HUF75345S3ST [ONSEMI]

N 沟道 UltraFET Power MOSFET 55V,75A,7mΩ;
HUF75345S3ST
型号: HUF75345S3ST
厂家: ONSEMI    ONSEMI
描述:

N 沟道 UltraFET Power MOSFET 55V,75A,7mΩ

开关 晶体管
文件: 总16页 (文件大小:600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOSFET – Power, N-Channel,  
UltraFET  
55 V, 75 A, 7 mW  
HUF75345G3, HUF75345P3,  
HUF75345S3S  
www.onsemi.com  
Description  
These NChannel power MOSFETs are manufactured using  
the innovative UltraFET process. This advanced process technology  
achieves the lowest possible onresistance per silicon area, resulting  
in outstanding performance. This device is capable of withstanding  
high energy in the avalanche mode and the diode exhibits very low  
reverse recovery time and stored charge. It was designed for use  
in applications where power efficiency is important, such as switching  
regulators, switching converters, motor drivers, relay drivers,  
lowvoltage bus switches, and power management in portable  
and batteryoperated products.  
V
R
MAX  
I MAX  
D
DSS  
DS(ON)  
55 V  
7 mW  
75 A  
D
G
S
Features  
DRAIN (TAB)  
75 A, 55 V  
Simulation Models  
TO2473  
CASE 340CK  
®
Temperature Compensated PSPICEt and SABER Models  
Thermal Impedance SPICE and SABER Models  
Peak Current vs Pulse Width Curve  
UIS Rating Curve  
G
D
S
DRAIN (FLANGE)  
TO2203  
CASE 340AT  
These Devices are PbFree  
G
D
S
DRAIN (FLANGE)  
D2PAK3  
CASE 418AJ  
G
S
MARKING DIAGRAM  
$Y&Z&3&K  
75345X  
$Y  
= ON Semiconductor Logo  
&Z  
&3  
&K  
= Assembly Plant Code  
= Data Code (Year & Week)  
= Lot  
75345X  
= Specific Device Code  
X = G/P/S  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
March, 2020 Rev. 3  
HUF75345S3S/D  
HUF75345G3, HUF75345P3, HUF75345S3S  
PACKAGE MARKING AND ORDERING INFORMATION  
Part Number  
HUF75345G3  
HUF75345P3  
HUF75345S3ST  
Package  
TO2473  
TO2203  
D2PAK3  
Brand  
75345G  
75345P  
75345S  
MOSFET MAXIMUM RATINGS (T = 25°C, Unless otherwise noted)  
C
Symbol  
Parameter  
Value  
Unit  
V
V
DSS  
DGR  
Drain to Source Voltage (Note 1)  
55  
55  
V
Drain to Gate Voltage (R = 20 kW) (Note 1)  
V
GS  
V
GS  
Gate to Source Voltage  
20  
V
I
Drain Current  
Continuous (Figure 2)  
Pulsed  
75  
A
D
I
Drain Current  
Figure 4  
Figure 6  
325  
DM  
E
AS  
Pulsed Avalanche Rating  
Power Dissipation  
P
(T = 25°C)  
C
W
W/°C  
°C  
D
Derate Above 25°C  
2.17  
T , T  
Operating and Storage Temperature  
55 to +175  
300  
J
STG  
T
Maximum Temperature for Soldering Leads at 0.063 in (1.6 mm) from Case for 10 s  
Maximum Temperature for Soldering Leads Package Body for 10 s  
°C  
L
T
pkg  
260  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. T = 25°C to 150°C  
J
www.onsemi.com  
2
 
HUF75345G3, HUF75345P3, HUF75345S3S  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
OFF STATE CHARACTERISTICS  
BV  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
I
= 250 mA, V = 0 V (Figure 11)  
55  
V
DSS  
D
GS  
I
V
V
V
= 50 V, V = 0 V  
1
mA  
DSS  
DS  
DS  
GS  
GS  
= 45 V, V = 0 V, T = 150_C  
250  
100  
GS  
C
I
Gate to Source Leakage Current  
=
20 V  
nA  
GSS  
ON STATE CHARACTERISTICS  
V
GS(TH)  
R
DS(ON)  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
V
= V , I = 250 mA (Figure 10)  
2
4.0  
V
GS  
DS  
D
I
D
= 75 A, V = 10 V (Figure 9)  
0.006  
0.007  
W
GS  
THERMAL CHARACTERISTICS  
R
R
Thermal Resistance Junction to Case (Figure 3)  
Thermal Resistance Junction to Ambient TO247  
Thermal Resistance Junction to Ambient TO220, D2PAK  
0.46  
30  
_C/W  
_C/W  
_C/W  
q
JC  
JA  
q
62  
SWITCHING CHARACTERISTICS (V = 10 V)  
GS  
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
V
= 30 V, I = 75 A,  
195  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
L
D
R = 0.4 W, V  
= 10 V, R = 2.5 W  
GS  
GS  
t
14  
118  
42  
d(ON)  
t
r
t
Turn-Off Delay Time  
Fall Time  
d(OFF)  
t
f
26  
t
Turn-Off Time  
98  
OFF  
GATE CHARGE CHARACTERISTICS  
Q
Q
Total Gate Charge  
V
V
g(REF)  
= 0 V to 20 V,  
220  
125  
6.8  
275  
nC  
nC  
nC  
g(tot)  
g(10)  
GS  
DD  
= 30 V, I = 75 A, R = 0.4 W,  
D
L
I
= 1.0 mA (Figure 13)  
Gate Charge at 10 V  
Threshold Gate Charge  
V
V
g(REF)  
= 0 V to 10 V,  
165  
10  
GS  
DD  
= 30 V, I = 75 A, R = 0.4 W,  
D
L
I
= 1.0 mA (Figure 13)  
Q
V
V
g(REF)  
= 0 V to 2 V,  
g(th)  
GS  
DD  
= 30 V, I = 75 A, R = 0.4 W,  
D
L
I
= 1.0 mA (Figure 13)  
Q
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
V
g(REF)  
= 30 V, I = 75 A, R = 0.4 W,  
14  
58  
nC  
nC  
gs  
DD  
D
L
I
= 1.0 mA (Figure 13)  
Q
gd  
CAPACITANCE CHARACTERISTICS  
C
Input Capacitance  
V
= 25 V, V = 0 V, f = 1 Mhz  
4000  
1450  
450  
pF  
pF  
pF  
iss  
DS  
GS  
(Figure 12)  
C
Output Capacitance  
oss  
C
Reverse Transfer Capacitance  
rss  
SOURCE TO DRAIN DIODE CHARACTERISTICS  
V
Source to Drain Diode Voltage  
Reverse Recovery Time  
I
I
I
= 75 A  
1.25  
55  
V
SD  
SD  
SD  
SD  
t
= 75 A, dl /dt = 100 A/ms  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
= 75 A, dl /dt = 100 A/ms  
80  
RR  
SD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
3
HUF75345G3, HUF75345P3, HUF75345S3S  
TYPICAL PERFORMANCE CURVES  
T
C
= 25°C unless otherwise noted  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
60  
40  
20  
0
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
T
, CASE TEMPERATURE ( C)  
C
o
T
, CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power  
Figure 2. Maximum Continuous  
Dissipation vs. Case Temperature  
Drain Current vs Case Temperature  
2
DUTY CYCLE DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
q
x R  
+ T  
q
JC C  
J
DM  
JC  
SINGLE PULSE  
0.01  
10  
5  
4  
3  
2  
1  
10  
0
1
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
2000  
1000  
o
T
= 25 C  
FOR TEMPERATURES  
o
C
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 T  
C
I = I  
25  
150  
V
= 20V  
GS  
V
= 10V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100  
50  
5  
10  
4  
3  
2  
10  
1  
0
1
10  
10  
10  
10  
10  
t, PULSE WIDTH (s)  
Figure 4. Peak Current Capability  
www.onsemi.com  
4
HUF75345G3, HUF75345P3, HUF75345S3S  
TYPICAL CHARACTERISTICS (Continued)  
T
C
= 25°C unless otherwise noted  
NOTE: Refer to ON Semiconductor Application Notes  
AN7514 and AN7515  
1000  
100  
10  
1000  
100  
If R = 0  
= (L)(I  
T
T
= MAX RATED  
= 25 C  
J
t
)/(1.3*RATED BV  
AS DSS  
V )  
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
o
C
t
V ) +1]  
AV  
AS  
DSS  
DD  
100 ms  
o
STARTING T = 25 C  
1ms  
J
10  
1
OPERATION IN THIS  
AREA MAY BE  
10ms  
o
STARTING T = 150 C  
J
LIMITED BY r  
DS(ON)  
V
= 55V  
DSS(MAX)  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
0.01  
0.1  
1
10  
, TIME IN AVALANCHE (ms)  
AV  
100  
V
t
DS  
Figure 5. Forward Bias Safe Operating Area  
Figure 6. Unclamped Inductive Switching  
Capability  
150  
150  
120  
PULSE DURATION = 80 ms  
V
= 20V  
= 10V  
= 7V  
GS  
DUTY CYCLE = 0.5% MAX  
V
GS  
120  
90  
V
GS  
V
= 5V  
GS  
V
= 6V  
GS  
90  
60  
30  
60  
30  
o
25 C  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
C
o
175 C  
o
55 C  
o
V
= 15V  
T
= 25 C  
DD  
0
0
0
1.5  
V
3.0  
4.5  
6.0  
7.5  
0
1
2
3
4
V
, DRAIN TO SOURCE VOLTAGE (V)  
, GATE TO SOURCE VOLTAGE (V)  
DS  
GS  
Figure 7. Saturation Characteristics  
Figure 8. Transfer Characteristics  
2.5  
1.2  
1.0  
PULSE DURATION = 80 ms, V  
= 10V, I = 75A  
V
= V , I = 250 mA  
DS  
GS  
D
GS  
D
DUTY CYCLE = 0.5% MAX  
2.0  
1.5  
1.0  
0.5  
0.8  
0.6  
0.4  
80  
40  
0
40  
80  
120  
160  
200  
80  
40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
J
T , JUNCTION TEMPERATURE ( C)  
J
Figure 9. Normalized Drain to Source On  
Resistance vs Junction Temperature  
Figure 10. Normalized Gate Threshold Voltage vs  
Junction Temperature  
www.onsemi.com  
5
HUF75345G3, HUF75345P3, HUF75345S3S  
TYPICAL CHARACTERISTICS (Continued)  
T
C
= 25°C unless otherwise noted  
1.3  
7000  
6000  
5000  
V
= 0V, f = 1MHz  
GS  
ISS  
I
= 250 mA  
D
C
C
C
= C  
= C  
+ C  
GS  
GD  
RSS  
OSS  
GD  
1.2  
1.1  
C
+ C  
GD  
DS  
C
ISS  
4000  
3000  
1.0  
0.9  
0.8  
2000  
1000  
0
C
C
OSS  
RSS  
0
10  
V
20  
30  
40  
50  
60  
80  
40  
0
40  
80  
120  
o
160  
200  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
T , JUNCTION TEMPERATURE ( C)  
J
Figure 11. Normalized Drain to Source  
Breakdown vs. Junction Temperature  
Figure 12. Capacitance vs. Drain to Source  
Voltage  
10  
V
= 30V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
I
= 75A  
= 55A  
= 35A  
= 20A  
D
D
D
D
0
25  
50  
75  
100  
125  
Q , GATE CHARGE (nC)  
g
Figure 13. Gate Charge Waveforms  
for Constant Gate Currents  
www.onsemi.com  
6
HUF75345G3, HUF75345P3, HUF75345S3S  
TEST CIRCUITS WAVEFORMS  
V
DS  
BV  
DSS  
t
P
V
L
DS  
I
AS  
VARY tp TO OBTAIN  
REQUIRED PEAK I  
V
DD  
AS  
R
G
+
V
DD  
DUT  
V
GS  
tp  
0 V  
0
I
AS  
t
AV  
0.01 W  
Figure 14. Unclamped Energy  
Test Circuit  
Figure 15. Unclamped Energy  
Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
R
L
V
DS  
V
= 20V  
GS  
Q
g(10)  
V
GS  
+
V
= 10V  
V
GS  
GS  
V
DD  
DUT  
V
= 2V  
GS  
0
Q
I
g(REF)  
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 16. Gate Charge Test Circuit  
Figure 17. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
Figure 18. Switching Time Test Circuit  
Figure 19. Resistive Switching Waveforms  
www.onsemi.com  
7
HUF75345G3, HUF75345P3, HUF75345S3S  
PSPICE Electrical Model  
.SUBCKT HUF75345 2 1 3 ; rev 3 Feb 99  
CA 12 8 5.55e9  
CB 15 14 5.55e9  
CIN 6 8 3.45e9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
EBREAK 11 7 17 18 56.7  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
IT 8 17 1  
LDRAIN 2 5 1e9  
LGATE 1 9 2.6e9  
LSOURCE 3 7 1.1e9  
KGATE LSOURCE LGATE 0.0085  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 1e4  
RGATE 9 20 0.36  
RLDRAIN 2 5 10  
RLGATE 1 9 26  
RLSOURCE 3 7 11  
RSLC1 5 51 RSLCMOD 1e6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 3.15e3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e6*500),3.5))}  
.MODEL DBODYMOD D (IS = 6e12 RS = 1.4e3 IKF = 20 XTI = 5 TRS1 = 2.75e3 TRS2 = 5.0e6 CJO = 5.5e9 TT =  
5.9e8 M = 0.5 VJ = 0.75)  
.MODEL DBREAKMOD D (RS = 2.8e2 IKF = 30 TRS1 = 4.0e3 TRS2 = 1.0e6)  
.MODEL DPLCAPMOD D (CJO = 6.75e9 IS = 1e30 M = 0.88 VJ = 1.45 FC = 0.5)  
.MODEL MMEDMOD NMOS (VTO = 2.93 KP = 13.75 IS = 1e30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.36)  
.MODEL MSTROMOD NMOS (VTO = 3.23 KP = 96 IS = 1e30 N = 10 TOX = 1 L = 1u W = 1u Lambda = 0.06)  
.MODEL MWEAKMOD NMOS (VTO = 2.35 KP =0.02 IS = 1e30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6)  
.MODEL RBREAKMOD RES (TC1 = 8.0e4 TC2 = 4.0e6)  
.MODEL RDRAINMOD RES (TC1 = 1.5e1 TC2 = 6.5e4)  
www.onsemi.com  
8
HUF75345G3, HUF75345P3, HUF75345S3S  
.MODEL RSLCMOD RES (TC1 = 1.0e4 TC2 = 1.05e6)  
.MODEL RSOURCEMOD RES (TC1 = 1.0e3 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = 1.5e3 TC2 = 2.6e5)  
.MODEL RVTEMPMOD RES (TC1 = 2.75e3 TC2 = 1.45e6)  
.MODEL S1AMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 9.00 VOFF= 4.00)  
.MODEL S1BMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 4.00 VOFF= 9.00)  
.MODEL S2AMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 0.00 VOFF= 0.50)  
.MODEL S2BMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 0.50 VOFF= 0.00)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE SubCircuit for the Power MOSFET  
Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by  
William J. Hepp and C. Frank Wheatley.  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
DBODY  
RSLC1  
DBREAK  
51  
+
RSLC2  
ESLC  
11  
50  
+
17  
18  
RDRAIN  
6
EBREAK  
MWEAK  
ESG  
8
EVTHRES  
+
+
16  
21  
19  
8
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
18  
MMED  
22  
9
20  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S1B  
S2A  
14  
13  
S2B  
RBREAK  
12  
15  
13  
8
17  
18  
RVTEMP  
19  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
8
22  
RVTHRES  
Figure 20. PSPICE Electrical Model  
www.onsemi.com  
9
HUF75345G3, HUF75345P3, HUF75345S3S  
SABER Electrical Model  
REV 3 February 1999  
template huf75345 n2, n1, n3  
electrical n2, n1, n3  
{
var i iscl  
d..model dbodymod = (is = 6e12, xti = 5, cjo = 5.5e9, tt = 5.9e8, m=0.5, vj=0.75)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 6.75e9, is = 1e30, m = 0.88, vj = 1.45,fc=0.5)  
m..model mmedmod = (type=_n, vto = 2.93, kp = 13.75, is = 1e30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 3.23, kp = 96, is=1e30,tox=1,  
lambda = 0.06)  
m..model mweakmod = (type=_n, vto = 2.35, kp = 0.02, is = 1e30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e5, roff = 0.1, von = 9, voff = 4)  
sw_vcsp..model s1bmod = (ron = 1e5, roff = 0.1, von = 4, voff = 9)  
sw_vcsp..model s2amod = (ron = 1e5, roff = 0.1, von = 0, voff = 0.5)  
sw_vcsp..model s2bmod = (ron = 1e5, roff = 0.1, von = 0.5, voff = 0)  
c.ca n12 n8 = 5.55e9  
c.cb n15 n14 = 5.55e9  
c.cin n6 n8 = 3.45e9  
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
i.it n8 n17 = 1  
l.ldrain n2 n5 = 1e9  
l.lgate n1 n9 = 2.6e9  
l.lsource n3 n7 = 1.1e9  
k.k1 i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085  
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u  
res.rbreak n17 n18 = 1, tc1 = 8e4, tc2 = 4e6  
res.rdbody n71 n5 = 1.4e3, tc1 = 2.75e3, tc2 = 5e6  
res.rdbreak n72 n5 = 2.8e2, tc1 = 4e3, tc2 = 1e6  
res.rdrain n50 n16 = 1e4, tc1 = 1.5e1, tc2 = 6.5e4  
res.rgate n9 n20 = 0.36  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 26  
res.rlsource n3 n7 = 11  
res.rslc1 n5 n51 = 1e6, tc1 = 1e4, tc2 = 1.05e6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 3.15e3, tc1 = 1e3, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = 2.75e3, tc2 = 1.45e6  
res.rvthres n22 n8 = 1, tc1 = 1.5e3, tc2 = 2.6e5  
spe.ebreak n11 n7 n17 n18 = 56.7  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
www.onsemi.com  
10  
HUF75345G3, HUF75345P3, HUF75345S3S  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc = 1  
equations {  
i (n51>n50) + = iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3.5))  
}
}
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RDBODY  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
RSLC2  
ISCL  
50  
71  
RDRAIN  
6
8
ESG  
EVTHRES  
+
16  
21  
+
19  
8
MWEAK  
LGATE  
EVTEMP  
+
22  
DBODY  
RGATE  
GATE  
1
6
18  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
8
22  
RVTHRES  
Figure 21. SABER Electrical Model  
www.onsemi.com  
11  
HUF75345G3, HUF75345P3, HUF75345S3S  
SPICE Thermal Model  
REV 5 February 1999  
HUF75345  
th  
JUNCTION  
CTHERM1  
RTHERM1  
CTHERM1 th 6 6.3e3  
CTHERM2 6 5 1.5e2  
CTHERM3 5 4 2.0e2  
CTHERM4 4 3 3.0e2  
CTHERM5 3 2 8.0e2  
CTHERM6 2 tl 1.5e1  
6
CTHERM2  
CTHERM3  
CTHERM4  
RTHERM1 th 6 5.0e3  
RTHERM2 6 5 1.8e2  
RTHERM3 5 4 5.0e2  
RTHERM4 4 3 8.5e2  
RTHERM5 3 2 1.0e1  
RTHERM6 2 tl 1.1e1  
RTHERM2  
5
SABER Thermal Model  
RTHERM3  
SABER thermal model HUF75345  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 6.3e3  
ctherm.ctherm2 6 5 = 1.5e2  
ctherm.ctherm3 5 4 = 2.0e2  
ctherm.ctherm4 4 3 = 3.0e2  
ctherm.ctherm5 3 2 = 8.0e2  
ctherm.ctherm6 2 tl = 1.5e1  
4
3
2
RTHERM4  
rtherm.rtherm1 th 6 = 5.0e3  
rtherm.rtherm2 6 5 = 1.8e2  
rtherm.rtherm3 5 4 = 5.0e2  
rtherm.rtherm4 4 3 = 8.5e2  
rtherm.rtherm5 3 2 = 1.0e1  
rtherm.rtherm6 2 tl = 1.1e1  
}
CTHERM5  
CTHERM6  
RTHERM5  
RTHERM6  
tl  
CASE  
Figure 22. Thermal Model  
PSPICE is a trademark of MicroSim Corporation.  
Saber is a registered trademark of Sabremark Limited Partnership.  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2203LD  
CASE 340AT  
ISSUE A  
DATE 03 OCT 2017  
Scale 1:1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13818G  
TO2203LD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2473LD SHORT LEAD  
CASE 340CK  
ISSUE A  
DATE 31 JAN 2019  
P1  
D2  
A
E
P
A
A2  
Q
E2  
S
D1  
D
E1  
B
2
2
1
3
L1  
A1  
b4  
L
c
(3X) b  
(2X) b2  
M
M
B A  
0.25  
MILLIMETERS  
MIN NOM MAX  
4.58 4.70 4.82  
2.20 2.40 2.60  
1.40 1.50 1.60  
1.17 1.26 1.35  
1.53 1.65 1.77  
2.42 2.54 2.66  
0.51 0.61 0.71  
20.32 20.57 20.82  
(2X) e  
DIM  
A
A1  
A2  
b
b2  
b4  
c
GENERIC  
D
MARKING DIAGRAM*  
D1 13.08  
~
~
D2  
E
0.51 0.93 1.35  
15.37 15.62 15.87  
AYWWZZ  
XXXXXXX  
XXXXXXX  
E1 12.81  
~
~
E2  
e
L
4.96 5.08 5.20  
5.56  
15.75 16.00 16.25  
3.69 3.81 3.93  
3.51 3.58 3.65  
XXXX = Specific Device Code  
~
~
A
Y
= Assembly Location  
= Year  
WW = Work Week  
ZZ = Assembly Lot Code  
L1  
P
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
P1 6.60 6.80 7.00  
Q
S
5.34 5.46 5.58  
5.34 5.46 5.58  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13851G  
TO2473LD SHORT LEAD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
D2PAK3 (TO263, 3LEAD)  
CASE 418AJ  
ISSUE F  
DATE 11 MAR 2021  
SCALE 1:1  
XXXXXX = Specific Device Code  
A
= Assembly Location  
WL  
Y
= Wafer Lot  
= Year  
GENERIC MARKING DIAGRAMS*  
WW  
W
M
G
AKA  
= Work Week  
= Week Code (SSG)  
= Month Code (SSG)  
= PbFree Package  
= Polarity Indicator  
XX  
AYWW  
XXXXXXXXG  
AKA  
XXXXXXXXG  
AYWW  
XXXXXX  
XXYMW  
XXXXXXXXX  
AWLYWWG  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present. Some products  
may not follow the Generic Marking.  
IC  
Standard  
Rectifier  
SSG  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
98AON56370E  
D2PAK3 (TO263, 3LEAD)  
PAGE 1 OF 1  
DESCRIPTION:  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY