HUFA75321D3ST [ONSEMI]

55 V、20 A、30 mΩ、D2PAKN 沟道 UltraFET®;
HUFA75321D3ST
型号: HUFA75321D3ST
厂家: ONSEMI    ONSEMI
描述:

55 V、20 A、30 mΩ、D2PAKN 沟道 UltraFET®

开关 晶体管
文件: 总12页 (文件大小:540K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Is Now Part of  
To learn more about ON Semiconductor, please visit our website at  
www.onsemi.com  
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers  
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor  
product management systems do not have the ability to manage part nomenclature that utilizes an underscore  
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain  
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated  
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please  
email any questions regarding the system integration to Fairchild_questions@onsemi.com.  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right  
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON  
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON  
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s  
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA  
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor  
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
HUFA75321D3ST_F085  
Data Sheet  
April 2013  
20A, 55V, 0.036 Ohm, N-Channel UltraFET  
Power MOSFETs  
Features  
• 20A, 55V  
These N-Channel power MOSFETs  
are manufactured using the  
innovative UltraFET® process. This  
• Simulation Models  
- Temperature Compensating PSPICE® and SABER™  
Models  
advanced process technology  
- Thermal Impedance SPICE and SABER Models  
Available on the web at: www.fairchildsemi.com  
achieves the lowest possible on-resistance per silicon area,  
resulting in outstanding performance. This device is capable  
of withstanding high energy in the avalanche mode and the  
diode exhibits very low reverse recovery time and stored  
charge. It was designed for use in applications where power  
efficiency is important, such as switching regulators,  
switching converters, motor drivers, relay drivers, low-  
voltage bus switches, and power management in portable  
and battery-operated products.  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
RoHS Compliant  
Formerly developmental type TA75321.  
Qualified to AEC Q101  
Symbol  
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
D
HUFA75321D3ST_F085  
TO-252AA  
75321D  
NOTE: When ordering, use the entire part number.  
G
S
Packaging  
JEDEC TO-252AA  
DRAIN  
(FLANGE)  
GATE  
SOURCE  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy  
of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
©2013 Fairchild Semiconductor Corporation  
1
www.fairchildsemi.com  
HUFA75321D3ST_F085 Rev. C1  
HUFA75321D3ST_F085  
o
Absolute Maximum Ratings  
T = 25 C, Unless Otherwise Specified  
C
UNITS  
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
55  
55  
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Drain Current  
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
20  
Figure 4  
Figures 6, 14, 15  
93  
A
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
W
D
o
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.625  
W/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-55 to 175  
C
J
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 150 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
I
= 250µA, V  
= 0V (Figure 11)  
55  
-
-
-
-
-
-
V
DSS  
D
GS  
GS  
GS  
I
V
V
V
= 50V, V  
= 45V, V  
= ±20V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
THERMAL SPECIFICATIONS  
I
-
GSS  
V
V
= V , I = 250µA (Figure 10)  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
r
I
= 20A, V  
= 10V (Figure 9)  
0.030  
0.036  
DS(ON)  
D
GS  
o
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
R
R
(Figure 3)  
TO-251, TO-252  
-
-
-
-
1.6  
C/W  
θJC  
o
100  
C/W  
θJA  
SWITCHING SPECIFICATIONS (V  
= 10V)  
GS  
Turn-On Time  
t
V
R
R
= 30V, I  
= 1.5, V  
= 25Ω  
20A,  
= 10V,  
-
-
-
-
-
-
-
100  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
D
L
GS  
Turn-On Delay Time  
Rise Time  
t
11  
55  
47  
66  
-
-
d(ON)  
GS  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
170  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
DD  
= 30V,  
20A,  
-
-
-
-
-
36  
21  
1.3  
3
44  
26  
1.6  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
I
D
Gate Charge at 10V  
Q
g(10)  
R
= 1.5Ω  
L
I
= 1.0mA  
g(REF)  
(Figure 13)  
Threshold Gate Charge  
Q
g(TH)  
Gate to Source Gate Charge  
Reverse Transfer Capacitance  
Q
Q
gs  
9
-
gd  
HUFA75321D3ST_F085 Rev. C1  
2
www.fairchildsemi.com  
HUFA75321D3ST_F085  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
C
V
= 25V, V = 0V,  
GS  
-
-
-
680  
270  
60  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
C
OSS  
RSS  
Reverse Transfer Capacitance  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
59  
UNITS  
V
V
I
I
I
= 20A  
-
-
-
-
-
-
SD  
SD  
SD  
SD  
t
= 20A, dI /dt = 100A/µs  
SD  
ns  
rr  
Reverse Recovered Charge  
Q
= 20A, dI /dt = 100A/µs  
82  
nC  
RR  
SD  
Typical Performance Curves  
1.2  
1.0  
0.8  
25  
20  
15  
10  
5
0.6  
0.4  
0.2  
0
0
0
25  
50  
75  
100  
125  
o
150  
175  
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R + T  
SINGLE PULSE  
J
DM  
θJC  
θJC C  
0.01  
-5  
-4  
-3  
10  
-2  
-1  
10  
0
1
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
HUFA75321D3ST_F085 Rev. C1  
3
www.fairchildsemi.com  
HUFA75321D3ST_F085  
Typical Performance Curves (Continued)  
500  
o
T
= 25 C  
FOR TEMPERATURES  
C
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
100  
V
= 20V  
= 10V  
GS  
V
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
10  
10  
-5  
-4  
10  
-3  
-2  
-1  
0
1
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
FIGURE 4. PEAK CURRENT CAPABILITY  
300  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
- V )  
DD  
300  
100  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV - V ) +1]  
DSS DD  
AS  
DSS  
T
= MAX RATED  
o
J
100  
10  
1
t
AV  
T
= 25 C  
AS  
C
100µs  
o
STARTING T = 25 C  
J
o
10  
STARTING T = 150 C  
J
1ms  
OPERATION IN THIS  
AREA MAY BE  
LIMITED BY r  
DS(ON)  
= 55V  
10ms  
V
DSS(MAX)  
0.01  
0.1  
1
10  
1
t
, TIME IN AVALANCHE (ms)  
1
10  
100  
200  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
75  
75  
V
= 20V  
= 10V  
= 8V  
GS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
-55 C  
V
GS  
V
V
GS  
60  
45  
30  
15  
0
= 7V  
60  
45  
30  
15  
0
GS  
V
V
= 6V  
= 5V  
GS  
o
175 C  
GS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
o
V
= 15V  
DD  
T
= 25 C  
6.0  
25 C  
C
0
1.5  
3.0  
4.5  
7.5  
0
1.5  
3.0  
4.5  
6.0  
7.5  
V
, DRAIN TO SOURCE VOLTAGE (V)  
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
DS  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 8. TRANSFER CHARACTERISTICS  
HUFA75321D3ST_F085 Rev. C1  
4
www.fairchildsemi.com  
HUFA75321D3ST_F085  
Typical Performance Curves (Continued)  
2.5  
2.0  
1.5  
1.0  
0.5  
1.2  
1.0  
0.8  
0.6  
PULSE DURATION = 80µs  
V
= V , I = 250µA  
DS  
GS  
D
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 20A  
GS  
D
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
RESISTANCE vs JUNCTION TEMPERATURE  
1.2  
1.1  
1.0  
0.9  
1000  
V
= 0V, f = 1MHz  
I
= 250µA  
GS  
ISS  
D
C
C
C
= C  
+ C  
GS GD  
= C  
C  
RSS  
OSS  
GD  
DS  
800  
600  
400  
200  
0
C
+ C  
GD  
ISS  
C
C
OSS  
RSS  
-80  
-40  
0
40  
80  
120  
160  
200  
0
10  
20  
30  
40  
50  
60  
o
T , JUNCTION TEMPERATURE ( C)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
J
DS  
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
10  
8
6
4
WAVEFORMS IN  
DESCENDING ORDER:  
2
I
I
I
= 20A  
= 10A  
= 5A  
D
D
D
V
= 30V  
DD  
10  
0
0
5
15  
20  
25  
Q , GATE CHARGE (nC)  
g
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT  
HUFA75321D3ST_F085 Rev. C1  
5
www.fairchildsemi.com  
HUFA75321D3ST_F085  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
g(TOT)  
R
DD  
L
V
DS  
V
= 20V  
GS  
V
Q
GS  
g(10)  
+
-
V
DD  
V
= 10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
0
G(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORM  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
HUFA75321D3ST_F085 Rev. C1  
6
www.fairchildsemi.com  
HUFA75321D3ST_F085  
PSPICE Electrical Model  
.SUBCKT HUFA75321D 2 1 3 ;  
rev 4/29/98  
CA 12 8 9.96e-10  
CB 15 14 9.83e-10  
CIN 6 8 6.18e-10  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
EBREAK 11 7 17 18 59.54  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
+
-
17  
DBODY  
RDRAIN  
6
ESG  
8
EBREAK 18  
-
EVTHRES  
+
16  
21  
+
-
EVTEMP 20 6 18 22 1  
19  
MWEAK  
LGATE  
EVTEMP  
+
8
RGATE  
GATE  
1
6
-
18  
22  
MMED  
IT 8 17 1  
9
20  
MSTRO  
8
RLGATE  
LDRAIN 2 5 1e-9  
LGATE 1 9 3.57e-9  
LSOURCE 3 7 4.25e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 5.50e-3  
RGATE 9 20 2.25  
RLDRAIN 2 5 10  
RLGATE 1 9 35.7  
RLSOURCE 3 7 42.5  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RSOURCE 8 7 RSOURCEMOD 16.30e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*101),2.5))}  
.MODEL DBODYMOD D (IS = 7.47e-13 RS = 6.45e-3 TRS1 = 2.01e-3 TRS2 = 1.21e-6 CJO = 1.02e-9 TT = 3.21e-8 M = 0.50)  
.MODEL DBREAKMOD D (RS = 2.01e- 1TRS1 = 3.62e- 3TRS2 = 6.01e-7)  
.MODEL DPLCAPMOD D (CJO = 9.0e-1 0IS = 1e-3 0N = 10 M = 0.85)  
.MODEL MMEDMOD NMOS (VTO = 3.25 KP = 1.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.25)  
.MODEL MSTROMOD NMOS (VTO = 3.65 KP = 32.00 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 2.91 KP = 0.07 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 22.5 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 1.05e- 3TC2 = 1.21e-7)  
.MODEL RDRAINMOD RES (TC1 = 2.40e-2 TC2 = 1.02e-6)  
.MODEL RSLCMOD RES (TC1 = 2.07e-4 TC2 = 4.67e-5)  
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 =0)  
.MODEL RVTHRESMOD RES (TC = -3.01e-3 TC2 = -8.85e-6)  
.MODEL RVTEMPMOD RES (TC1 = -1.96e- 3TC2 = 1.39e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.85 VOFF= -4.85)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.85 VOFF= -7.85)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.00 VOFF= 3.00)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 3.00 VOFF= 0.00)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEEPower Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
HUFA75321D3ST_F085 Rev. C1  
7
www.fairchildsemi.com  
HUFA75321D3ST_F085  
SABER Electrical Model  
REV April 1998  
template HUFA75321d n2, n1, n3  
electrical n2, n1, n3  
{
var i iscl  
d..model dbodymod = (is = 7.47e-13, cjo = 1.02e-9, tt = 3.21e-8, m = 0.5)  
d..model dbreakmod = ()  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
5
DRAIN  
2
d..model dplcapmod = (cjo = 9e-10, is = 1e-30, n = 10, m = 0.85)  
m..model mmedmod = (type=_n, vto = 3.25, kp = 1.75, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 3.65, kp = 32, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 2.91, kp = 0.07, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.85, voff = -4.85)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4.85, voff = -7.85)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 3.0)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 3.0, voff = 0)  
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
RSLC2  
ISCL  
50  
-
c.ca n12 n8 = 9.96e-10  
c.cb n15 n14 = 9.83e-10  
71  
RDRAIN  
6
8
ESG  
c.cin n6 n8 = 6.18e-10  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
i.it n8 n17 = 1  
LSOURCE  
CIN  
SOURCE  
3
7
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 =3.57e-9  
l.lsource n3 n7 = 4.25e-9  
RSOURCE  
RLSOURCE  
S1A  
S2A  
14  
13  
RBREAK  
12  
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u  
15  
13  
17  
18  
8
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 1.21e-7  
res.rdbody n71 n5 = 6.45e-3, tc1 = 2.01e-3, tc2 = 1.21e-6  
res.rdbreak n72 n5 = 2.01e-1, tc1 = 3.62e-3, tc2 = 6.01e-7  
res.rdrain n50 n16 = 5.5e-3, tc1 = 2.4e-2, tc2 = 1.02e-6  
res.rgate n9 n20 = 2.25  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
res.rldrain n2 n5 = 10  
22  
res.rlgate n1 n9 = 35.7  
RVTHRES  
res.rlsource n3 n7 = 42.5  
res.rslc1 n5 n51 = 1e-6, tc1 = 2.07e-4, tc2 = 4.67e-5  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 16.3e-3, tc1 = 0, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -1.96e-3, tc2 = 1.39e-6  
res.rvthres n22 n8 = 1, tc1 = -3.01e-3, tc2 = -8.85e-6  
spe.ebreak n11 n7 n17 n18 = 59.54  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc = 1  
equations {  
i (n51->n50) + = iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/101))** 2.5))  
}
}
HUFA75321D3ST_F085 Rev. C1  
8
www.fairchildsemi.com  
HUFA75321D3ST_F085  
SPICE Thermal Model  
JUNCTION  
th  
REV 24 February 1999  
HUFA75321D  
CTHERM1 th 6 2.7e-3  
CTHERM2 6 5 3.7e-3  
CTHERM3 5 4 1.2e-2  
CTHERM4 4 3 3.8e-3  
CTHERM5 3 2 1.4e-2  
CTHERM6 2 tl 10.55  
RTHERM1  
CTHERM1  
6
RTHERM1 th 6 1.10e-2  
RTHERM2 6 5 2.72e-2  
RTHERM3 5 4 7.67e-2  
RTHERM4 4 3 4.30e-1  
RTHERM5 3 2 6.49e-1  
RTHERM6 2 tl 8.61e-2  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model HUFA75321D  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 2.7e-3  
ctherm.ctherm2 6 5 = 3.7e-3  
ctherm.ctherm3 5 4 = 1.2e-2  
ctherm.ctherm4 4 3 = 3.8-3  
ctherm.ctherm5 3 2 = 1.4e-2  
ctherm.ctherm6 2 tl = 10.55  
4
3
2
rtherm.rtherm1 th 6 = 1.10e-3  
rtherm.rtherm2 6 5 = 2.72e-2  
rtherm.rtherm3 5 4 = 7.67e-2  
rtherm.rtherm4 4 3 = 4.30e-1  
rtherm.rtherm5 3 2 = 6.49e-1  
rtherm.rtherm6 2 tl = 8.61e-2  
}
tl  
CASE  
HUFA75321D3ST_F085 Rev. C1  
9
www.fairchildsemi.com  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not  
intended to be an exhaustive list of all such trademarks.  
2Cool™  
AccuPower™  
AX-CAP *  
BitSiC™  
Build it Now™  
CorePLUS™  
CorePOWER™  
CROSSVOLT™  
CTL™  
Current Transfer Logic™  
DEUXPEED  
Dual Cool™  
EcoSPARK  
EfficentMax™  
ESBC™  
FPS™  
F-PFS™  
FRFET  
Global Power Resource  
Green Bridge™  
Green FPS™  
Green FPS™ e-Series™  
Gmax™  
GTO™  
IntelliMAX™  
ISOPLANAR™  
Sync-Lock™  
®*  
®
tm  
®
®
®
PowerTrench  
PowerXS™  
Programmable Active Droop™  
QFET  
QS™  
Quiet Series™  
RapidConfigure™  
SM  
TinyBoost™  
TinyBuck™  
TinyCalc™  
®
®
TinyLogic  
TINYOPTO™  
TinyPower™  
TinyPWM™  
TinyWire™  
®
Marking Small Speakers Sound Louder Saving our world, 1mW/W/kW at a time™  
®
TranSiC  
®
and Better™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MicroPak2™  
MillerDrive™  
MotionMax™  
mWSaver™  
OptoHiT™  
SignalWise™  
SmartMax™  
TriFault Detect™  
TRUECURRENT *  
μSerDes™  
®
SMART START™  
Solutions for Your Success™  
®
®
SPM  
®
STEALTH™  
SuperFET  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
Fairchild  
®
®
UHC  
®
Fairchild Semiconductor  
FACT Quiet Series™  
Ultra FRFET™  
UniFET™  
VCX™  
VisualMax™  
VoltagePlus™  
XS™  
®
FACT  
FAST  
®
®
®
OPTOLOGIC  
OPTOPLANAR  
SupreMOS  
SyncFET™  
FastvCore™  
FETBench™  
®
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE  
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY  
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY  
THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used here in:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body or (b) support or sustain life,  
and (c) whose failure to perform when properly used in accordance with  
instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury of the user.  
2. A critical component in any component of a life support, device, or  
system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or  
effectiveness.  
ANTI-COUNTERFEITING POLICY  
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,  
www.Fairchildsemi.com, under Sales Support.  
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their  
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed  
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the  
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild  
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild  
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of  
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and  
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is  
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Datasheet contains the design specifications for product development. Specifications  
may change in any manner without notice.  
Advance Information  
Formative / In Design  
Datasheet contains preliminary data; supplementary data will be published at a later  
date. Fairchild Semiconductor reserves the right to make changes at any time without  
notice to improve design.  
Preliminary  
First Production  
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to  
make changes at any time without notice to improve the design.  
No Identification Needed  
Obsolete  
Full Production  
Datasheet contains specifications on a product that is discontinued by Fairchild  
Semiconductor. The datasheet is for reference information only.  
Not In Production  
Rev. I64  
HUFA75321D3ST_F085 Rev. C1  
10  
www.fairchildsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY