VBUS pin  
when VDD is not present (dead battery condition). When  
VDD > VDD_DBAT becomes available, PMU will  
automatically switch the internal power to VDD.  
When device is powered from VBUS alone, the SNK pins  
can be controlled without VDDIO.  
The FUSB15200 power management unit prevents  
system brown−outs in case VDD voltage dips below the  
specified minimum voltage required for reliable operation.  
Firmware may monitor the power supply and safely shutting  
down the system if needed.  
The ARM implementation in the FUSB15200 includes a  
132KB Flash RAM and 6KB of SRAM.  
The MCU, Memory and DAP are interconnected using  
the AMBA (Advanced Microcontroller Bus Architecture)  
AHB−Lite interface and peripherals are connected to the  
AHB via APB interface (Advanced Peripheral Bus).  
In addition to the base Arm Cortex−M0+ processor  
interrupts, the FUSB15200 implements multiple external  
source interrupts for peripheral devices. A powerful nested,  
pre−emptive and priority based interrupt handling system  
assures timely and flexible response to external events.  
(3.0 V − 24 V)  
(3.0 V − 24 V)  
(3.0 V − 5.5. V)  
(1.7 V − 5.5 V)  
VBUS_B  
VBUS_A  
VDD  
VDDIO  
POR  
POR  
VDDIO Detect  
VBUS_B_VAL  
VBUS_A_VAL  
VDDIO_GOOD  
POR  
V1P5_POR  
1.5 V  
Power  
Regulator  
(VCORE)  
VCAP  
Selection  
V1P5  
(5.0)  
POR  
POR  
VDD/  
BRWNOUT  
VDD_GOOD  
UVLO  
UVLO  
Figure 4. FUSB15200 PMU  
Reset Sources  
Software reset resets the entire chip including core,  
peripherals, wakeup timer, and watchdog.  
The FUSB15200 has various sources of reset including:  
Internal Power−On Reset (VDD_POR)– The VDD_POR  
reset asserts when the regulated supply is below threshold  
levels for proper operation. The VDD_POR resets the  
entire chip including core, debug port, peripherals,  
wakeup timer, and watchdog.  
Software Issued Reset – The software reset can be called  
by writing to a given register in the Cortex address space.  
It is typically called on exit from a processor exception.  
Watchdog Timer Reset – The watchdog timer reset is  
caused by the watchdog timeout and is used to prevent  
errant software from locking up the device. The  
watchdog reset resets the entire chip including core,  
debug port, peripherals, and watchdog. The watchdog  
timer is disabled upon power up and must be enabled by  
software. The watchdog is paused when the debugger  
halts the processor.  
www.onsemi.com  
13  
FUSB15200  
32−bit Watchdog Timer (WDT)  
External Pin Reset – The external reset is under user  
control with the external RESET_N pin. External pin  
reset resets the entire chip including core, debug port,  
peripherals, wakeup timer, and watchdog  
The watchdog timer applies a reset to the system in the  
event of a software failure, providing a way to recover from  
software crashes. The watchdog timer is disabled by default  
and must be enabled through software.  
Power and Sleep Behavior  
The watchdog is protected with a lock mechanism to  
prevent rogue software from disabling the watchdog  
functionality. A special value has to be written to the lock  
register to access watchdog control.  
The FUSB15200 has been optimized to conserve power  
by utilizing peripheral interrupts and hardware autonomy.  
The device can be configured via firmware to enter low  
power states, disable unneeded peripherals and scale clock  
frequencies based on different application needs.  
The Type−C block is designed to function at the lowest  
power states and will automatically wake when a Type−C  
attach is detected. This minimizes total power consumption  
when no device is attached.  
Serial Wire Debug Interface (SWD)  
The ARM M0+ implementation includes a Debug Access  
Port (DAP).  
The debug mode implementation includes 4 hardware  
breakpoints and 2 hardware watch points.  
The Debug Access Port interface implementation is the  
ARM Serial Wire Debug Port (SW−DAP) connected to pins  
SWCLK and SWDIO. The Serial Wire Debug Port Interface  
uses a single bi−directional data connection. Each operation  
consists of three phases: Packet request, Acknowledge  
response, and Data transfer phase. Use any Serial Wire  
Debug (SWD) compliant hardware debugger interface to  
interact with the internals of the FUSB15200.  
Clock Sources  
FUSB15200’s implements a dual oscillator architecture to  
minimize power consumption.  
A 24 MHz internal RC oscillator to enable full  
functionality.  
A 120 kHz internal RC oscillator that can be used for very  
low power sleep modes.  
USB Type−C & PD Peripheral Overview  
Timers  
The USB Type−C and PD peripheral provides  
the building blocks to enable a fully compliant USB Type−C  
and PD solution.  
This peripheral consists of an analog front end and a  
digital state machine. Firmware implements higher level  
protocol and policy layers whereas the analog and digital  
components can perform lower level PD protocol and PHY  
layer functions.  
The Type−C block includes all terminations and  
comparators required for Source/Sink/DRP operation: plug  
orientation detection, power capability advertisement and  
power role detection.  
32−bit General Purpose Timers (TIM0/1)  
There are two 32−bit down−counters that can generate an  
interrupt request signal, status, when the counter reaches 0.  
The timing resolution depends on the programmable  
clock source and pre−scale ratios.  
32−bit Wake−up Timer (WUT)  
The main purpose of the wakeup timer is to facilitate  
scheduled exit from low power modes. It can also be used  
for general purpose event timing.  
www.onsemi.com  
14  
FUSB15200  
VCONN Switch  
VCONN  
Type−C Terminations  
CC1  
CC2  
VDD  
CC State Machine &  
Comparators  
LV REG  
USB PD PHY  
Timers  
ADC  
BMC  
Rcvr  
ARM  
M0+  
BMC  
DRIVER  
CRC32Tx  
4B5B  
BMC  
Encode  
SRAM  
6 KB  
Type−C  
CDR  
BMC  
Decode  
4B5B  
Flash  
132 KB  
USB PD  
CRC32Rx  
Figure 5. USB Type−C and PD  
VBUS Discharge  
VCONN Switch  
Some applications require that a VCONN voltage be  
sourced in order to provide additional capabilities, such as  
greater than 3 A VBUS sourcing or support for full−featured  
Type−C cables.  
The FUSB15200 can provide 1.5 W or more depending on  
VCONN level.  
The FUSB15200 is able to discharge VBUS via selectable  
pull−down resistors.  
Typical source applications will rely on the DC−DC  
converter to transition between VBUS voltages.  
If the application requires the FUSB15200 to discharge  
VBUS, the firmware may select the proper resistance of the  
discharge. Selection of discharge resistance needs to take  
into account any capacitive load on VBUS as not to violate  
VsrcSlewNeg in the USB PD spec (30 mV/ms).  
Source applications, where the FUSB15200 internal  
discharge is utilized, will have to isolate any large bulk  
capacitances in order to prevent extreme internal  
temperature rises. Typical isolated source capacitances are  
around 4.7 mF.  
USB PD PHY State Machine Logic  
The FUSB15200 PD module includes the following  
digital functions to enable USB PD messaging:  
Serialization and de−serialization  
Clock and data recovery (CDR)  
4B5B coding  
BMC coding  
The FUSB15200 is capable of discharging up to 100 mF  
from VBUS in the entire operating range.  
Packet CRC generation and checking  
Coding and detection of Power Delivery K−Codes  
Automatic GoodCRC packet response  
www.onsemi.com  
15  
FUSB15200  
Fast Role Swap  
Moisture detection can be turned on or off as not to  
conflict with cable attach detection.  
Fast Role Swap is the process of exchanging the Source  
and Sink roles between Port Partners rapidly due to the  
disconnection of an external power supply.  
+
The Fast Role Swap process is intended for use by a  
capable USB device that presently has an external power  
supply, and is providing power both through its downstream  
Ports to USB Devices and upstream to a USB Host such as  
a laptop. On removal of the external power supply Fast Role  
Swap enables a VBUS supply to be maintained by allowing  
the USB Host to apply vSafe5V after having detected Fast  
Role Swap signaling. The initial Source will signal a Fast  
Role Swap request by driving CC to ground with a resistance  
of less than rFRSwapTx for tFRSwapTx. The initial Source  
will only signal a Fast Role Swap when it has an Explicit  
Contract.  
VSRC_MOS  
RPU_MOS  
To ADC  
DP  
OVP  
Figure 6. Moisture Detection  
Port Control and GPIOs  
The FUSB15200 includes a number of pins that can be  
configured to be used as standard GPIO or for use with a  
2
dedicated peripheral such as I C. A subset of these pins can  
The FUSB15200 has dedicated I/Os (SRC_SNK_x and  
SNK) that can autonomously toggle when programmed to  
detect or transmit a fast role swap signal.  
also be connected as an input to the ADC. Internal  
pull−up/down resistors are programmable. Pull−up resistors  
are always connected to VDDIO.  
When the PORT is configured as GPIOs it will have the  
following capabilities:  
Bi−directional capability  
Internal Protection  
The FUSB15200 integrates multiple system level  
protections to enable robust designs.  
Push pull or open drain configuration  
Individually configurable interrupt lines  
Rising or Falling edge interrupt  
High or Low level interrupt  
VCONN Over−Current Protection  
Each port’s VCONN Switch provides over−current  
detection and protection for the switch that is enabled based  
on the Type−C orientation and can be software configured  
based on application needs. The level of OCP can be  
controlled via a register setting.  
NOTE:  
5. PA14 and PA20’s output supply is derived from an  
internal 3.0 V regulator to guarantee operation of sink  
path load switch in dead battery condition.  
6. GPIO3 and GPIO10 are Open−Drain and do not have  
pull−up resistance.  
In case of an over−current event the switch will be opened.  
CC Over−Voltage Protection  
Over−voltage protection on CC pins protects the internal  
circuitry damage from high voltages.  
Interrupts can be used to inform the software that an OVP  
event has occurred and take appropriate actions.  
VDDIO  
RPU  
Internal Over Temperature Protection  
Internal over temperature protection is always on. Two  
potential sources of elevated internal temperature are:  
PORT_PUx  
Analog  
High Current through VCONN Switch  
Peripheral  
GPIO  
MUX  
High current through VBUS discharge  
PAx  
In either case, if the over temperature is triggered (T >  
Tshut), both ports’ VCONN switches and VBUS discharge  
circuitry will be disabled.  
PORT_PDx  
PORT_CFGx  
Connector Moisture Detection  
RPD  
If moisture or pollutants are present in the connector and  
the device provides VBUS, there could be a resistive short  
between VBUS and other connector pins.  
GND  
The FUSB15200 provides a method to detect if there is  
moisture or other pollutants in the connector.  
Figure 7. Typical Port Configuration  
www.onsemi.com  
16  
FUSB15200  
Table 1. PIN − PORT CONFIGURATION AND POWER  
Table 1. PIN − PORT CONFIGURATION AND POWER  
DOMAIN  
DOMAIN (continued)  
Pin #  
Name  
SRC_SNK_N_A  
GPIO1  
Port  
Power Supply  
VDDIO  
VDDIO  
VDD  
Pin #  
Name  
I2C_SCL1  
GPIO10 (OD)  
I2C_SDA1  
GPIO11  
Port  
Power Supply  
VDD  
40  
PA1  
24  
PA10  
VDDIO  
VDD  
6
I2C_INT2  
GPIO2  
PA2  
25  
26  
PA11  
PA12  
VDDIO  
VDDIO  
VDD  
VDDIO  
SWD  
HPD_B  
Internal 3.0 V  
Regulator  
7
8
I2C_SDA2  
GPIO3 (OD)  
I2C_SCL2  
GPIO4  
PA3  
PA4  
PA5  
GPIO12  
GPIO13  
VDDIO  
VDDIO  
VDDIO  
VDD  
31  
32  
PA13  
PA14  
SRC_SNK_N_B  
GPIO14  
Output = Internal  
3.0 V Regulator  
Input = VDDIO  
VDDIO  
VDD  
13  
I2C_SDA4  
GPIO5  
33  
SNK_B  
PA15  
VDDIO  
VDDIO  
VDDIO  
VDD  
VDDIO  
VDDIO  
VDD  
GPIO15  
SWCK  
34  
35  
GPIO16  
PA16  
PA17  
14  
15  
16  
I2C_SCL4  
GPIO6  
PA6  
PA7  
PA8  
I2C_INT3  
GPIO17  
VDDIO  
VDD  
VDDIO  
VDD  
I2C_INT4  
GPIO7  
36  
37  
39  
I2C_SDA3  
GPIO18  
PA18  
PA19  
PA20  
VDDIO  
VDDIO  
VDD  
HPD_A  
Internal 3.0 V  
Regulator  
I2C_SCL3  
GPIO19  
GPIO8  
RESET_N  
I2C_INT1  
GPIO9  
VDDIO  
VDD  
VDDIO  
18  
23  
Input  
PA9  
SNK_A  
Output = Internal  
3.0 V Regulator  
Input = VDDIO  
VDD  
GPIO20  
VDDIO  
www.onsemi.com  
17  
FUSB15200  
Table 2. PORT DEFAULT CONFIGURATION  
Default Configuration  
on Power Up  
Analog  
Function  
Pin #  
40  
6
FUSB15200 Pin Name  
SRC_SNK_N_A/GPIO1  
I2C_INT2/GPIO2/SWD  
I2C_SDA2/GPIO3  
I2C_SCL2/GPIO4  
GPIO5/I2C_SDA4/SWCK  
GPIO6/I2C_SCL4  
GPIO7/I2C_INT4  
Port  
PA1  
I/O State  
Input Float  
Input  
NMI  
GPIO1  
SWD  
PA2  
7
PA3  
GPIO3 (OD)  
GPIO4  
Input Float  
Input Float  
Input  
8
PA4  
13  
14  
15  
16  
23  
24  
25  
26  
31  
32  
33  
34  
35  
36  
37  
39  
PA5  
SWCK  
PA6  
GPIO6  
Input Float  
Input Float  
Input Float  
Input Float  
Input Float  
Input Float  
Input Float  
Input  
PA7  
GPIO7  
Yes  
HPD_A/GPIO8  
PA8  
GPIO8  
I2C_INT1/GPIO9  
PA9  
GPIO9  
I2C_SCL1/GPIO10  
I2C_SDA1/GPIO11  
HPD_B/GPIO12  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
GPIO10 (OD)  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
I2C_SDA  
I2C_SCL  
GPIO20  
GPIO13  
Yes  
Yes  
Yes  
SRC_SNK_N_B/GPIO14  
SNK_B/GPIO15/NTC_B  
GPIO16  
Input Float  
Input Float  
Input  
Yes  
Yes  
I2C_INT3/GPIO17  
I2C_SDA3/GPIO18  
I2C_SCL3/GPIO19  
SNK_A/GPIO20/NTC_A  
Input Float  
Input  
Input  
Input Float  
Non−Maskable Interrupts (NMI)  
DP Receiver Behavior  
The FUSB15200 provides a method of selecting one of  
four GPIOs that can be used as a source of an external  
non−maskable interrupt. (See table 2)  
If a non−maskable external interrupt is not required, all  
GPIOs provide a method to interrupt the processor. In this  
case, the Brown−Out detector can be assigned to the NMI  
slot of the interrupt controller.  
When the FUSB15200 is implemented in a DP Receiver,  
the HPD I/O is setup as an input. Debounce timers  
implemented in HW facilitates HPD IRQ and Level  
detection. Please see HPD_Rx in Electrical Specifications.  
DP Source Behavior  
When the FUSB15200 is implemented in a DP Source, the  
HPD I/O is setup as an Output.  
The HPD output will be driven by the firmware. HPD IRQ  
pulsewidth timer is implemented in hardware, see HPD_Tx  
in Electrical Specifications.  
The port mapping, power domain and default  
configuration are shown in the Table 2.  
HPD I/Os  
HPD I/Os are used in DisplayPort (DP) applications to  
signal events between the DP Source and DP Receiver.  
The FUSB15200 HPD I/Os can be configured as an input  
(DP receiver) or Output (DP Source).  
The HPD I/Os supply is derived from an internal 3.0 V  
regulator to guarantee levels in all conditions.  
If the application does not have external pull−down  
resistors as required by the VESA spec, internal pull downs  
can be enabled via the PORT interface. When the HPD  
peripheral is enabled, an additional resistance is added to the  
PORT’s pull−down to achieve the minimum 100 kOhm  
required (See figure 8 below).  
www.onsemi.com  
18  
 
FUSB15200  
VCORE  
3.0 V Reg  
HPD Peripheral  
VDDIO  
RPU  
Digital Logic  
HPD_IRQ  
Detector  
Debounce  
Logic  
PORT_PUx  
PORT_PDx  
HPD_IRQ  
Generator  
HPD_A/GPIO8  
or  
HPD_B/GPIO12  
MUX  
VDDIO  
GPIO  
RPD  
HPD_RPD  
HPD_EN  
PORT_CFGx  
GND  
Figure 8. HPD I/O Configuration  
External Temperature Measurements  
There are two pins that can be configured to monitor  
external NTC resistors that can be located near where high  
temperature devices are located. A parallel resistor is  
recommended for measurement linearity.  
These NTC measurements are useful for monitoring  
temperatures for protection due to excessive thermals.  
Firmware implementation of the external temperature  
measurements make NTC selection flexible.  
The pull−up current sources INTCA and INTCB provide  
a bias to the external NTC resistor networks. If desired, this  
current source may be turned−off.  
INTCA  
+
ADC_CH3  
NTC_A/GPIO8  
MUX  
GPIO  
R_PAR  
R_NTC  
PORT_CONFIG  
INTCB  
+
ADC_CH7  
NTC_B/GPIO4  
R_NTC  
MUX  
GPIO  
R_PAR  
PORT_CONFIG  
Figure 9. External NTC Diagram  
www.onsemi.com  
19  
FUSB15200  
BC1.2 Support  
The FUSB15200 is capable of emulating and detecting  
BC1.2 and Divider Mode.  
I2C  
2
The FUSB15200’s four I C serial interfaces are  
compatible with Standard, Fast, and Fast Mode Plus I2C bus  
specifications. The I C peripheral can be configured for  
2
The following modes are supported:  
either host or device modes.  
SDP  
CDP  
DCP  
Bus Timing  
As shown in figure below, for data bits, SDA must be  
stable while SCL is HIGH. SDA may only transition when  
SCL is LOW. Data is clocked in on the rising edge of SCL.  
Typically, data transitions shortly at or after the falling edge  
of SCL to allow ample time for the data to set up before the  
next SCL rising edge.  
2.4 A Divider Mode (Provider only)  
The analog circuitry is firmware configurable for the  
function required by the application and follows the final  
BC1.2 specification.  
Figure 10. I2C Bus Timing Definition  
Each bus transaction begins and ends with SDA and SCL  
HIGH. A transaction begins with a START condition, which  
is defined as SDA transitioning from 1 to 0 with SCL HIGH.  
A transaction ends with a STOP condition, which is  
defined as SDA transitioning from 0 to 1 with SCL HIGH.  
During a read from the FUSB15200, the host issues a  
Repeated Start after sending a data command and before  
resending the device address. The Repeated Start is a 1−to−0  
transition on SDA while SCL is HIGH.  
2
7. Bus timing referenced from I C−bus specification Rev. 6 – 4 April 2014  
www.onsemi.com  
20  
FUSB15200  
ADC  
The FUSB15200 allows for up to 12 signals to be  
measured and converted using the internal 10−bit ADC. For  
most applications, this will consist of two VBUS voltages,  
two NTC temperature channels, two D+/D− BC1.2 and,  
optionally, two CC1/2 ports. The table below shows the  
typical FUSB15200 configuration along with the expected  
settings for the ADC module.  
Table 3. ADC CONFIGURATION ADC CHANNEL  
ADC Channel  
Pin Measurement  
Resolution  
10 mV  
20 mV  
40 mV  
4 mV  
Range  
Full Scale Voltage  
1.024 V  
2.048 V  
4.096 V  
4.096 V  
4.096 V  
1.28 V  
0
VBUS_A  
0 V to 10.23 V  
0 V to 20.46 V  
0 V to 40.92 V  
0 V to 4.096 V  
0 V to 4.096 V  
0°C to 160°C  
0 V to 4.096 V  
0 V to 4.096 V  
0 V to 10.23 V  
0 V to 20.46 V  
0 V to 40.92 V  
0 V to 4.096 V  
0 V to 4.096 V  
0°C to 160°C  
0 V to 4.096 V  
0 V to 4.096 V  
1
2
3
4
5
6
DP_A  
DM_A  
4 mV  
NTC1 Temperature  
HVCC1_A  
HVCC2_A  
VBUS_B  
1°C  
4 mV  
4.096 V  
4.096 V  
1.024 V  
2.048 V  
4.096 V  
4.096 V  
4.096 V  
1.28 V  
4 mV  
10 mV  
20 mV  
40 mV  
4 mV  
7
8
DP_B  
DM_B  
4 mV  
9
NTC2 Temperature  
HVCC1_B  
1°C  
10  
11  
4 mV  
4.096 V  
4.096 V  
HVCC2_B  
4 mV  
Development Tools  
Specifications References  
FUSB15200 is supported by a full suite of comprehensive  
tools including:  
Universal Serial Bus Power Delivery specification  
revision 3.1 Version 1.3, dated January 2022  
An easy−to−use development board  
Software Development Kit (SDK) including:  
USB PD protocol stacks, shared capacity algorithms,  
sample code, libraries, and documentation  
Universal Serial Bus Type C Cable and Connection  
Specification release 2.1, dated May 2021  
USB Battery Charging Specification, revision 1.2, dated  
December 7, 2010  
I2C−bus specification Rev. 6 – 4 April 2014  
Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. DisplayPort is registered trademark owned by the  
2
Video Electronics Standards Association (VESA®) in the United States and other countries. onsemi is licensed by the Philips Corporation to carry the I C  
bus protocol.  
www.onsemi.com  
21  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
QFN40 5x5, 0.4P  
CASE 485CR  
ISSUE C  
DATE 27 AUG 2013  
1
40  
SCALE 2:1  
NOTES:  
L2  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30mm FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
LOCATION  
L2  
DETAIL A  
E
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
L
L
A
A1  
A3  
b
0.80  
−−−  
0.15  
C
0.20 REF  
L1  
0.15  
0.25  
0.15  
C
D
D2  
E
E2  
e
L
5.00 BSC  
TOP VIEW  
3.40  
3.60  
DETAIL A  
5.00 BSC  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
3.40  
3.60  
DETAIL B  
(A3)  
0.40 BSC  
0.10  
0.08  
C
C
0.30  
−−−  
0.50  
0.15  
A
L1  
L2  
EXPOSED Cu  
MOLD CMPD  
0.12 REF  
A1  
SEATING  
PLANE  
NOTE 4  
C
SIDE VIEW  
GENERIC  
MARKING DIAGRAM*  
DETAIL B  
ALTERNATE  
M
0.10  
C
A
B
1
CONSTRUCTION  
D2  
DETAIL A  
XXXXXXXX  
XXXXXXXX  
AWLYYWWG  
G
11  
M
0.10  
C A B  
21  
E2  
XXXXX = Specific Device Code  
1
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
40  
WL  
YY  
WW  
G
40X b  
40X  
L
e
M
M
0.10  
C
C
A B  
e/2  
BOTTOM VIEW  
0.05  
NOTE 3  
(Note: Microdot may be in either location)  
RECOMMENDED  
SOLDERING FOOTPRINT  
*This information is generic. Please refer  
to device data sheet for actual part  
marking.  
5.30  
40X  
0.63  
PbFree indicator, “G” or microdot “ G”,  
3.64  
may or may not be present.  
1
5.30  
3.64  
PKG  
OUTLINE  
40X  
0.25  
0.40  
PITCH  
DIMENSIONS: MILLIMETERS  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON83971E  
QFN40, 5x5, 0.4P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY