FXLA104UM12X [ONSEMI]

低电压双电源 4 位电压转换器;
FXLA104UM12X
型号: FXLA104UM12X
厂家: ONSEMI    ONSEMI
描述:

低电压双电源 4 位电压转换器

转换器
文件: 总19页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
FXLA104  
Low-Voltage Dual-Supply 4-Bit Voltage Translator with  
Configurable Voltage Supplies and Signal Levels,  
3-State Outputs, and Auto Direction Sensing  
Features  
Description  
.
Bi-Directional Interface between Two Levels:  
from 1.1V to 3.6V  
The FXLA104 is a configurable dual-voltage supply  
translator for both uni-directional and bi-directional  
voltage translation between two logic levels. The device  
allows translation between voltages as high as 3.6V to  
as low as 1.1V. The A port tracks the VCCA level and the  
B port tracks the VCCB level. This allows for bi-directional  
voltage translation over a variety of voltage levels: 1.2V,  
1.5V, 1.8V, 2.5V, and 3.3V.  
.
.
Fully Configurable: Inputs and Outputs Track VCC  
Non-Preferential Power-Up; Either VCC May Be  
Powered Up First  
.
.
.
Outputs Switch to 3-State if Either VCC is at GND  
Power-Off Protection  
The device remains in three-state as long as either  
Bus-Hold on Data Inputs Eliminates the Need for  
Pull-Up Resistors; Do Not Use Pull-Up Resistors on  
A or B Ports  
VCC=0V, allowing either VCC to be powered up first.  
Internal power-down control circuits place the device in  
3-state if either VCC is removed.  
.
.
Control Input (/OE) Referenced to VCCA Voltage  
The /OE input, when HIGH, disables both the A and B  
ports by placing them in a 3-state condition. The /OE  
Available in 16-Terminal UMLP (1.8mm x 2.6mm)  
and 12-Terminal, Quad UMLP, 1.8 x 1.8mm  
Packages  
input is supplied by VCCA  
.
The FXLA104 supports bi-directional translation without  
the need for a direction control pin. The two ports of the  
device have auto-direction sense capability. Either port  
may sense an input signal and transfer it as an output  
signal to the other port.  
.
.
Direction Control Not Necessary  
100Mbps Throughput when Translating Between  
1.8V and 2.5V  
.
ESD Protection Exceeds:  
- 8kV HBM (per JESD22-A114 & Mil Std 883e  
3015.7)  
- 2kV CDM (per ESD STM 5.3)  
Applications  
.
Cell Phone, PDA, Digital Camera, Portable GPS  
Ordering Information  
Operating  
Part Number Temperature Top Mark  
Range  
Packing  
Package  
Method  
FXLA104UMX  
XJ  
XJ  
16-Terminal UMLP 1.8 x 2.6mm Package  
12-Terminal, Quad UMLP, 1.8 x 1.8mm Package  
5K Units Tape  
and Reel  
-40 to 85°C  
FXLA104UM12X  
Publication Order Number:  
© 2009 Semiconductor Components Industries, LLC.  
September-2017, Rev. 2  
FXLA104 /D  
Pin Configuration  
B0 B1 B2 B3  
12  
11  
10  
9
13  
14  
15  
8
7
VCCB  
/OE  
GND  
GND  
NC  
NC  
6
5
VCCA  
NC  
16  
1
2
3
4
A0 A1 A2 A3  
Figure 1. 16-Pin UMLP (Top Through View)  
Figure 2. 12-Pin UMLP (Top Through View)  
Pin Definitions  
16 Pin #  
12 Pin #  
Name  
A0  
Description  
1
2
3
4
5
6
A-Side Inputs or 3-State Outputs  
A-Side Inputs or 3-State Outputs  
A-Side Inputs or 3-State Outputs  
A-Side Inputs or 3-State Outputs  
No Connect  
A1  
3
A2  
4
A3  
5
NC  
GND  
/OE  
B3  
6,7  
8
7
8
Ground  
Output Enable Input  
9
9
B-Side Inputs or 3-State Outputs  
B-Side Inputs or 3-State Outputs  
B-Side Inputs or 3-State Outputs  
B-Side Inputs or 3-State Outputs  
B-Side Power Supply  
10  
11  
12  
13  
14,15  
16  
10  
11  
12  
1
B2  
B1  
B0  
VCCB  
NC  
VCCA  
No Connect  
2
A-Side Power Supply  
www.onsemi.com  
2
Functional Diagram  
Figure 3. Functional Diagram  
Function Table  
Control  
Outputs  
/OE  
LOW Logic Level  
HIGH Logic Level  
Normal Operation  
3-State  
www.onsemi.com  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
Parameter  
Conditions  
Min.  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
Max.  
4.6  
Unit  
VCCA  
VCCB  
VCC  
Supply Voltage  
V
4.6  
I/O Ports A and B  
Control Input (/OE)  
Output 3-State  
Output Active (An)  
Output Active (Bn)  
VIN<0V  
4.6  
VI  
DC Input Voltage  
Output Voltage(2)  
V
V
4.6  
4.6  
VO  
VCCA +0.5  
VCCB +0.5  
-50  
IIK  
DC Input Diode Current  
mA  
mA  
VO<0V  
-50  
IOK  
DC Output Diode Current  
VO>VCC  
+50  
IOH/IOL  
ICC  
DC Output Source/Sink Current  
-50  
-65  
+50  
mA  
mA  
°C  
DC VCC or Ground Current (per Supply Pin)  
Storage Temperature Range  
Power Dissipation  
±100  
+150  
17  
TSTG  
PD  
mW  
Human Body Model (per JESD22-  
A114 & Mil Std 883e 3015.7)  
8
2
Electrostatic Discharge  
Capability  
ESD  
kV  
Charged Device Model  
(per ESD STM 5.3)  
Notes:  
1. IO absolute maximum ratings must be observed.  
2. All unused inputs and input/outputs must be held at VCCi or GND.  
Symbol  
Parameter  
Conditions  
Operating VCCA or VCCB  
Ports A and B  
Min.  
1.1  
0
Max.  
3.6  
Unit  
V
VCC  
Power Supply  
3.6  
V
VIN  
Input Voltage  
Control Input (/OE)  
0
VCCA  
+85  
10  
V
TA  
Operating Temperature, Free Air  
Minimum Input Edge Rate  
-40  
°C  
ns/V  
dt/dV  
VCCA/B = 1.1 to 3.6V  
UMLP-16  
315  
300  
155  
165  
Thermal Resistance:  
Junction-to-Ambient  
°C/W  
°C/W  
ΘJA  
ΘJC  
UMLP-12  
UMLP-16  
Thermal Resistance:  
Junction-to-Case  
UMLP-12  
www.onsemi.com  
4
Power-Up/Power-Down Sequence  
FXL translators offer an advantage in that either VCC  
may be powered up first. This benefit derives from the  
chip design. When either VCC is at 0V, outputs are in a  
high-impedance state. The control input (/OE) is  
designed to track the VCCA supply. A pull-up resistor  
tying /OE to VCCA should be used to ensure that bus  
contention, excessive currents, or oscillations do not  
occur during power-up or power-down. The size of the  
pull-up resistor is based upon the current-sinking  
capability of the device driving the /OE pin.  
The recommended power-down sequence is:  
1. Drive /OE input HIGH to disable the device.  
2. Remove power from either VCC  
.
3. Remove power from other VCC.  
Pull-Up/Pull-Down Resistors  
Do not use pull-up or pull-down resistors. This device  
has bus-hold circuits: pull-up or pull-down resistors are  
not recommended because they interfere with the  
output state. The current through these resistors may  
exceed the hold drive, II(HOLD) and/or II(OD) bus-hold  
currents, resulting in data transition and/or auto-  
direction sensing failures. The bus-hold feature  
eliminates the need for extra resistors.  
The recommended power-up sequence is:  
1. Apply power to the first VCC  
2. Apply power to the second VCC  
3. Drive the /OE input LOW to enable the device.  
.
.
www.onsemi.com  
5
DC Electrical Characteristics  
TA=-40 to 85°C  
Symbol  
Parameter  
Conditions  
VCCA (V)  
2.70 to 3.60  
2.30 to 2.70  
VCCB (V)  
Min.  
2.00  
1.60  
Typ. Max. Units  
Data Inputs An  
Control Pin /OE  
VIHA  
1.65 to 2.30 1.10 to 3.60 .65xVCCA  
V
1.40 to 1.65  
1.10 to 1.40  
.65xVCCA  
.90xVCCA  
2.00  
High-Level Input Voltage  
2.70 to 3.60  
2.30 to 2.70  
1.60  
VIHB  
VILA  
VILB  
Data Inputs Bn  
1.10 to 3.60 1.65 to 2.30 .65xVCCB  
1.40 to 1.65 .65xVCCB  
1.10 to 1.40 .90xVCCB  
2.70 to 3.60  
V
.80  
.70  
2.30 to 2.70  
Data Inputs An  
Control Pin /OE  
1.65 to 2.30 1.10 to 3.60  
1.40 to 1.65  
.35xVCCA  
.35xVCCA  
.10xVCCA  
.80  
V
V
1.10 to 1.40  
Low-Level Input Voltage  
2.70 to 3.60  
2.30 to 2.70  
.70  
Data Inputs Bn  
1.10 to 3.60 1.65 to 2.30  
1.40 to 1.65  
.35xVCCB  
.35xVCCB  
.10xVCCB  
1.10 to 1.40  
VOHA  
VOHB  
VOLA  
VOLB  
I
OH=-4µA  
1.10 to 3.60 1.10 to 3.60 VCCA -.4  
1.10 to 3.60 1.10 to 3.60 VCCB - .4  
1.10 to 3.60 1.10 to 3.60  
1.10 to 3.60 1.10 to 3.60  
High-Level Output  
Voltage(3)  
V
V
IOH=-4µA  
IOL=4µA  
.4  
.4  
Low-Level Output  
Voltage(3)  
IOL=4µA  
VIN=0.8V  
VIN=2.0V  
VIN=0.7V  
VIN=1.6V  
VIN=0.57V  
VIN=1.07V  
VIN=0.49V  
VIN=0.91V  
VIN=0.11V  
VIN=0.99V  
3.00  
3.00  
2.30  
2.30  
1.65  
1.65  
1.40  
1.40  
1.10  
1.10  
3.00  
3.00  
2.30  
2.30  
1.65  
1.65  
1.40  
1.40  
1.10  
1.10  
75.0  
-75.0  
45.0  
-45.0  
25.0  
-25.0  
11.0  
-11.0  
Bus-Hold Input Minimum  
Drive Current  
II(HOLD)  
µA  
4.0  
-4.0  
Note:  
3. This is the output voltage for static conditions. Dynamic drive specifications are given in the Dynamic Output  
Electrical Characteristics table.  
Continued on following page…  
www.onsemi.com  
6
DC Electrical Characteristics (Continued)  
TA=-40 to 85°C.  
Symbol  
Parameter  
Conditions  
VCCA (V)  
3.60  
VCCB (V)  
3.60  
Min.  
450.0  
300.0  
200.0  
120.0  
80.0  
Max. Units  
2.70  
2.70  
Bus-Hold Input  
Overdrive High  
Current(4)  
II(ODH)  
Data Inputs An, Bn  
1.95  
1.95  
µA  
1.60  
1.60  
1.40  
1.40  
3.60  
3.60  
-450.0  
-300.0  
-200.0  
-120.0  
-80.0  
2.70  
2.70  
Bus-Hold Input  
Overdrive Low  
Current(5)  
II(ODL)  
Data Inputs An, Bn  
1.95  
1.95  
µA  
1.60  
1.60  
1.40  
1.40  
Control Inputs /OE,  
VI=VCCA or GND  
II  
Input Leakage Current  
1.10 to 3.60  
3.60  
±1.0  
µA  
µA  
An VO=0V to 3.6V  
Bn VO=0V to 3.6V  
0
3.60  
0
±2.0  
±2.0  
Power-Off Leakage  
Current  
IOFF  
3.60  
An, Bn VO=0V or 3.6V,  
/OE=VIH  
3.60  
3.60  
0
3.60  
0
±5.0  
±5.0  
±5.0  
10.0  
10.0  
3-State Output  
Leakage  
An VO=0V or 3.6V,  
/OE=GND  
IOZ  
µA  
Bn VO=0V or 3.6V,  
/OE=GND  
3.60  
VI=VCCI or GND; IO=0,  
/OE=GND  
ICCA/B  
ICCZ  
1.10 to 3.60 1.10 to 3.60  
1.10 to 3.60 1.10 to 3.60  
µA  
µA  
Quiescent Supply  
Current(6, 7)  
VI=VCCI or GND; IO=0,  
/OE=VIH  
VI=VCCB or GND; IO=0  
B-to-A Direction,  
/OE=GND  
0
1.10 to 3.60  
-10.0  
10.0  
-10.0  
10.0  
ICCA  
µA  
µA  
VI=VCCA or GND; IO=0  
A-to-B Direction  
1.10 to 3.60  
1.10 to 3.60  
0
0
Quiescent Supply  
Current  
VI=VCCA or GND; IO=0,  
A-to-B Direction,  
/OE=GND  
0
ICCB  
VI=VCCB or GND; IO=0  
B-to-A Direction  
1.10 to 3.60  
Notes:  
4. An external drive must source at least the specified current to switch LOW-to-HIGH.  
5. An external drive must source at least the specified current to switch HIGH-to-LOW.  
6. VCCI is the VCC associated with the input side.  
7. Reflects current per supply, VCCA or VCCB  
.
www.onsemi.com  
7
Dynamic Output Electrical Characteristic  
A Port (An)  
Output Load: CL=15pF, RL MΩ (CI/O=4pF), TA=-40 to 85°C  
VCCA=3.0V  
to 3.6V  
VCCA=2.3V  
to 2.7V  
VCCA=1.65V  
to 1.95V  
VCCA=1.4V  
to 1.6V  
VCCA=1.1V  
to 1.3V  
Symbol Parameter  
Units  
Typ. Max. Typ. Max. Typ. Max Typ. Max.  
Typ.  
Output Rise  
trise  
3.0  
3.5  
4.0  
5.0  
7.5  
ns  
ns  
Time A Port(9)  
Output Fall  
tfall  
Time A  
3.0  
3.5  
4.0  
5.0  
7.5  
Port(10)  
Dynamic  
Output  
Current  
High(9)  
IOHD  
-11.4  
-7.5  
-4.7  
-3.2  
-1.7  
mA  
mA  
Dynamic  
Output  
IOLD  
+11.4  
+7.5  
+4.7  
+3.2  
+1.7  
Current  
Low(10)  
B Port (Bn)  
Output Load: CL=15pF, RL MΩ (CI/O=5pF), TA=-40 to 85°C  
VCCB=3.0V  
to 3.6V  
VCCB=2.3V  
to 2.7V  
VCCB=1.65V  
to 1.95V  
VCCB=1.4V  
to 1.6V  
VCCB=1.1V  
to 1.3V  
Symbol Parameter  
Units  
Typ. Max. Typ. Max. Typ. Max Typ. Max.  
Typ.  
Output Rise  
trise  
3.0  
3.5  
4.0  
5.0  
7.5  
ns  
ns  
Time B Port(9)  
Output Fall  
tfall  
Time B  
3.0  
3.5  
4.0  
5.0  
7.5  
Port(10)  
Dynamic  
Output  
Current  
High(9)  
IOHD  
-12.0  
-7.9  
-5.0  
-3.4  
-1.8  
mA  
mA  
Dynamic  
Output  
IOLD  
+12.0  
+7.9  
+5.0  
+3.4  
+1.8  
Current  
Low(10)  
Notes:  
8. Dynamic output characteristics are guaranteed, but not tested.  
9. See Figure 8.  
10. See Figure 9.  
www.onsemi.com  
8
AC Characteristics  
VCCA = 3.0V to 3.6V, TA=-40 to 85°C  
VCCB=3.0V  
to 3.6V  
VCCB=2.3V  
to 2.7V  
VCCB=1.65V  
to 1.95V  
VCCB=1.4V  
to 1.6V  
VCCB=1.1V  
to 1.3V  
Symbol Parameter  
Units  
Min. Max. Min. Max. Min. Max Min. Max.  
Typ.  
6.9  
A to B  
B to A  
0.2  
0.2  
4.0  
4.0  
0.3  
0.2  
4.2  
4.1  
0.5  
0.3  
5.4  
5.0  
0.6  
0.5  
6.8  
6.0  
ns  
ns  
tPLH,tPHL  
4.5  
/OE to A,  
/OE to B  
tPZL,tPZH  
tSKEW  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
1.0  
1.7  
1.0  
µs  
ns  
A Port,  
B Port(11)  
VCCA = 2.3V to 2.7V, TA=-40 to 85°C  
VCCB=3.0V  
VCCB=2.3V  
to 2.7V  
VCCB=1.65V  
to 1.95V  
VCCB=1.4V  
to 1.6V  
VCCB=1.1V  
to 1.3V  
to 3.6V  
Symbol Parameter  
Units  
Min. Max. Min. Max. Min. Max Min. Max.  
Typ.  
7.0  
A to B  
B to A  
0.2  
0.3  
4.1  
4.2  
0.4  
0.4  
4.5  
4.5  
0.5  
0.5  
5.6  
5.5  
0.8  
0.5  
6.9  
6.5  
ns  
ns  
tPLH,tPHL  
4.8  
/OE to A,  
/OE to B  
tPZL,tPZH  
tSKEW  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
1.0  
1.7  
1.0  
µs  
ns  
A Port,  
B Port(11)  
VCCA = 1.65V to 1.95V, TA=-40 to 85°C  
VCCB=3.0V  
VCCB=2.3V  
to 2.7V  
VCCB=1.65V  
to 1.95V  
VCCB=1.4V  
to 1.6V  
VCCB=1.1V  
to 1.3V  
to 3.6V  
Symbol Parameter  
Units  
Min. Max. Min. Max. Min. Max Min. Max.  
Typ.  
7.5  
A to B  
B to A  
0.3  
0.5  
5.0  
5.4  
0.5  
0.5  
5.5  
5.6  
0.8  
0.8  
6.7  
6.7  
0.9  
1.0  
7.5  
7.0  
ns  
ns  
tPLH,tPHL  
tPZL,tPZH  
5.4  
/OE to A,  
/OE to B  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
1.0  
1.7  
1.0  
µs  
ns  
A Port,  
tSKEW  
Note:  
B Port(11)  
11. Skew is the variation of propagation delay between output signals and applies only to output signals on the  
same port (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 11).  
Skew is guaranteed, but not tested.  
www.onsemi.com  
9
AC Characteristics (Continued)  
VCC=1.4V to 1.6V, TA=-40 to 85°C  
VCCB=3.0V  
to 3.6V  
VCCB=2.3V  
to 2.7V  
VCCB=1.65V  
to 1.95V  
VCCB=1.4V  
to 1.6V  
VCCB=1.1V  
to 1.3V  
Symbol Parameter  
Units  
Min. Max. Min. Max. Min. Max Min. Max.  
Typ.  
7.9  
A to B  
B to A  
0.5  
0.6  
6.0  
6.8  
0.5  
0.8  
6.5  
6.9  
1.0  
0.9  
7.0  
7.5  
1.0  
1.0  
8.5  
8.5  
ns  
ns  
tPLH,tPHL  
6.1  
/OE to A,  
/OE to B  
tPZL,tPZH  
tSKEW  
1.7  
1.0  
1.7  
1.0  
1.7  
1.0  
1.7  
1.0  
1.7  
1.0  
µs  
ns  
A Port,  
B Port(12)  
VCCA=1.1V to 1.3V, TA=-40 to 85°C  
VCCB=3.0V VCCB=2.3V VCCB=1.65V VCCB=1.4V VCCB=1.1V  
to 3.6V  
to 2.7V  
to 1.95V  
to 1.6V  
to 1.3V  
Symbol  
Parameter  
Units  
Typ.  
4.6  
Typ.  
4.8  
Typ.  
5.4  
Typ.  
6.2  
Typ.  
9.2  
A to B  
B to A  
ns  
ns  
µs  
ns  
tPLH,tPHL  
6.8  
7.0  
7.4  
7.8  
9.1  
tPZL,tPZH /OE to A, /OE to B  
tSKEW  
A Port, B Port(12)  
Note:  
1.7  
1.7  
1.7  
1.7  
1.7  
1.0  
1.0  
1.0  
1.0  
1.0  
12. Skew is the variation of propagation delay between output signals and applies only to output signals on the  
same port (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 11).  
Skew is guaranteed, but not tested.  
www.onsemi.com  
10  
Maximum Data Rate(13, 14)  
TA=-40 to 85°C  
VCCB=3.0V  
to 3.6V  
VCCB=2.3V  
to 2.7V  
VCCB=1.65V  
to 1.95V  
VCCB=1.4V VCCB=1.1V to  
to 1.6V  
Min.  
80  
1.3V  
Typ.  
40  
VCCA  
Units  
Min.  
Min.  
120  
120  
100  
80  
Min.  
100  
100  
80  
VCCA=3.00V to 3.60V  
VCCA=2.30V to 2.70V  
VCCA=1.65V to 1.95V  
VCCA=1.40V to 1.60V  
140  
120  
100  
80  
Mbps  
Mbps  
Mbps  
Mbps  
80  
40  
60  
40  
60  
60  
40  
Typ.  
Typ.  
Typ.  
Typ.  
Typ.  
VCCA=1.10V to 1.30V  
40  
40  
40  
40  
40  
Mbps  
Notes:  
13. Maximum data rate is guaranteed, but not tested.  
14. Maximum data rate is specified in megabits per second (see Figure 10). It is equivalent to two times the  
F-toggle frequency, specified in megahertz. For example, 100Mbps is equivalent to 50MHz.  
Capacitance  
TA=+25°C  
Typical  
Symbol  
CIN  
Parameter  
Conditions  
Units  
pF  
Input Capacitance Control Pin (/OE) VCCA=VCCB=GND  
An  
3
4
CI/O  
Input/Output Capacitance  
VCCA=VCCB=3.3V, /OE=VCCA  
pF  
Bn  
Power Dissipation Capacitance  
5
Cpd  
VCCA=VCCB=3.3V, VI=0V or VCC, f=10MHz  
25  
pF  
www.onsemi.com  
11  
I/O Architecture Benefit  
The FXLA104 I/O architecture benefits the end user,  
beyond level translation, in the following three ways:  
hold.” “Static Mode” is when only the bus hold drives the  
channel. The bus hold can be over ridden in the event  
of a direction change. The strong driver allows the  
FXLA104 to quickly charge and discharge capacitive  
transmission lines during dynamic mode. Static mode  
conserves power, where ICC is typically < 5µA.  
Auto Direction without an external direction pin.  
Drive Capacitive Loads. Automatically shifts to a  
higher current drive mode only during “Dynamic Mode”  
or HL / LH transitions.  
Bus Hold Minimum Drive Current  
Lower Power Consumption. Automatically shifts to  
low-power mode during “Static Mode” (no transitions),  
lowering power consumption.  
Specifies the minimum amount of current the bus hold  
driver can source/sink. The bus hold minimum drive  
current (IIHOLD) is VCC dependent and guaranteed in the  
DC Electrical tables. The intent is to maintain a valid  
output state in a static mode, but that can be overridden  
when an input data transition occurs.  
The FXLA104 does not require a direction pin. Instead,  
the I/O architecture detects input transitions on both  
side and automatically transfers the data to the  
corresponding output. For example, for a given channel,  
if both A and B side are at a static LOW, the direction  
has been established as A B, and a LH transition  
occurs on the B port; the FXLA104 internal I/O  
architecture automatically changes direction from A B  
to B A.  
Bus Hold Input Overdrive Drive Current  
Specifies the minimum amount of current required (by  
an external device) to overdrive the bus hold in the  
event of a direction change. The bus hold overdrive  
(IIODH, IIODL) is VCC dependent and guaranteed in the DC  
Electrical tables.  
During HL / LH transitions, or “Dynamic Mode,” a strong  
output driver drives the output channel in parallel with a  
Dynamic Output Current  
The strength of the output driver during LH / HL  
transitions is referenced on page 8, Dynamic Output  
weak output driver. After  
a
typical delay of  
approximately 10ns – 50ns, the strong driver is turned  
off, leaving the weak driver enabled for holding the logic  
state of the channel. This weak driver is called the “bus  
Electrical Characteristics, IOHD, and IOLD  
.
www.onsemi.com  
12  
Test Diagrams  
V
CC  
TEST  
DUT  
SIGNAL  
C1  
R1  
Figure 4. Test Circuit  
Table 1.  
AC Test Conditions  
Test  
tPLH, tPHL  
tPZL  
Input Signal  
Data Pulses  
0V  
Output Enable Control  
0V  
HIGH to LOW Switch  
HIGH to LOW Switch  
tPZH  
VCCI  
Table 2.  
AC Load  
VCCo  
C1  
R1  
15pF  
15pF  
15pF  
15pF  
15pF  
1.2V 0.1V  
1.5V 0.1V  
1.8V 0.15V  
2.5V 0.2V  
3.3V 0.3V  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
1MΩ  
V
CCI  
DATA  
IN  
V
mi  
V
GND  
t
t
pxx  
pxx  
V
CCO  
DATA  
OUT  
mo  
Figure 5. Waveform for Inverting and Non-Inverting Functions  
Notes:  
15. Input tR = tF = 2.0ns, 10% to 90%.  
16. Input tR = tF = 2.5ns, 10% to 90%, at VI = 3.0V to 3.6V only.  
www.onsemi.com  
13  
Figure 6. 3-State Output Low Enable Time for Low Voltage Logic  
Notes:  
17. Input tR = tF = 2.0ns, 10% to 90%.  
18. Input tR = tF = 2.5ns, 10% to 90%, at VI = 3.0V to 3.6V only.  
Figure 7. 3-State Output High Enable Time for Low Voltage Logic  
Notes:  
19. Input tR = tF = 2.0ns, 10% to 90%.  
20. Input tR = tF = 2.5ns, 10% to 90%, at VI = 3.0V to 3.6V only.  
Table 3.  
Test Measure Points  
Symbol  
VDD  
(21)  
VMI  
VCCI /2  
VCCo /2  
VMO  
VX  
VY  
0.9 x VCCo  
0.1 x VCCo  
Note:  
21. VCCI=VCCA for control pin /OE or VMI(VCCA/2).  
www.onsemi.com  
14  
t
rise  
V
OH  
80% x V  
CCO  
VOUT  
20% x V  
Time  
CCO  
V
OL  
ΔVOUT  
Δt  
(20% 80%) VCCO  
IOHD (CL + CI /O )×  
= (CL + CI /O )×  
tRISE  
Figure 8. Active Output Rise Time and Dynamic Output Current High  
V
OH  
t
fall  
80% x V  
CCO  
VOUT  
20% x V  
CCO  
V
OL  
Time  
= (CL + CI /O )×  
ΔVOUT  
Δt  
(80% 20%)VCCO  
IOLD (CL +CI /O )×  
tFALL  
Figure 9. Active Output Fall Time and Dynamic Output Current Low  
t
W
V
CCI  
DATA  
IN  
V
/2  
CCI  
V
/2  
CCI  
GND  
Maximum Data Rate, f = 1/t  
W
Figure 10.Maximum Data Rate  
V
CCO  
DATA  
OUTPUT  
V
V
mo  
mo  
GND  
t
t
skew  
skew  
V
CCO  
DATA  
OUTPUT  
V
V
mo  
mo  
GND  
Figure 11.Output Skew Time  
Note:  
22. tSKEW = (tpHLmax – tpHLmin) or (tpLHmax – tpLHmin  
)
www.onsemi.com  
15  
Physical Dimensions  
2.10  
0.563(15X)  
0.10  
2X  
C
1.80  
A
B
0.663  
0.40  
1
2.60  
2.90  
PIN#1 IDENT  
0.10  
C
TOP VIEW  
0.225 (16X)  
2X  
RECOMMENDED  
LAND PATTERN  
0.55 MAX.  
0.152  
0.10  
0.08  
C
C
TERMINAL SHAPE VARIANTS  
SEATING  
PLANE  
C
0.05  
0.00  
0.40  
0.60  
SIDE VIEW  
0.30  
0.50  
0.15  
0.25  
0.15  
0.25  
0.10  
15X  
15X  
0.45  
0.10  
0.35  
PIN 1  
NON-PIN 1  
5
Supplier 1  
9
0.40  
0.30  
0.50  
0.15  
0.25  
0.15  
15X  
0.25  
0.30  
0.50  
15X  
1
PIN 1  
NON-PIN 1  
PIN#1 IDENT  
Supplier 2  
13  
0.25  
0.15  
16  
0.55  
0.45  
0.10  
0.05  
C
C
A B  
BOTTOM VIEW  
R0.20  
PACKAGE  
EDGE  
NOTES:  
A. PACKAGE DOES NOT FULLY CONFORM TO  
JEDEC STANDARD.  
LEAD  
OPTION 2  
SCALE : 2X  
LEAD  
OPTION 1  
SCALE : 2X  
B. DIMENSIONS ARE IN MILLIMETERS.  
C. DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
D. LAND PATTERN RECOMMENDATION IS  
BASED ON FSC DESIGN ONLY.  
E. DRAWING FILENAME: MKT-UMLP16Arev4.  
F. TERMINAL SHAPE MAY VARY ACCORDING  
TO PACKAGE SUPPLIER, SEE TERMINAL  
SHAPE VARIANTS.  
Figure 12.16-Lead, UMLP, QUAD, Ultra-Thin MLP, 1.8 X 2.6mm  
www.onsemi.com  
16  
Physical Dimensions  
(11X)  
0.563  
2.10  
1.80  
A
B
0.10  
C
0.588  
0.40  
2X  
1
1.80  
2.10  
PIN#1 IDENT  
0.10 C  
(12X)  
0.20  
TOP VIEW  
2X  
RECOMMENDED  
LAND PATTERN  
0.55 MAX.  
0.152  
0.10 C  
0.08  
0.45  
0.35  
C
0.10  
0.05  
0.00  
SEATING  
PLANE  
C
0.10  
0.10  
SIDE VIEW  
DETAIL A  
SCALE : 2X  
0.35  
(11X)  
NOTES:  
0.45  
3
6
A. PACKAGE DOES NOT FULLY CONFORM TO  
JEDEC STANDARD.  
0.40  
B. DIMENSIONS ARE IN MILLIMETERS.  
DETAIL A  
C. DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
1
PIN#1 IDENT  
D. LAND PATTERN RECOMMENDATION IS  
BASED ON FSC DESIGN ONLY.  
12  
9
0.25  
0.15  
(12X)  
BOTTOM VIEW  
0.10  
C A B  
E. DRAWING FILENAME: MKT-UMLP12Arev4.  
0.05  
C
PACKAGE  
EDGE  
LEAD  
LEAD  
OPTION 2  
SCALE : 2X  
OPTION 1  
SCALE : 2X  
Figure 13.12-Lead, UMLP, QUAD, JEDEC MO-252 1.8 x 1.8mm Package  
www.onsemi.com  
17  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FXLA104UM12X_12

Low-Voltage Dual-Supply 4-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing
FAIRCHILD

FXLA104UMX

Low-Voltage Dual-Supply 4-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing
FAIRCHILD

FXLA104UMX

低电压双电源 4 位电压转换器
ONSEMI

FXLA104UMX_12

Low-Voltage Dual-Supply 4-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing
FAIRCHILD

FXLA104_12

Low-Voltage Dual-Supply 4-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing
FAIRCHILD

FXLA108

Low-Voltage Dual-Supply 8-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing
FAIRCHILD

FXLA108BQX

Low-Voltage Dual-Supply 8-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing
FAIRCHILD

FXLA108BQX

双电源 8 位电压转换器
ONSEMI

FXLA108_12

Low-Voltage Dual-Supply 8-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing
FAIRCHILD

FXLA2203

Dual-Mode, Dual-SIM-Card Level Translator
FAIRCHILD

FXLA2203UMX

RF and Baseband Circuit, 3.40 X 2.50 MM, 0.40 MM, PLASTIC, UMLP-24
FAIRCHILD

FXLA2203UMX

双模、双 SIM 卡电平转换器
ONSEMI