HUFA76429D3 [ONSEMI]

N 沟道,逻辑电平,UltraFET Power MOSFET,60V,20A,27mΩ;
HUFA76429D3
型号: HUFA76429D3
厂家: ONSEMI    ONSEMI
描述:

N 沟道,逻辑电平,UltraFET Power MOSFET,60V,20A,27mΩ

PC 开关 晶体管
文件: 总14页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
MOSFET – Power, N-Channel,  
Logic Level, UltraFET  
V
r
MAX  
I MAX  
D
DSS  
DS(ON)  
60 V  
23 m@ 10 V  
27 m@ 4.5 V  
29 m@ 4.5 V  
20 A  
60 V, 20 A, 27 mW  
HUFA76429D3  
SOURCE  
DRAIN  
GATE  
Features  
Ultra Low On−Resistance  
r  
r  
= 0.023 , V = 10 V  
GS  
DS(ON)  
= 0.027 , V = 5 V  
DS(ON)  
GS  
DRAIN  
Simulation Models  
(FLANGE)  
®
Temperature Compensated PSPICEt and Saber Electriecal  
DPAK3 (IPAK)  
JEDEC (TO−251AA)  
CASE 369AR  
Models  
Spice and SABER Thermal Impedance Models  
www.onsemi.com  
Peak Current vs. Pulse Width Curve  
UIS Rating Curve  
MARKING DIAGRAM  
Switching Time vs. R Curves  
GS  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
$Y&Z&3&K  
76429D  
C
Rating  
Symbol HUFA76429D3 Unit  
Drain to Source Voltage (Note 1)  
V
60  
60  
V
V
DSS  
DGR  
Drain to Gate Voltage (R = 20 k)  
V
GS  
(Note 1)  
$Y  
= Logo  
= Assembly Plant Code  
= 3−Digit Date Code  
Gate to Source Voltage  
V
16  
20  
V
A
GS  
&Z  
&3  
&K  
Drain  
Current  
Continuous (T = 25°C,  
GS  
I
C
D
D
D
D
V
= 5 V)  
= 2−Digits Lot Run Traceability Code  
76429D = Device Code  
Continuous (T = 25°C,  
I
I
I
20  
20  
A
A
A
C
V
GS  
= 10 V) (Figure 2)  
Continuous (T = 100°C,  
C
V
GS  
= 5 V)  
D
Continuous (T = 100°C,  
20  
C
V
GS  
= 4.5 V) (Figure 2)  
G
Pulsed Drain Current  
I
Figure 4  
DM  
Pulsed Avalanche Rating  
UIS  
Figures 6, 17,  
18  
S
N−Channel  
Power  
Dissipation  
P
110  
0.74  
W
W/°C  
°C  
D
Derate Above 25°C  
Operating and Storage Temperature  
T , T  
−55 to 175  
300  
J
STG  
ORDERING INFORMATION  
Maximum  
Temperature from Case for 10 s  
for Soldering  
Leads at 0.063 in (1.6 mm)  
T
°C  
L
Part Number  
Package  
Marking Shipping  
Package Body for 10 s,  
See Techbrief TB334  
T
pkg  
260  
°C  
HUFA76429D3 DPAK3 (IPAK) 76429D 1800 Units  
(TO−251AA)  
/ Tube  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
1. T = 25°C to 150°C.  
J
© Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
March, 2022 − Rev. 3  
HUFA76429D3/D  
 
HUFA76429D3  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
BV  
60  
55  
V
V
I
I
= 250 A, V = 0 V (Figure 12)  
DSS  
D
GS  
= 250 A, V = 0 V, T = −40°C  
D
GS  
C
(Figure 12)  
Zero Gate Voltage Drain Current  
I
V
V
V
= 55 V, V = 0 V  
1
A  
A  
nA  
DSS  
DS  
DS  
GS  
GS  
= 50 V, V = 0 V, T = 150°C  
250  
100  
GS  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
I
= 16 V  
GSS  
V
r
V
I
= V , I = 250 A (Figure 11)  
1
3
V
GS(TH)  
GS  
DS  
D
= 20 A, V = 10 V (Figures 9, 10)  
0.0205  
0.024  
0.025  
0.023  
0.027  
0.029  
DS(ON)  
D
GS  
I
= 20 A, V = 5 V (Figure 9)  
GS  
D
D
I
= 20 A, V = 4.5 V (Figure 9)  
GS  
THERMAL SPECIFICATIONS  
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
R
TO−251  
1.36  
100  
°C/W  
°C/W  
JC  
R
JA  
SWITCHING SPECIFICATIONS (V = 4.5 V)  
GS  
Turn−On Time  
t
V
V
= 30 V, I = 20 A  
13  
134  
30  
55  
220  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
D
4
.
5
V
,
R
=
7
.
5
GS  
GS  
Turn−On Delay Time  
Rise Time  
t
d(ON)  
(Figures 15, 21, 22)  
t
r
Turn−Off Delay Time  
Fall Time  
t
d(OFF)  
t
f
Turn−Off Time  
t
130  
OFF  
SWITCHING SPECIFICATIONS (V = 10 V)  
GS  
Turn−On Time  
Turn−On Delay Time  
Rise Time  
t
V
V
= 30 V, I = 20 A  
7.7  
36  
60  
56  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
D
1
0
V
,
R
=
8
.
2
GS  
GS  
t
d(ON)  
(Figures 16, 21, 22)  
t
r
Turn−Off Delay Time  
Fall Time  
t
d(OFF)  
t
f
Turn−Off Time  
t
175  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0 V to 10 V  
= 0 V to 5 V  
= 0 V to 1 V  
V
= 30 V, I = 20 A,  
= 1.0 mA  
38  
21  
46  
25  
1.6  
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
D
I
g(REF)  
Gate Charge at 5 V  
Q
g(5)  
(Figures 14, 19, 20)  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate to Drain ”Miller” Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
1.3  
3.8  
9.7  
g(TH)  
Q
gs  
gd  
Q
C
V
DS  
= 25 V, V = 0 V, f = 1 MHz  
1480  
440  
90  
pF  
pF  
pF  
ISS  
GS  
(Figure 13)  
Output Capacitance  
C
C
OSS  
RSS  
Reverse Transfer Capacitance  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
2
HUFA76429D3  
SOURCE TO DRAIN DIODE SPECIFICATIONS  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
1.25  
1.00  
80  
Unit  
V
Source to Drain Diode Voltage  
V
SD  
I
I
I
I
= 20 A  
= 10 A  
SD  
SD  
SD  
SD  
V
Reverse Recovery Time  
t
rr  
= 20 A, dI /dt = 100 A/s  
ns  
nC  
SD  
Reverse Recovered Charge  
Q
= 20 A, dI /dt = 100 A/s  
230  
RR  
SD  
www.onsemi.com  
3
HUFA76429D3  
TYPICAL PERFORMANCE CURVES  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
25  
20  
15  
10  
5
0
0
25  
50  
75  
100  
125  
150  
175  
25  
50  
75  
100  
125  
150  
175  
T , Case Temperature (°C)  
C
T , Case Temperature (°C)  
C
Figure 1. Normalized Power Dissipation vs.  
Case Temperature  
Figure 2. Maximum Continuous Drain Current  
vs. Case Temperature  
2
Duty Cycle − Descending Order  
0.5  
1
0.2  
0.1  
0.05  
0.01  
0.02  
PDM  
0.1  
t1  
t2  
NOTES:  
Duty Factor: D = t / t  
1
2
Single Pulse  
10−4  
Peak T = P  
x Z  
x R  
+ T  
JC C  
J
DM  
JC  
0.01  
10−3  
10−2  
t, Rectangular Pulse Duration (s)  
10−1  
100  
101  
10−5  
Figure 3. Normalized Maximum Transient Thermal Impedance  
600  
100  
T
= 25°C  
C
For Temperatures above  
25°C Derate Peak Current  
as follows:  
V
GS  
= 10 V  
175 * TC  
Ǹ
I + I25 ƪ ƫ  
150  
V
GS  
= 5 V  
Transconductance may  
limit current in this region  
10  
10−5  
10−4  
10−3  
10−2  
10−1  
100  
101  
t, Pulse Width (s)  
Figure 4. Peak Current Capability  
www.onsemi.com  
4
HUFA76429D3  
TYPICAL PERFORMANCE CURVES (Continued)  
300  
100  
100  
t
= (L) (IAS) / (1.3 x RATED BV  
− V  
)
AV  
DSS  
DD  
If R = 0  
If R 0 0  
t
AV  
= (L / R) ln [(IAS x R) / (1.3 * RATED BV  
− V ) + 1]  
DSS DD  
100 s  
Starting TJ = 25°C  
Operation in this  
area may be limited  
10  
1
1 ms  
by r  
DS(ON)  
Single Pulse  
T = Max Rated  
Starting TJ = 150°C  
10 ms  
J
T
C
= 25°C  
10  
0.01  
1
10  
100  
0.1  
1
10  
V
DS  
, Drain to Source Voltage (V)  
t , Time in Avalanche (ms)  
AV  
NOTE: Refer to onsemi Application Notes AN9321 and AN9322.  
Figure 5. Forward Bias Safe Operating Area  
Figure 6. Unclamped Inductive Switching Capability  
50  
50  
V
GS  
= 10 V  
V
GS  
= 5 V  
Pulse Duration = 80 s  
Duty Cycle = 0.5% Max  
V
GS  
= 4 V  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
DD  
= 15 V  
V
= 3.5 V  
GS  
V
= 3 V  
TJ = 175°C  
GS  
TJ = −55°C  
TJ = 25°C  
Pulse Duration = 80 s  
Duty Cycle = 0.5% Max  
T
C
= 25°C  
1.5  
2
2.5  
3
3.5  
4
0
1
2
3
4
V
GS  
, Gate to Source Voltage (V)  
V
DS  
, Drain to Source Voltage (V)  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
40  
30  
2.5  
2.0  
1.5  
Pulse Duration = 80 s  
Duty Cycle = 0.5% Max  
Pulse Duration = 80 s  
Duty Cycle = 0.5% Max  
V = 10 V, I = 20 A  
GS D  
I
D
= 20 A  
T
C
= 25°C  
I
D
= 10 A  
20  
10  
1.0  
0.5  
−80  
2
4
6
8
10  
−40  
0
40  
80  
120  
160 200  
V
GS  
, Gate to Source Voltage (V)  
T , Junction Temperature (°C)  
J
Figure 9. Drain to Source On Resistance vs.  
Gate Voltage and Drain Current  
Figure 10. Normalized Drain to Source On  
Resistance vs. Junction Temperature  
www.onsemi.com  
5
HUFA76429D3  
TYPICAL PERFORMANCE CURVES (Continued)  
1.2  
1.0  
0.8  
1.2  
V
= V , I = 250 A  
I = 250 A  
D
GS  
DS  
D
1.1  
1.0  
0.9  
0.6  
0.4  
−80  
−40  
0
40  
80  
120  
160 200  
−80  
−40  
0
40  
80  
120  
160 200  
T , Junction Temperature (°C)  
J
T , Junction Temperature (°C)  
J
Figure 11. Normalized Gate Threshold Voltage vs.  
Junction Temperature  
Figure 12. Normalized Darin to Source Breakdown  
Voltage vs. Junction Temperature  
3000  
10  
V
GS  
= 0 V, f = 1 MHz  
V
DD  
= 30 V  
C
= C + C  
ISS  
GS  
GD  
8
6
4
2
0
1000  
C
= C + C  
GS GD  
ISS  
Waveforms in  
descending order  
100  
30  
C
+ C  
I
D
I
D
= 20 A  
= 10 A  
RSS  
GD  
0.1  
1.0  
10  
60  
0
5
10  
15  
20  
25  
30  
35  
40  
V
DS  
, Drain to Source Voltage (V)  
Q , Gate Charge (nC)  
g
NOTE: Refer to onsemi Application Notes AN7254 and AN7260.  
Figure 14. Gate Charge Waveforms for Constant  
Gate Current  
Figure 13. Capacitance vs. Drain to Source Voltage  
300  
400  
V
GS  
= 4.5 V, V = 30 V, I = 20 A  
V
GS  
= 10 V, V = 30 V, I = 20 A  
DS  
D
DS  
D
250  
200  
150  
100  
50  
300  
200  
100  
t
r
t
d(OFF)  
t
f
t
d(OFF)  
t
f
t
r
t
d(ON)  
t
d(ON)  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
, Gate to Source Resistance ()  
R
GS  
, Gate to Source Resistance ()  
GS  
Figure 15. Switching Time vs. Gate Resistance  
Figure 16. Switching Time vs. Gate Resistance  
www.onsemi.com  
6
HUFA76429D3  
TEST CIRCUITS AND WAVEFORMS  
VDS  
BVDSS  
tP  
L
VDS  
IAS  
VARY t to OBTAIN  
P
+
VDD  
VDD  
REQUIRED PEAK I  
RG  
AS  
VGS  
DUT  
0.01  
tP  
IAS  
0 V  
0
tAV  
Figure 17. Unclamped Energy Test Circuit  
Figure 18. Unclamped Energy Waveforms  
VDS  
Qg(TOT)  
VDD  
RL  
VDS  
Qg(5)  
VGS = 10 V  
VGS  
+
VDD  
VGS = 5 V  
VGS  
DUT  
VGS = 1 V  
0
Ig(REF)  
Qg(TH)  
Qgs  
Qgd  
Ig(REF)  
0
Figure 19. Gate Charge Test Circuit  
Figure 20. Gate Charge Waveforms  
tON  
td(ON)  
tOFF  
td(OFF)  
VDS  
tr  
tf  
RL  
VDS  
90%  
90%  
+
VGS  
VDD  
10%  
10%  
0
90%  
50%  
DUT  
RGS  
VGS  
50%  
10%  
0
PULSE WIDTH  
VGS  
Figure 21. Switching Time Test Circuit  
Figure 22. Switching Time Waveforms  
www.onsemi.com  
7
HUFA76429D3  
PSPICE ELECTRICAL MODEL  
.SUBCKT HUFA76429D3 2 1 3 ; rev 5 July 1999  
CA 12 8 2.03e−9  
CB 15 14 2.03e−9  
CIN 6 8 1.39e−9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
EBREAK 11 7 17 18 68.10  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
IT 8 17 1  
LDRAIN 2 5 1e−9  
LGATE 1 9 5.42e−9  
LSOURCE 3 7 4.16e−9  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 9.1e−3  
RGATE 9 20 2.80  
RLDRAIN 2 5 10  
RLGATE 1 9 54.2  
RLSOURCE 3 7 41.6  
RSLC1 5 51 RSLCMOD 1e−6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 6.5e−3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e−6*117),3))}  
.MODEL DBODYMOD D (IS = 1.25e−12 IKF = 10 RS = 8.40e−3 TRS1 = 2.05e−3 TRS2 = 3.85e−6 CJO = 1.68e−9 TT =  
4.90e−8 M = 0.48 XTI = 4.35)  
.MODEL DBREAKMOD D (RS = 1.68e−1 TRS1 = 1e−3 TRS2 = −1e−6)  
.MODEL DPLCAPMOD D (CJO = 1.28e−9 IS = 1e−30 N = 10 M = 0.8)  
.MODEL MMEDMOD NMOS (VTO = 1.98 KP = 3.2 IS = 1e−30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.80)  
.MODEL MSTROMOD NMOS (VTO = 2.30 KP = 52 IS = 1e−30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 1.72 KP = 0.08 IS = 1e−30 N = 10 TOX = 1 L = 1u W = 1u RG = 28.0 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 1.15e−3 TC2 = −5.40e−7)  
www.onsemi.com  
8
HUFA76429D3  
.MODEL RDRAINMOD RES (TC1 = 7.85e−3 TC2 = 1.95e−5)  
.MODEL RSLCMOD RES (TC1 = 4.97e−3 TC2 = 5.05e−6)  
.MODEL RSOURCEMOD RES (TC1 = 1.5e−3 TC2 = 1e−6)  
.MODEL RVTHRESMOD RES (TC1 = −1.85e−3 TC2 = −4.48e−6)  
.MODEL RVTEMPMOD RES (TC1 = −1.92e−3 TC2 = 9.50e−7)  
.MODEL S1AMOD VSWITCH (RON = 1e−5 ROFF = 0.1 VON = −6.2 VOFF= −2.4)  
.MODEL S1BMOD VSWITCH (RON = 1e−5 ROFF = 0.1 VON = −2.4 VOFF= −6.2)  
.MODEL S2AMOD VSWITCH (RON = 1e−5 ROFF = 0.1 VON = −1.1 VOFF= 0.5)  
.MODEL S2BMOD VSWITCH (RON = 1e−5 ROFF = 0.1 VON = 0.5 VOFF= −1.1)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub−Circuit for the Power MOSFET  
Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written  
by William J. Hepp and C. Frank Wheatley.  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
DBREAK  
51  
+
RSLC2  
5
ESLC  
11  
+
51  
50  
17  
18  
DBODY  
RDRAIN  
6
8
EBREAK  
MWEAK  
ESG  
EVTHRES  
+
+
16  
21  
19  
8
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S1B  
S2A  
S2B  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
−  
8
22  
RVTHRES  
Figure 23.  
www.onsemi.com  
9
HUFA76429D3  
SABER ELECTRICAL MODEL  
REV 5 July 1999  
template HUFA76429d3 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
d..model dbodymod = (is = 1.25e−12, cjo = 1.68e−9, tt = 4.90e−8, xti = 4.35, m = 0.48)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 1.28e−9, is = 1e−30, n = 10, m = 0.8)  
m..model mmedmod = (type=_n, vto = 1.98, kp = 3.2, is = 1e−30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 2.30, kp = 52, is = 1e−30, tox = 1)  
m..model mweakmod = (type=_n, vto = 1.72, kp = 0.08, is = 1e−30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e−5, roff = 0.1, von = −6.2, voff = −2.4)  
sw_vcsp..model s1bmod = (ron =1e−5, roff = 0.1, von = −2.4, voff = −6.2)  
sw_vcsp..model s2amod = (ron = 1e−5, roff = 0.1, von = −1.1, voff = 0.5)  
sw_vcsp..model s2bmod = (ron = 1e−5, roff = 0.1, von = 0.5, voff = −1.1)  
c.ca n12 n8 = 2.03e−9  
c.cb n15 n14 = 2.03e−9  
c.cin n6 n8 = 1.39e−9  
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
i.it n8 n17 = 1  
l.ldrain n2 n5 = 1e−9  
l.lgate n1 n9 = 5.42e−9  
l.lsource n3 n7 = 4.16e−9  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1 = 1.15e−3, tc2 = −5.40e−7  
res.rdbody n71 n5 = 8.40e−3, tc1 = 2.05e−3, tc2 = 3.85e−6  
res.rdbreak n72 n5 = 1.68e−1, tc1 = 1.00e−3, tc2 = −1.00e−6  
res.rdrain n50 n16 = 9.10e−3, tc1 = 7.85e−3, tc2 = 1.95e−5  
res.rgate n9 n20 = 2.80  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 54.2  
res.rlsource n3 n7 = 41.6  
res.rslc1 n5 n51 = 1e−6, tc1 = 4.97e−3, tc2 = 5.05e−6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 6.5e−3, tc1 = 1.5e−3, tc2 = 1e−6  
res.rvtemp n18 n19 = 1, tc1 = −1.92e−3, tc2 = 9.50e−7  
res.rvthres n22 n8 = 1, tc1 = −1.85e−3, tc2 = −4.48e−6  
spe.ebreak n11 n7 n17 n18 = 68.10  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
www.onsemi.com  
10  
HUFA76429D3  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51−>n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e−9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/117))** 3))  
}
}
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
5
DRAIN  
2
10  
RSLC1  
RDBREAK  
51  
RSLC2  
72  
ISCL  
DBREAK  
50  
71  
RDRAIN  
6
8
11  
ESG  
EVTHRES  
+
+
16  
21  
19  
8
MWEAK  
EBREAK  
LGATE  
EVTEMP  
+
DBODY  
RGATE  
GATE  
1
6
18  
22  
MMED  
+
9
20  
MSTRO  
8
17  
18  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
−  
8
22  
RVTHRES  
Figure 24.  
www.onsemi.com  
11  
HUFA76429D3  
JUNCTION  
th  
SPICE THERMAL MODEL  
REV 26 July 1999  
HUFA76429D3  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM1 th 6 2.45e−3  
CTHERM2 6 5 8.15e−3  
CTHERM3 5 4 7.40e−3  
CTHERM4 4 3 7.45e−3  
CTHERM5 3 2 1.01e−2  
CTHERM6 2 tl 7.49e−2  
6
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
RTHERM1 th 6 9.00e−3  
RTHERM2 6 5 1.80e−2  
RTHERM3 5 4 9.15e−2  
RTHERM4 4 3 2.43e−1  
RTHERM5 3 2 3.50e−1  
RTHERM6 2 tl 3.62e−1  
5
4
3
2
SABER THERMAL MODEL  
SABER thermal model HUFA76429D3  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 2.45e−3  
ctherm.ctherm2 6 5 = 8.15e−3  
ctherm.ctherm3 5 4 = 7.40e−3  
ctherm.ctherm4 4 3 = 7.45e−3  
ctherm.ctherm5 3 2 = 1.01e−2  
ctherm.ctherm6 2 tl = 7.49e−2  
rtherm.rtherm1 th 6 = 9.00e−3  
rtherm.rtherm2 6 5 = 1.80e−2  
rtherm.rtherm3 5 4 = 9.15e−2  
rtherm.rtherm4 4 3 = 2.43e−1  
rtherm.rtherm5 3 2 = 3.50e−1  
rtherm.rtherm6 2 tl = 3.62e−1  
}
tl  
CASE  
Figure 25.  
PSPICE is a trademark of MicroSim Corporation.  
Saber is a registered trademark of Sabremark Limited Partnership.  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
DPAK3 (IPAK)  
CASE 369AR  
ISSUE O  
DATE 30 SEP 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13815G  
DPAK3 (IPAK)  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

HUFA76429D3S

20A, 60V, 0.027 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
FAIRCHILD

HUFA76429D3ST

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 20A I(D) | TO-252AA
FAIRCHILD

HUFA76429D3ST-F085

N 沟道,逻辑电平,UltraFET 功率 MOSFET,60V,20A,27mΩ
ONSEMI

HUFA76429D3ST_F085

Power Field-Effect Transistor, 20A I(D), 60V, 0.029ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT PACKAGE-3
FAIRCHILD

HUFA76429D3T

Power Field-Effect Transistor, 20A I(D), 60V, 0.029ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-251AA, TO-251AA, 3 PIN
FAIRCHILD

HUFA76429D3_NL

Power Field-Effect Transistor, 20A I(D), 60V, 0.029ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-251AA,
FAIRCHILD

HUFA76429P3

44A, 60V, 0.025 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
FAIRCHILD

HUFA76429S3S

44A, 60V, 0.025 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
FAIRCHILD

HUFA76429S3ST

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 47A I(D) | TO-263AB
ETC

HUFA76432P3

55A, 60V, 0.019 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
FAIRCHILD

HUFA76432S3S

55A, 60V, 0.019 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
FAIRCHILD

HUFA76432S3ST

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 55A I(D) | TO-263AB
ETC