KAF-09000 [ONSEMI]

Full Frame CCD Image Sensor;
KAF-09000
型号: KAF-09000
厂家: ONSEMI    ONSEMI
描述:

Full Frame CCD Image Sensor

CD
文件: 总21页 (文件大小:456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KAF-09000  
3056 (H) x 3056 (V) Full  
Frame CCD Image Sensor  
Description  
Combining high resolution with outstanding sensitivity, the  
KAF09000 image sensor has been specifically designed to meet the  
needs of nextgeneration low cost digital radiography and scientific  
imaging systems. The high sensitivity available from 12micron  
square pixels combines with a low noise architecture to allow system  
designers to improve overall image quality, or to relax system  
tolerances to achieve lower cost. The excellent uniformity of the  
KAF09000 image sensor improves overall image integrity by  
simplifying image corrections, while integrated antiblooming  
protection prevents image bleed from overexposure in bright areas of  
the image. To simplify device integration, the KAF09000 image  
sensor uses the same pinout and package as the KAF16801 image  
sensor.  
www.onsemi.com  
The sensor utilizes the TRUESENSE Transparent Gate Electrode to  
improve sensitivity compared to the use of a standard frontside  
illuminated polysilicon electrode.  
Figure 1. KAF09000 CCD Image Sensor  
Table 1. GENERAL SPECIFICATIONS  
Features  
Parameter  
Typical Value  
TRUESENSE Transparent Gate Electrode  
for High Sensitivity  
Large Pixel Size  
Large Image Area  
High Quantum Efficiency  
Low Noise Architecture  
Broad Dynamic Range  
Architecture  
Full Frame CCD [Square Pixels]  
3103 (H) x 3086 (V) = 9.6 Mp  
3085 (H) x 3085 (V) = 9.5 Mp  
3056 (H) x 3056 (V) = 9.3 Mp  
12 mm (H) x 12 mm (V)  
Total Number of Pixels  
Number of Effective Pixels  
Number of Active Pixels  
Pixel Size  
Active Image Size  
36.7 mm (H) x 36.7 mm (V)  
51.9 mm diagonal,  
645 1.3x optical format  
Applications  
Aspect Ratio  
Square  
1
Horizontal Outputs  
Saturation Signal  
Medical  
Scientific  
110 ke  
Output Sensitivity  
24 mV/e  
Quantum Efficiency (550 nm)  
Responsivity (550 nm)  
64%  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
2
2595 ke/mJ/cm  
62.3 V/mJ/cm  
2
Read Noise (f = 3 MHz)  
7 e  
Dark Signal (T = 25°C)  
5 e/pix/sec  
Dark Current Doubling Temperature  
Linear Dynamic Range (f = 4 MHz)  
7°C  
84 dB  
Blooming Protection  
(4 ms exposure time)  
> 100 X saturation exposure  
Maximum Data Rate  
Package  
10 MHz  
CERDIP, (sidebrazed pins, CuW)  
AR coated 2 sides Taped Clear  
Cover Glass  
NOTE: Parameters above are specified at T = 25°C unless otherwise noted.  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
February, 2015 Rev. 3  
KAF09000/D  
KAF09000  
ORDERING INFORMATION  
Table 2. ORDERING INFORMATION  
Part Number  
Description  
Marking Code  
KAF09000ABADPBA  
KAF09000ABADPAE  
KAF09000ABADDBA  
KAF09000ABADDAE  
Monochrome, Microlens, CERDIP Package, (sidebrazed, CuW),  
Taped clear coverglass, Standard grade  
KAF09000ABA  
[Serial Number]  
Monochrome, Microlens, CERDIP Package, (sidebrazed, CuW),  
Taped clear coverglass, Engineering sample  
Monochrome, Microlens, CERDIP Package, (sidebrazed, CuW),  
AR coated 2 sides, Standard grade  
Monochrome, Microlens, CERDIP Package, (sidebrazed, CuW),  
AR coated 2 sides, Engineering sample  
See the ON Semiconductor Device Nomenclature document (TND310/D) for a full description of the naming convention  
used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at  
www.onsemi.com.  
www.onsemi.com  
2
KAF09000  
DEVICE DESCRIPTION  
Architecture  
1 Test Row  
9
V1  
V2  
KAF09000  
4 1 3 20  
9 1 8  
3056 H x 3056 V  
LOD  
12 μm x 12 μm Pixels  
OG  
RD  
RG  
20 Dark  
3056  
VDD  
VOUT  
VSS  
6 4 1 3 20  
9 1 2  
1
SUB  
H1  
H2  
Figure 2. Block Diagram  
Dark Reference Pixels  
formation of potential wells at each pixel site. The number  
of electrons collected is linearly dependent on light level and  
exposure time and nonlinearly dependent on wavelength.  
When the pixel’s capacity is reached, excess electrons are  
discharged into the lateral overflow drain to prevent  
crosstalk or ‘blooming’. During the integration period, the  
V1 and V2 register clocks are held at a constant (low) level.  
The periphery of the device is surrounded with a border of  
light shielded pixels creating a dark region. Within this dark  
region, there are 20 leading dark pixels on every line as well  
as 20 full dark lines at the start and 9 full dark lines at the end  
of every frame. Under normal circumstances, these pixels do  
not respond to light and may be used as a dark reference.  
Dummy Pixels  
Charge Transport  
Within each horizontal shift register there are 14 leading  
pixels and 3 trailing pixels. These are designated as dummy  
pixels and should not be used to determine a dark reference  
level.  
The integrated charge from each pixel is transported to the  
output using a twostep process. Each line (row) of charge  
is first transported from the vertical CCDs to a horizontal  
CCD register using the V1 and V2 register clocks. The  
horizontal CCD is presented a new line on the falling edge  
of V2 while H1 is held high. The horizontal CCDs then  
transport each line, pixel by pixel, to the output structure by  
alternately clocking the H1 and H2 pins in a complementary  
fashion.  
Image Acquisition  
An electronic representation of an image is formed when  
incident photons falling on the sensor plane create  
electronhole pairs within the device. These  
photoninduced electrons are collected locally by the  
www.onsemi.com  
3
KAF09000  
HORIZONTAL REGISTER  
Output Structure  
H2  
H1  
HCCD  
Charge  
Transfer  
VDD  
OG  
RG  
RD  
Floating  
Diffusion  
VOUT  
VSS  
Source  
Follower  
#1  
Source  
Follower  
#2  
Source  
Follower  
#3  
Figure 3. Output Architecture (Left or Right)  
The output consists of a floating diffusion capacitance  
connected to a threestage source follower. Charge  
presented to the floating diffusion (FD) is converted into a  
voltage and is current amplified in order to drive offchip  
loads. The resulting voltage change seen at the output is  
linearly related to the amount of charge placed on the FD.  
Once the signal has been sampled by the system electronics,  
the reset gate (RG) is clocked to remove the signal and FD  
is reset to the potential applied by reset drain (RD).  
Increased signal at the floating diffusion reduces the voltage  
seen at the output pin. To activate the output structure, an  
offchip current source must be added to the VOUT pin of  
the device. See Figure 4.  
www.onsemi.com  
4
KAF09000  
Output Load  
VDD = +15 V  
Iout = 5 mA  
0.1 μF  
VOUT  
2N3904  
or Equiv.  
Buffered  
Video  
Output  
140 W  
1 kW  
Note: Component values may be revised based on operating conditions and other design considerations.  
Figure 4. Recommended Output Structure Load Diagram  
www.onsemi.com  
5
 
KAF09000  
PHYSICAL DESCRIPTION  
Pin Description and Device Orientation  
SUB  
V2  
1
2
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
V2  
V2  
V1  
(3056,3056)  
V2  
3
V1  
4
V1  
V1  
5
SUB  
N/C  
N/C  
N/C  
N/C  
SUB*  
N/C  
N/C  
N/C  
LOD  
N/C  
N/C  
SUB*  
SUB*  
SUB  
OG  
6
7
8
9
10  
11  
12  
13  
VDD  
VOUT 14  
N/C  
H2  
VSS  
RD  
15  
16  
17  
Pixel (1,1)  
H1  
RG  
SUB  
Notes: 1. Pins with the same name are to be tied together on the circuit board and have the same timing.  
2. Unlike the KAF16801, pins 9, 10, and, 25 are internally connected to SUB. They may be connected to SUB  
on the printed circuit board or may be left floating.  
Figure 5. Pinout Diagram  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
SUB  
H1  
Substrate  
Table 3. PIN DESCRIPTION  
Horizontal Phase 1  
Horizontal Phase 2  
No Connection  
Pin  
1
Name  
SUB  
V2  
Description  
H2  
Substrate  
N/C  
N/C  
N/C  
N/C  
SUB*  
N/C  
N/C  
N/C  
N/C  
SUB  
V1  
2
Vertical CCD Clock Phase 2  
Vertical CCD Clock Phase 2  
Vertical CCD Clock Phase 1  
Vertical CCD Clock Phase 1  
Anti Blooming Drain  
No Connection  
No Connection  
3
V2  
No Connection  
4
V1  
No Connection  
5
V1  
No Connection  
6
LOD  
N/C  
N/C  
SUB*  
SUB*  
SUB  
OG  
No Connection  
7
No Connection  
8
No Connection  
No Connection  
9
No Connection  
No Connection  
10  
11  
12  
13  
14  
15  
16  
17  
No Connection  
Substrate  
Substrate  
Vertical CCD Clock Phase 1  
Vertical CCD Clock Phase 1  
Vertical CCD Clock Phase 2  
Vertical CCD Clock Phase 2  
Output Gate  
V1  
VDD  
VOUT  
VSS  
RD  
Output Amplifier Supply  
Video Output  
V2  
V2  
Output Amplifier Return  
Reset Drain  
*Unlike the KAF16801, pins 9, 10, and, 25 are internally connected  
to SUB. They may be connected to SUB on the printed circuit board  
or must be left floating.  
RG  
Reset Gate  
www.onsemi.com  
6
KAF09000  
IMAGING PERFORMANCE  
Table 4. TYPICAL OPERATIONAL CONDITIONS  
Description  
Read out time treadout  
Integration time (tint)  
Horizontal clock frequency  
Temperature  
Condition Unless otherwise noted  
Notes  
2533 ms  
variable  
4 MHz  
25°C  
Includes over clock pixels  
Room temperature  
Mode  
integrate – readout cycle  
Operation  
Nominal operating voltages and timing with min. vertical  
pulse width tVw = 20 ms  
Table 5. SPECIFICATIONS  
Description  
Symbol  
Min.  
Nom.  
110k  
64  
Max.  
Units  
Notes  
Verification Plan  
11  
Saturation Signal  
Ne  
95k  
e
die  
sat  
12  
Quantum Efficiency (550 nm)  
Photo Response NonLinearity  
Photo Response NonUniformity  
Integration Dark Signal  
QE  
%
%
1
2
3
4
design  
design  
12  
PRNL  
PRNU  
1
11  
0.5  
5
2.5  
20  
%
die  
die  
11  
Vdark, int  
e/pix/sec  
2
0.6  
80  
2.8  
320  
20  
pA/cm  
11  
11  
Read out Dark Signal  
Vdark, read  
DSNU  
ΔT  
electrons  
e/pix/sec  
°C  
5
6
die  
Dark Signal NonUniformity  
Dark Signal Doubling Temperature  
Read Noise  
die  
12  
7
7
design  
design  
design  
design  
design  
12  
12  
12  
12  
NR  
14  
e rms  
7
8
9
Linear Dynamic Range  
Blooming Protection  
DR  
84  
dB  
x Vsat  
mV/e  
V
Xab  
100  
Output Amplifier Sensitivity  
DC Offset, output amplifier  
Output Amplifier Bandwidth  
Output Impedance, Amplifier  
Vout/Ne  
24  
Vrd2.0  
88  
11  
Vodc  
Vrd4  
10  
die  
12  
f
MHz  
W
design  
3dB  
11  
ROUT  
150  
250  
die  
1. Increasing output load currents to improve bandwidth will decrease these values.  
2. Worst case deviation from straight line fit, between 1% and 90% of Vsat.  
3. One Sigma deviation of a 128 x 128 sample when CCD illuminated uniformly.  
4. Average of all pixels with no illumination at 25°C.  
5. Read out dark current depends on the read out time, primarily when the vertical CCD clocks are at their high levels. This is approximately  
0.125 sec/image for nominal timing conditions, tVw = 20 ms. The read out dark current will increase as tVw is increased. The readout dark  
current is also dependent on the operating temperature. The specification applies to 25°C.  
6. Average integration dark signal of any of 32 x 32 blocks within the sensor. (each block is 128 x 128 pixels)  
7. Output amplifier noise only. Operating at pixel frequency up to 4 MHz, bandwidth <20 MHz, tint = 0, and no dark current shot noise.  
8. 20log (Vsat/VN)  
9. Xab is the number of times above the Vsat illumination level that the sensor will bloom by spot size doubling. The spot size is 10% of the  
imager height. Xab is measured at 4 ms.  
10.Video level offset with respect to ground.  
11. A parameter that is measured on every sensor during production testing.  
12.A parameter that is quantified during the design verification activity.  
www.onsemi.com  
7
KAF09000  
TYPICAL PERFORMANCE CURVES (QE)  
KAF09000 Spectral Response  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
Wavelength (nm)  
Figure 6. Typical Spectral Response  
KAF09000 Angle Response  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Horizontal  
Vertical  
40 35 30 25 20 15 10 5  
0
5
10 15 20 25 30 35 40  
Degrees  
Figure 7. Typical Angle Response  
www.onsemi.com  
8
KAF09000  
KAF09000 Dark Current  
100  
10  
1
Integration  
Read out  
10  
5  
0
5
10  
15  
20  
25  
30  
0.1  
Temperature (C)  
Figure 8. Dark Current  
KAF09000 Noise Floor  
System noise = 6.5 electrons (10MHz bandwidth)  
20  
15  
10  
5
0
20  
10  
0
10  
20  
30  
40  
Temperature (C)  
Total Noise (Dark current, amplifier,  
system)  
CCD only (dark current, amplifier)  
Figure 9. Noise Floor  
www.onsemi.com  
9
KAF09000  
KAF09000 Linearity  
1000000  
100000  
10000  
1000  
100  
10  
1
1
10  
100  
1000  
10000  
0.1  
0.01  
Integration time (Arbitrary)  
measured  
percent deviation from fit  
fit  
Figure 10. Linearity  
www.onsemi.com  
10  
KAF09000  
DEFECT DEFINITIONS  
Operating Conditions  
All cosmetic tests performed at approximately 25°C.  
Table 6. SPECIFICATIONS  
Classification  
Points  
Clusters  
Columns  
Includes Dead Columns  
Standard Grade  
< 200  
< 20  
< 10  
yes  
Point Defects  
Column Defect  
A grouping of more than 10 point defects along a single  
column  
Dark: A pixel, which deviates by more than 6% from  
neighboring pixels when illuminated to 70% of saturation  
or−  
or−  
A column containing a pixel with dark current  
> 15,000 e/pixel/sec (bright column)  
or−  
Bright: A Pixel with dark current > 3,000 e/pixel/sec at 25°C  
Cluster Defect  
A column that does not meet the CTE specification for all  
exposures less than the specified Max sat. signal level and  
A grouping of not more than 10 adjacent point defects  
Cluster defects are separated by no less than 4 good pixels  
in any direction  
greater than 2 ke  
A pixel, which loses more than 250 e under 2 ke  
illumination (trap defect)  
Column defects are separated by no less than 4 good  
columns. No multiple column defects (double or more) will  
be permitted.  
Column and cluster defects are separated by at least 4  
good columns in the x direction.  
www.onsemi.com  
11  
KAF09000  
OPERATION  
Table 7. ABSOLUTE MAXIMUM RATINGS  
Description  
Diode Pin Voltages  
Symbol  
Minimum  
Maximum  
+20  
Units  
V
Notes  
V
diode  
V
gate1  
–0.5  
18  
1, 2  
1, 3  
4
Adjacent Gate Pin Voltages  
Isolated Gate Pin Voltages  
Output Bias Current  
+18  
V
V
0.5  
+20  
V
12  
out  
I
30  
mA  
V
5
LOD Diode Voltage  
V
LOD  
0.5  
60  
13.0  
60  
6
Operating Temperature  
T
OP  
°C  
7
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Referenced to pin SUB  
2. Includes pins: RD, VDD, VSS, VOUT.  
3. Includes pins: V1, V2, H1, H2, VOG.  
4. Includes pins: RG.  
5. Avoid shorting output pins to ground or any low impedance source during operation. Amplifier bandwidth increases at higher currents and  
lower load capacitance at the expense of reduced gain (sensitivity). Operation at these values will reduce MTTF.  
6. V1, H1, V2, H2, H1L, VOG, and RD are tied to 0 V.  
7. Noise performance will degrade at higher temperatures due to the temperature dependence of the dark current.  
8. Absolute maximum rating is defined as a level or condition that should not be exceeded at any time. If the level or condition is exceeded,  
the device will be degraded and may be damaged.  
Powerup Sequence  
The sequence chosen to perform an initial powerup is not  
critical for device reliability. A coordinated sequence may  
minimize noise and the following sequence is  
recommended:  
1. Connect the ground pins (SUB).  
2. Supply the appropriate biases and clocks to the  
remaining pins.  
Table 8. DC BIAS OPERATING CONDITIONS  
Maximum DC  
Current (mA)  
Description  
Reset Drain  
Symbol  
Minimum  
12.8  
Nominal  
Maximum  
13.2  
Units  
V
Notes  
V
RD  
13  
2.0  
15.0  
0
I
= 0.01  
= 3.0  
RD  
Output Amplifier Supply  
Output Amplifier Return  
Substrate  
V
1.8  
2.2  
V
I
SS  
SS  
DD  
V
14.8  
17.0  
V
I + I  
OUT SS  
V
V
V
0.01  
0.01  
0.01  
SUB  
Output Gate  
V
0
1
2
V
OG  
LOD  
OUT  
Lateral Overflow Drain  
Video Output Current  
7.8  
3  
8.0  
5  
9.0  
7  
V
I
mA  
1
1. An output load sink must be applied to VOUT to activate output amplifier – see Figure 4.  
AC Operating Conditions  
Table 9. CLOCK LEVELS  
Description  
V1 Low Level  
Symbol  
V1L  
Level  
Low  
Minimum  
9.5  
2.3  
Nominal  
9.0  
2.5  
Maximum  
8.5  
2.7  
Units  
Notes  
V
V
V
V
V
V
1
1
1
1
1
1
V1 High Level  
V2 Low Level  
V2 High Level  
H1 Low Level  
H1 High Level  
V1H  
V2L  
High  
Low  
9.5  
2.3  
9.0  
2.5  
8.5  
2.7  
V2H  
H1L  
High  
Low  
2.5  
7.5  
2  
1.7  
8.2  
H1H  
High  
8
1. All pins draw less than 10 mA DC current. Capacitance values relative to SUB (substrate).  
www.onsemi.com  
12  
 
KAF09000  
Table 9. CLOCK LEVELS  
Description  
Symbol  
H2L  
Level  
Low  
Minimum  
Nominal  
Maximum  
1.7  
Units  
Notes  
H2 Low Level  
2.5  
7.5  
2  
8
V
V
V
V
1
1
1
1
H2 High Level  
H2H  
High  
Low  
8.2  
RG Low Level  
RGL  
5.3  
5.5  
11  
5.7  
RG High Level  
RGH  
High  
11.2  
10.8  
1. All pins draw less than 10 mA DC current. Capacitance values relative to SUB (substrate).  
Capacitance Equivalent Circuit  
LOD  
CLOD_V2  
CLOD  
CLOD_V1  
CV1_V2  
V2  
H1  
V1  
CV1  
CV2  
CVH  
CH1_H2  
H2  
CH2  
CH1  
CH1_OG  
RG  
OG  
CRG  
COG  
Figure 11. Equivalent Circuit Model  
Table 10.  
Description  
Label  
Value  
Unit  
nF  
nF  
nF  
nF  
nF  
nF  
pF  
pF  
pF  
pF  
pF  
pF  
LODSub Capacitance  
LODV1 Capacitance  
LODV2 Capacitance  
V1V2 Capacitance  
V1Sub Capacitance  
V2Sub Capacitance  
V2H1 Capacitance  
H1H2 Capacitance  
H1Sub Capacitance  
H2Sub Capacitance  
OGSub Capacitance  
RGSub Capacitance  
C
6.5  
36  
LOD  
C
C
LOD_V1  
LOD_V2  
36  
C
80  
V1_V2  
V1_SUB  
V2_SUB  
C
C
250  
250  
36  
C
VH  
C
75  
H1_H2  
H1_Sub  
H2_Sub  
OG_Sub  
RG_Sub  
C
C
500  
300  
5
C
C
13  
www.onsemi.com  
13  
 
KAF09000  
TIMING  
Table 11. REQUIREMENTS AND CHARACTERISTICS  
Description  
H1, H2 Clock Frequency  
H1, H2 Rise, Fall Times  
V1, V2 Rise, Fall Times  
V1 V2 Crossover  
H1 H2 Crossover  
H1, H2 Setup Time  
RG Clock Pulse Width  
V1, V2 Clock Pulse Width  
Pixel Period (1 Count)  
Readout Time  
Symbol  
Minimum  
Nominal  
Maximum  
Units  
MHz  
%
Notes  
f
H
4
10  
1
3
3
t
, t  
5
5
H1r H1f  
t , t  
V1r V1f  
%
V
VCR  
V
HCR  
1  
2
0
3
1
5
V
V
t
5
10  
ms  
HS  
t
5
10  
ns  
4
RGw  
t
20  
20  
ms  
Vw  
t
e
250  
2,533  
ns  
2
7
5
6
t
ms  
readout  
Integration Time  
t
int  
Line Time  
t
0.821  
ms  
line  
1. 50% duty cycle values.  
2. CTE will degrade above the maximum frequency.  
3. Relative to the pulse width (based on 50% of high/low levels).  
4. RG should be clocked continuously.  
5. Integration time is user specified.  
6. (3103 * t ) + t + (2 * t ) = 0.821 msec  
e
= t  
HS  
Vw  
7. t  
* 3086 lines  
readout  
line  
Edge Alignment  
H1  
VHCR  
V1  
V2  
VVCR  
V1,V2  
Figure 12. Timing Edge Alignment  
www.onsemi.com  
14  
 
KAF09000  
Frame Timing  
1 Frame = 3086Lines  
tint  
treadout  
V2  
V1  
Line  
1
2
3
3085  
3086  
H2  
H1  
Figure 13. Frame Timing  
Frame Timing Detail  
90%  
10%  
V1  
tVw  
tV1f  
tV1r  
90%  
V2  
10%  
tV2r  
tV2f  
Figure 14. Frame Timing Detail  
Line Timing  
Line Content  
t line  
3056 Active Pixels/Line  
36 3091  
V2  
tV  
tHS  
30923100  
31013103  
1635  
1215  
1 11  
V1  
te  
tV  
H1 / H2 count values  
H2  
Internal Test Pixels  
3103  
Dummy Pixels  
H1  
Dark Reference Pixels*  
Photoactive Pixels **  
RG  
Figure 15. Line Timing  
www.onsemi.com  
15  
KAF09000  
Pixel Timing  
Figure 16. Pixel Timing  
Pixel Timing Detail  
90 %  
10 %  
RGamp  
tRG  
w
R
RGlo  
tRGf  
t
r
RG  
90 %  
10 %  
50 %  
H1  
,
H1,  
amp
H
2
amp  
H1low  
H2lo  
te  
2
t
f
H12  
t
r
H12  
Figure 17. Pixel Timing Detail  
www.onsemi.com  
16  
KAF09000  
Example Waveforms  
Figure 18. Horizontal Clocks  
Figure 19. Video Waveform  
NOTE: The upper waveform was taken at the CCD output and the lower waveform was taken at the analog to digital  
converter, and is bandwidth limited.  
www.onsemi.com  
17  
KAF09000  
Figure 20. Video Waveform and Clamp Clock  
Figure 21. Video Waveform and Sample Clock  
www.onsemi.com  
18  
KAF09000  
STORAGE AND HANDLING  
Table 12. STORAGE CONDITIONS  
Description  
Symbol  
Minimum  
Maximum  
Units  
Notes  
Storage Temperature  
T
ST  
20  
70  
°C  
1
1. Long term storage toward the maximum temperature will accelerate color filter degradation.  
For information on ESD and cover glass care and  
cleanliness, please download the Image Sensor Handling  
and Best Practices Application Note (AN52561/D) from  
www.onsemi.com.  
For quality and reliability information, please download  
the Quality & Reliability Handbook (HBD851/D) from  
www.onsemi.com.  
For information on device numbering and ordering codes,  
please download the Device Nomenclature technical note  
(TND310/D) from www.onsemi.com.  
For information on soldering recommendations, please  
download the Soldering and Mounting Techniques  
Reference  
www.onsemi.com.  
Manual  
(SOLDERRM/D)  
from  
For information on Standard terms and Conditions of  
Sale, please download Terms and Conditions from  
www.onsemi.com.  
www.onsemi.com  
19  
KAF09000  
MECHANICAL INFORMATION  
Completed Assembly  
Figure 22. Completed Assembly (1 of 1)  
www.onsemi.com  
20  
KAF09000  
Cover Glass Specification  
MAR Glass for Sealed Cover  
1. Scratch and dig: 10 micron max  
2. Substrate material Schott D263T eco or equivalent  
3. Multilayer antireflective coating  
Table 13.  
Wavelength  
420 450  
450 630  
630 680  
Total Reflectance  
2%  
1%  
2%  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
KAF09000/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY