J309 [ONSEMI]

JFET VHF/UHF Amplifiers; JFET VHF / UHF放大器
J309
型号: J309
厂家: ONSEMI    ONSEMI
描述:

JFET VHF/UHF Amplifiers
JFET VHF / UHF放大器

晶体 放大器 晶体管
文件: 总8页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by J308/D  
SEMICONDUCTOR TECHNICAL DATA  
N–Channel — Depletion  
1 DRAIN  
Motorola Preferred Devices  
3
GATE  
2 SOURCE  
MAXIMUM RATINGS  
Rating  
DrainSource Voltage  
Gate–Source Voltage  
Forward Gate Current  
Symbol  
Value  
Unit  
1
V
25  
25  
10  
Vdc  
Vdc  
DS  
GS  
GF  
2
3
V
CASE 29–04, STYLE 5  
TO–92 (TO–226AA)  
I
mAdc  
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
350  
2.8  
mW  
mW/°C  
A
Junction Temperature Range  
Storage Temperature Range  
T
65 to +125  
65 to +150  
°C  
°C  
J
T
stg  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Typ  
Max  
Unit  
GateSource Breakdown Voltage  
V
25  
Vdc  
(BR)GSS  
(I = –1.0 µAdc, V  
DS  
= 0)  
G
Gate Reverse Current  
I
GSS  
(V  
GS  
(V  
GS  
= –15 Vdc, V  
= –15 Vdc, V  
= 0, T = 25°C)  
–1.0  
–1.0  
nAdc  
µAdc  
DS  
DS  
A
= 0, T = +125°C)  
A
Gate Source Cutoff Voltage  
(V = 10 Vdc, I = 1.0 nAdc)  
V
Vdc  
GS(off)  
J308  
J309  
J310  
1.0  
1.0  
2.0  
6.5  
4.0  
6.5  
DS  
D
ON CHARACTERISTICS  
(1)  
ZeroGateVoltage Drain Current  
I
mAdc  
DSS  
(V  
DS  
= 10 Vdc, V  
= 0)  
J308  
J309  
J310  
12  
12  
24  
60  
30  
60  
GS  
Gate–Source Forward Voltage  
(V = 0, I = 1.0 mAdc)  
V
GS(f)  
1.0  
Vdc  
DS  
G
SMALLSIGNAL CHARACTERISTICS  
Common–Source Input Conductance  
Re(y )  
is  
mmhos  
(V  
DS  
= 10 Vdc, I = 10 mAdc, f = 100 MHz)  
J308  
J309  
J310  
0.7  
0.7  
0.5  
D
Common–Source Output Conductance  
(V = 10 Vdc, I = 10 mAdc, f = 100 MHz)  
Re(y  
)
0.25  
mmhos  
dB  
os  
DS  
Common–Gate Power Gain  
(V = 10 Vdc, I = 10 mAdc, f = 100 MHz)  
D
G
16  
pg  
DS  
D
1. Pulse Test: Pulse Width  
300 µs, Duty Cycle  
3.0%.  
Motorola, Inc. 1997  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
SMALLSIGNAL CHARACTERISTICS (continued)  
Common–Source Forward Transconductance  
Symbol  
Min  
Typ  
Max  
Unit  
Re(y  
)
12  
12  
mmhos  
mmhos  
µmhos  
fs  
(V  
DS  
= 10 Vdc, I = 10 mAdc, f = 100 MHz)  
D
Common–Gate Input Conductance  
(V = 10 Vdc, I = 10 mAdc, f = 100 MHz)  
Re(y )  
ig  
DS  
Common–Source Forward Transconductance  
(V = 10 Vdc, I = 10 mAdc, f = 1.0 kHz)  
D
g
fs  
J308  
J309  
J310  
8000  
10000  
8000  
20000  
20000  
18000  
DS  
D
Common–Source Output Conductance  
(V = 10 Vdc, I = 10 mAdc, f = 1.0 kHz)  
g
250  
µmhos  
µmhos  
os  
DS  
Common–Gate Forward Transconductance  
(V = 10 Vdc, I = 10 mAdc, f = 1.0 kHz)  
D
g
fg  
J308  
J309  
J310  
13000  
13000  
12000  
DS  
D
Common–Gate Output Conductance  
(V = 10 Vdc, I = 10 mAdc, f = 1.0 kHz)  
g
og  
µmhos  
J308  
J309  
J310  
150  
100  
150  
DS  
D
Gate–Drain Capacitance  
(V = 0, V = –10 Vdc, f = 1.0 MHz)  
C
C
1.8  
2.5  
pF  
pF  
gd  
DS  
Gate–Source Capacitance  
(V = 0, V = –10 Vdc, f = 1.0 MHz)  
GS  
4.3  
5.0  
gs  
DS  
GS  
FUNCTIONAL CHARACTERISTICS  
Noise Figure  
NF  
1.5  
10  
dB  
(V  
DS  
= 10 Vdc, I = 10 mAdc, f = 450 MHz)  
D
Equivalent Short–Circuit Input Noise Voltage  
(V = 10 Vdc, I = 10 mAdc, f = 100 Hz)  
e
n
nV Hz  
DS  
D
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
50 Ω  
U310  
50 Ω  
SOURCE  
LOAD  
C3  
L2  
P
L2  
S
L1  
C5  
C1  
C2  
C4  
C6  
C7  
1.0 k  
RFC  
+V  
DD  
C1 = C2 = 0.8 – 10 pF, JFD #MVM010W.  
C3 = C4 = 8.35 pF Erie #539–002D.  
C5 = C6 = 5000 pF Erie (2443–000).  
C7 = 1000 pF, Allen Bradley #FA5C.  
RFC = 0.33 µH Miller #9230–30.  
L1 = One Turn #16 Cu, 1/4I.D. (Air Core).  
L2 = One Turn #16 Cu, 1/4I.D. (Air Core).  
P
L2 = One Turn #16 Cu, 1/4I.D. (Air Core).  
S
Figure 1. 450 MHz Common–Gate Amplifier Test Circuit  
70  
35  
70  
60  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5.0  
0
T = 55°C  
A
V
= 10 V  
DS  
f = 1.0 MHz  
V
= 10 V  
T = 55°C  
A
DS  
+25°C  
+25°C  
50  
40  
30  
20  
10  
+25°C  
I
DSS  
+25°C  
+150°C  
55°C  
+150°C  
+150°C  
+25°C  
55°C  
+150°C  
–1.0  
0
–5.0  
–4.0  
–3.0  
–2.0  
1.0  
, GATE–SOURCE VOLTAGE (VOLTS)  
0
5.0  
4.0  
3.0  
2.0  
I
– V , GATE–SOURCE VOLTAGE (VOLTS)  
GS  
D
V
GS  
I
– V , GATE–SOURCE CUTOFF VOLTAGE (VOLTS)  
DSS GS  
Figure 2. Drain Current and Transfer  
Characteristics versus Gate–Source Voltage  
Figure 3. Forward Transconductance  
versus Gate–Source Voltage  
100 k  
10 k  
10  
120  
96  
72  
48  
24  
0
1.0 k  
100  
R
DS  
Y
fs  
Y
fs  
7.0  
4.0  
C
gs  
V
V
= –2.3 V =  
= –5.7 V =  
10  
1.0 k  
100  
GS(off)  
GS(off)  
Y
os  
C
gd  
1.0  
0
1.0  
0.01  
0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100  
10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0  
0
I , DRAIN CURRENT (mA)  
D
V , GATE SOURCE VOLTAGE (VOLTS)  
GS  
Figure 4. Common–Source Output  
Admittance and Forward Transconductance  
versus Drain Current  
Figure 5. On Resistance and Junction  
Capacitance versus Gate–Source Voltage  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
|S |, |S  
|
|S |, |S |  
12 22  
21 11  
0.85 0.45  
0.060 1.00  
30  
24  
18  
12  
6.0  
0
3.0  
2.4  
1.8  
1.2  
0.6  
S
22  
V
= 10 V  
= 10 mA  
DS  
0.79 0.39  
0.73 0.33  
0.67 0.27  
0.61 0.21  
0.55 0.15  
0.048 0.98  
0.036 0.96  
0.024 0.94  
0.012 0.92  
0.90  
I
D
S
21  
T = 25°C  
A
Y
11  
V
= 10 V  
= 10 mA  
DS  
I
D
T = 25°C  
A
Y
21  
S
11  
Y
22  
S
12  
Y
12  
500 700 1000  
f, FREQUENCY (MHz)  
100  
200  
300  
500 700 1000  
100  
200  
300  
f, FREQUENCY (MHz)  
Figure 6. Common–Gate Y Parameter  
Magnitude versus Frequency  
Figure 7. Common–Gate S Parameter  
Magnitude versus Frequency  
θ
, θ  
21 11  
θ
, θ  
12 22  
θ
, θ  
11 12  
θ
, θ  
21 22  
180° 50°  
170° 40°  
160° 30°  
150° 20°  
140° 10°  
20° 87°  
20° 120°  
40° 100°  
60° 80°  
80° 60°  
100° 40°  
120° 20°  
0
θ
11  
θ
22  
20°  
θ
21  
40° 86°  
60°  
θ
20°  
40°  
60°  
80°  
100°  
22  
θ
21  
80° 85°  
100°  
120° 84°  
140°  
θ
21  
θ
12  
θ
θ
12  
11  
V
= 10 V  
V
= 10 V  
= 10 mA  
DS  
= 10 mA  
160° 83°  
180°  
DS  
θ
11  
I
I
D
D
T = 25°C  
T = 25°C  
A
A
130°  
0°  
100  
200° 82°  
200  
300  
500 700 1000  
100  
200  
300  
500 700 1000  
f, FREQUENCY (MHz)  
f, FREQUENCY (MHz)  
Figure 8. Common–Gate Y Parameter  
Phase–Angle versus Frequency  
Figure 9. S Parameter Phase–Angle  
versus Frequency  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
24  
21  
18  
15  
12  
9.0  
6.0  
3.0  
0
7.0  
6.0  
26  
22  
18  
14  
V
= 20 V  
DD  
f = 450 MHz  
BW 10 MHz  
CIRCUIT IN FIGURE 1  
5.0  
4.0  
3.0  
2.0  
1.0  
0
G
pg  
V
= 10 V  
= 10 mA  
G
DS  
pg  
I
D
NF  
T = 25°C  
A
CIRCUIT IN FIGURE 1  
10  
NF  
6.0  
2.0  
4.0 6.0 8.0 10 12  
14 16  
18 20  
22  
24  
50  
100  
200 300 500 700 1000  
I , DRAIN CURRENT (mA)  
D
f, FREQUENCY (MHz)  
Figure 10. Noise Figure and  
Power Gain versus Drain Current  
Figure 11. Noise Figure and Power Gain  
versus Frequency  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
C1  
C6  
U310  
D
B
(3 dB) – 36.5 MHz  
– 10 mAdc  
– 20 Vdc  
S
W
I
V
D
DS  
G
C4  
C3  
L1  
L3  
INPUT  
R = 50 Ω  
OUTPUT  
R = 50 Ω  
L
Device case grounded  
IM test tones – f1 = 449.5 MHz, f2 = 450.5 MHz  
S
C2  
L2  
C5  
C1 = 1–10 pF Johanson Air variable trimmer.  
C2, C5 = 100 pF feed thru button capacitor.  
C3, C4, C6 = 0.5–6 pF Johanson Air variable  
trimmer.  
L4  
L1 = 1/8x 1/32x 1–5/8copper bar.  
L2, L4 = Ferroxcube Vk200 choke.  
L3 = 1/8x 1/32x 1–7/8copper bar.  
V
S
V
D
SHIELD  
Figure 12. 450 MHz IMD Evaluation Amplifier  
Amplifier power gain and IMD products are a function of the load impedance. For the amplifier design shown above with C4 and  
C6 adjusted to reflect a load to the drain resulting in a nominal power gain of 9 dB, the 3rd order intercept point (IP) value is  
29 dBm. Adjusting C4, C6 to provide larger load values will result in higher gain, smaller bandwidth and lower IP values. For  
example, a nominal gain of 13 dB can be achieved with an intercept point of 19 dBm.  
+40  
U310 JFET  
3RD ORDER INTERCEPT POINT  
+20  
0
V
= 20 Vdc  
= 10 mAdc  
DS  
I
D
F1 = 449.5 MHz  
F2 = 450.5 MHz  
–20  
–40  
–60  
–80  
–100  
–120  
FUNDAMENTAL OUTPUT  
Example of intercept point plot use:  
Assume two in–band signals of –20 dBm at the amplifier input.  
They will result in a 3rd order IMD signal at the output of  
–90 dBm. Also, each signal level at the output will be  
–11 dBm, showing an amplifier gain of 9.0 dB and an  
intermodulation ratio (IMR) capability of 79 dB. The gain and  
IMR values apply only for signal levels below comparison.  
3RD ORDER IMD OUTPUT  
–60  
–40  
–20  
0
+20  
–120  
–100  
–80  
INPUT POWER PER TONE (dBm)  
Figure 13. Two Tone 3rd Order Intercept Point  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R  
IS UNCONTROLLED.  
A
B
4. DIMENSION F APPLIES BETWEEN P AND L.  
DIMENSION D AND J APPLY BETWEEN L AND K  
MINIMUM. LEAD DIMENSION IS UNCONTROLLED  
IN P AND BEYOND DIMENSION K MINIMUM.  
R
P
L
F
SEATING  
PLANE  
K
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
4.45  
4.32  
3.18  
0.41  
0.41  
1.15  
2.42  
0.39  
MAX  
5.20  
5.33  
4.19  
0.55  
0.48  
1.39  
2.66  
0.50  
–––  
A
B
C
D
F
G
H
J
K
L
N
P
0.175  
0.170  
0.125  
0.016  
0.016  
0.045  
0.095  
0.015  
0.500  
0.250  
0.080  
–––  
0.205  
0.210  
0.165  
0.022  
0.019  
0.055  
0.105  
0.020  
D
X X  
G
J
H
V
C
––– 12.70  
–––  
0.105  
0.100  
–––  
6.35  
2.04  
–––  
2.93  
3.43  
–––  
SECTION X–X  
2.66  
2.54  
–––  
1
N
R
V
0.115  
0.135  
N
–––  
–––  
STYLE 5:  
PIN 1. DRAIN  
CASE 029–04  
(TO–226AA)  
ISSUE AD  
2. SOURCE  
3. GATE  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
Mfax is a trademark of Motorola, Inc.  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
J308/D  

相关型号:

J309(OPTION18)

Small Signal Field-Effect Transistor, 1-Element, N-Channel, Silicon, Junction FET, TO-92
TI

J309-18

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-92, 3 PIN
TI

J309-5

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-92, 3 PIN
TI

J309-AMMO

TRANSISTOR UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-92, FET RF Small Signal
NXP

J309-E3

Transistor
VISHAY

J309-J14Z

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-92, 3 PIN
TI

J309-J22Z

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-92, 3 PIN
TI

J309-J25Z

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-92, 3 PIN
TI

J309-J61Z

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-92, 3 PIN
TI

J309-T/R

TRANSISTOR UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-92, TO-92, 3 PIN, FET RF Small Signal
NXP

J309-TA

Transistor
VISHAY

J309-TA-E3

Transistor
VISHAY