LE25S161XATAG [ONSEMI]

Serial Flash Memory;
LE25S161XATAG
型号: LE25S161XATAG
厂家: ONSEMI    ONSEMI
描述:

Serial Flash Memory

文件: 总54页 (文件大小:783K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LE25S161  
Serial Flash Memory  
16 Mb (2048K x 8)  
www.onsemi.com  
1. Overview  
The LE25S161 is a SPI bus flash memory device with a 16M bit (2048K  
8-bit) configuration. It uses a single power supply. While making the most  
of the features inherent to a serial flash memory device, the LE25S161 is  
housed in an 8-pin ultra-miniature package. All these features make this  
device ideally suited to storing program in applications such as portable  
information devices, which are required to have increasingly more  
compact dimensions.  
SOIC 8, 150mils  
VSOIC8 NB  
The LE25S161 also has a small sector erase capability which makes the  
device ideal for storing parameters or data that have fewer rewrite cycles  
and conventional EEPROMs cannot handle due to insufficient capacity.  
WLCSP8, 2.92x1.53  
UDFN8 4x3, 0.8P  
2. Features  
Operations power supply  
Operating frequency  
Temperature range  
Serial interface  
: 1.65 to 1.95V supply voltage range  
: 70MHz (max)  
: –40 to +90C  
: SPI mode 0, mode 3 supported  
Electronic Identification  
Sector size  
: JDEC ID, Device ID, Serial Flash Discoverable Parameter (SFDP)  
: 4K bytes/small sector, 64K bytes/sector  
Erase functions  
Page program function  
Status functions  
: small sector erase (SSE), sector erase (SE), chip erase (CHE)  
: 256 bytes/page  
: Ready/Busy information, protect information  
Low operation current  
Erase time  
Page program time (tPP)  
: 5.0mA (Low-power program mode, typ), 3.5mA (Low-Power Read mode, typ)  
: 10ms (SSE, typ), 15ms (SE, typ), 210ms (CHE, typ)  
: 0.4ms/256 bytes (typ.), 0.7ms/256 bytes (max.)  
Emergency shutdown of the current consumption  
: transition to a standby state in less than 20s from the active by Write Suspend  
: transition to a standby state in less than 40s from the active by Software Reset  
: 100,000 erase/program cycles  
: 20 years data retention period  
High reliability  
Package  
: LE25S161MDTWG SOIC 8, 150 mils  
: LE25S161FDTWG VSOIC8 NB  
CASE 751BD  
CASE 753AA  
: LE25S161XATAG WLCSP8, 2.921.53 CASE 567LC  
: LE25S161PCTXG UDFN8 43, 0.8P  
CASE 506DC  
: KGD  
N/A  
* This product is licensed from Silicon Storage Technology, Inc. (USA).  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 54 of this data sheet.  
© Semiconductor Components Industries, LLC, 2016  
February 2016 - Rev. 1  
1
Publication Order Number :  
LE25S161/D  
LE25S161  
3. Package Types and Pin Configurations  
CS  
1
2
3
4
8
7
6
5
V
DD  
HOLD  
SCK  
SO (SIO1)  
WP  
V
SI (SIO0)  
SS  
Top view  
SOIC8 (LE25S161MDTWG)  
VSOIC8 NB (LE25S161FDTWG)  
V
DD  
CS  
8
7
6
5
1
2
3
4
HOLD  
SO (SIO1)  
WP  
SCK  
SI (SIO0)  
V
SS  
Top view  
UDFN8 (LE25S161PCTXG)  
www.onsemi.com  
2
LE25S161  
A
B
CS  
SO/SIO1  
WP  
VDD  
HOLD  
SCK  
A
B
VDD  
CS  
SO/SIO1  
HOLD  
C
D
WP  
C
D
VSS  
SI/SIO0  
SI/SIO0  
1
VSS  
2
2
1
Top View  
WLCSP8  
Ball side View  
WLCSP8  
(LE25S161XATAG)  
(LE25S161XATAG)  
4
3
2
1
5
6
7
8
KGD  
Pad No.  
Name  
CS  
1
2
3
4
5
6
7
8
SO (SIO1)  
WP  
V
SS  
SI (SIO0)  
SCK  
HOLD  
V
DD  
www.onsemi.com  
3
LE25S161  
4. Package Dimensions  
unit : mm  
LE25S161MDTWG  
SOIC 8, 150 mils  
CASE 751BD-01  
ISSUE O  
SYMBOL  
MIN  
NOM  
MAX  
1.35  
A
1.75  
A1  
b
0.10  
0.33  
0.19  
4.80  
5.80  
3.80  
0.25  
0.51  
0.25  
5.00  
6.20  
4.00  
c
E1  
E
D
E
E1  
e
h
L
1.27 BSC  
0.25  
0.40  
0º  
0.50  
1.27  
8º  
PIN # 1  
IDENTIFICATION  
TOP VIEW  
D
h
A1  
A
c
e
b
L
SIDE VIEW  
END VIEW  
Notes:  
(1) All dimensions are in millimeters. Angles in degrees.  
(2) Complies with JEDEC MS-012.  
www.onsemi.com  
4
LE25S161  
Package Dimensions  
unit : mm  
LE25S161FDTWG  
VSOIC8 NB  
CASE 753AA  
ISSUE O  
D
NOTES:  
NOTE 5  
A
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2X  
8
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION SHALL  
BE 0.10mm IN EXCESS OF MAXIMUM MATERIAL  
CONDITION.  
4. DIMENSION D DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15mm PER SIDE. DIMENSION E DOES  
NOT INCLUDE INTERLEAD FLASH OR  
PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25mm PER  
SIDE. DIMENSIONS D AND E ARE DETERMINED AT  
DATUM F.  
F
0.10 C D  
5
NOTE 6  
A1  
NOTE 4  
E
E1  
2X 4 TIPS  
L2  
L
SEATING  
PLANE  
0.20  
C
C
4
DETAIL A  
1
8X  
b
B
NOTE 5  
M
0.25  
C
A-B D  
TOP VIEW  
5. DATUMS A AND B ARE TO BE DETERMINED AT  
DATUM F.  
6. A1 IS DEFINED AS THE VERTICAL DISTANCE  
FROM THE SEATING PLANE TO THE LOWEST  
POINT ON THE PACKAGE BODY.  
2X  
0.10  
C
A-B  
NOTE 4  
MILLIMETERS  
DETAIL A  
DIM MIN  
MAX  
0.85  
0.05  
0.51  
0.25  
D
8X  
A
A1  
b
0.65  
0.10  
C
0.10  
C
0.31  
0.17  
c
D
E
E1  
e
4.90 BSC  
A
e
6.00 BSC  
3.90 BSC  
1.27 BSC  
SEATING  
PLANE  
END VIEW  
C
SIDE VIEW  
L
0.40  
1.27  
L2  
0.25 BSC  
GENERIC  
MARKING DIAGRAM*  
8
RECOMMENDED  
SOLDERING FOOTPRINT*  
XXXXXXXXX  
ALYWX  
1
8X  
1.52  
7.00  
XXXXX = Specific Device Code  
A
L
Y
W
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb-Free Package  
1
8X  
0.60  
1.27  
PITCH  
(Note: Microdot may be in either location)  
DIMENSION: MILLIMETERS  
*This information is generic. Please refer  
to device data sheet for actual part  
*For additional information on our Pb-Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
5
LE25S161  
Package Dimensions  
unit : mm  
LE25S161XATAG  
WLCSP8, 2.92x1.53  
CASE 567LC  
ISSUE A  
NOTES:  
B
D
E
A
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. COPLANARITY APPLIES TO THE SPHERICAL  
CROWNS OF THE SOLDER BALLS.  
PIN A1  
REFERENCE  
MILLIMETERS  
DIM  
A
A1  
b
MIN  
MAX  
0.50  
0.13  
0.35  
0.03  
0.25  
D
2.92 BSC  
E
e
1.53 BSC  
0.50 BSC  
2X  
0.10  
0.10  
C
2X  
C
TOP VIEW  
A
0.10  
C
C
0.08  
RECOMMENDED  
SOLDERING FOOTPRINT*  
A1  
SIDE VIEW  
SEATING  
C
PLANE  
NOTE 3  
PACKAGE  
OUTLINE  
A1  
e
e/2  
0.50  
PITCH  
8X  
b
0.05 C A B  
0.03 C  
8X  
0.30  
D
C
e
e/2  
B
A
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb-Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
1
2
BOTTOM VIEW  
www.onsemi.com  
6
LE25S161  
Package Dimensions  
unit : mm  
LE25S161PCTXG  
UDFN8, 4x3, 0.8P  
CASE 506DC  
ISSUE O  
NOTES:  
A
B
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
L
L
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30MM FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
L1  
PIN ONE  
REFERENCE  
E
DETAIL A  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
2X  
0.15  
C
MILLIMETERS  
DIM MIN  
0.50  
A1 0.00  
MAX  
0.60  
0.05  
2X  
A
0.15  
C
TOP VIEW  
A3  
b
D
D2 0.70  
E
0.152 REF  
0.25  
0.35  
0.90  
0.30  
EXPOSED Cu  
MOLD CMPD  
4.00 BSC  
DETAIL B  
A
0.10  
0.08  
C
C
3.00 BSC  
E2 0.10  
e
G
L
0.80 BSC  
1.60 BSC  
10X  
(A3)  
DETAIL B  
NOTE 4  
0.55  
0.65  
0.15  
A1  
ALTERNATE  
SEATING  
PLANE  
C
CONSTRUCTIONS  
L1  
SIDE VIEW  
GENERIC  
G
MARKING DIAGRAM*  
DETAIL A  
2X  
D2  
0.10  
XXXXX  
XXXXX  
AYWW  
M
C A B  
4
1
2X  
E2  
M
8X  
L
0.10  
C A B  
XXXXX = Specific Device Code  
8
5
8X  
b
A
Y
= Assembly Location  
= Year  
e
M
M
0.10  
0.05  
C A B  
e/2  
WW  
= Work Week  
NOTE 3  
C
= Pb-Free Package  
BOTTOM VIEW  
(Note: Microdot may be in either location)  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
RECOMMENDED  
SOLDERING FOOTPRINT*  
2.60  
8X  
0.83  
2X  
1.00  
3.30  
PACKAGE  
OUTLINE  
2X  
0.40  
8X  
0.40  
1
0.80  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb-Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
7
LE25S161  
5. Pin Description  
Symbol  
CS  
Pin Name  
IO  
I
Description  
The device becomes active when the logic level of this pin is low; it is deselected and placed in  
standby status when the logic level of the pin is high.  
Chip select  
This pin controls the data input/output timing.  
SCK  
Serial clock  
I
The input data and addresses are latched synchronized to the rising edge of the serial clock, and  
the data is output synchronized to the falling edge of the serial clock.  
The data and addresses are input from this pin, and latched internally synchronized to the rising  
edge of the serial clock.  
SI  
Serial data input  
I/O  
I/O  
(SIO0)  
(Serial data input output)  
(It changes into input/output pin during the Dual operation.)  
The data stored inside the device is output from this pin synchronized to the falling edge of the  
serial clock.  
SO  
Serial data output  
(SIO1)  
(Serial data input output)  
( It changes into input/output pin during the Dual operation.)  
WP  
Write protect  
Hold  
I
I
The Write Status Register Protect (SRWP) takes effect when the logic level of this pin is low.  
Serial communication is suspended when the logic level of this pin is low.  
This pin supplies the 1.65 to 1.95V supply voltage.  
HOLD  
V
Power supply  
Ground  
DD  
V
This pin supplies the 0V supply voltage.  
SS  
www.onsemi.com  
8
LE25S161  
6. Block Diagram  
16M Bit  
Flash EEPROM  
Cell Array  
Power  
Circuit  
Energy-  
consumption  
Control Unit  
Memory Control Logic  
Decoder Logic  
Command  
Logic  
&
Serial-parallel conversion Logic  
Serial interface  
SCK  
SI  
(SIO0)  
SO  
(SIO1)  
CS  
WP  
HOLD  
www.onsemi.com  
9
LE25S161  
7. Device Operation  
7-1. Standard SPI Modes  
The read, erase, program and other required functions of the device are executed through the command registers. The  
serial I/O corrugate is shown in "Figure 1. SPI Modes" and the command list are shown in "Table.1-1. Command Settings  
(Standard SPI)". At the falling CS edge the device is selected, and serial input is enabled for the commands, addresses, etc.  
These inputs are normalized in 8 bit units and taken into the device interior in synchronization with the rising edge of SCK,  
which causes the device to execute operation according to the command that is input.  
The LE25S161 supports both serial interface SPI mode 0 and SPI mode 3. At the falling CS edge, SPI mode 0 is  
automatically selected if the logic level of SCK is low, and SPI mode 3 is automatically selected if the logic level of SCK  
is high.  
Figure 1. SPI Modes  
CS  
Mode3  
SCK  
Mode0  
8CLK  
SI  
1st byte  
2nd byte  
Nth byte  
LSB  
(Bit0)  
MSB  
(Bit7)  
High Impedance  
DATA  
DATA  
SO  
7-2. Dual SPI Modes  
The LE25S161 supports Dual SPI operations when using "Dual Output Read (RDDO: 3Bh)", "Dual I/O Read (RDIO:  
BBh)". The SI and SO pins change into the input/output pin (SIOx) during the Dual SPI modes. The command list is  
shown in "Table.1-2. Command Settings (Dual SPI)".  
Pin Configurations at Dual SPI Mode  
Standard SPI  
SI  
SO  
Dual SPI  
SIO0  
SIO1  
www.onsemi.com  
10  
 
LE25S161  
Table 1-1. Command Settings (Standard SPI) --- Max: 70MHz (except RDLP)  
Description  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
6th byte  
Nth byte  
Command  
(clock number)  
(0 - 7)  
(8 - 15)  
(16- 23)  
(24 - 31)  
(32 - 39)  
(40 - 47)  
(8N-8 to 8N-1)  
WREN  
WRDI  
Write enable  
06h  
04h  
05h  
01h  
Write disable  
RDSR  
WRSR  
Read Status Register  
Write Status Register  
DATA  
Low -Power Read  
(Max: 33.33MHz)  
RDLP  
03h  
A23-A16  
A15-A8  
A7-A0  
RD (5)  
X
RD (5)  
RD (5)  
RD (5)  
RD (5)  
RDHS  
SSE  
SE  
High-Speed Read  
0Bh  
20h / D7h  
D8h  
A23-A16  
A23-A16  
A23-A16  
A15-A8  
A15-A8  
A15-A8  
A7-A0  
A7-A0  
A7-A0  
Small Sector Erase (4KB)  
Sector Erase (64KB)  
Chip Erase (16M bits)  
Normal Page Program  
Low-Power Page Program  
Write Suspend  
CHE  
PP  
60h / C7h  
02h  
A23-A16  
A15-A8  
A7-A0  
PD (7)  
PD (7)  
PD (7)  
PPL  
0Ah  
WSUS  
RESM  
B0h  
Resume  
30h  
Manufacture  
(62h)  
Memory  
Capacity  
(15h)  
RJID  
RID  
Read JEDEC ID  
9Fh  
ABh  
Type (16h)  
Read Device ID  
Device ID  
(88h)  
X
X
X
(Exit power down mode)  
RSFDP  
DP  
Read SFDP  
5Ah  
B9h  
A23-A16  
A15-A8  
A7-A0  
X
RD (5)  
RD (5)  
Deep Power down  
Exit Deep  
EDP  
ABh  
Power down  
RSTEN  
RST  
Reset Enable  
Reset  
66h  
99h  
Table 1-2. Command Settings (Dual SPI) --- Max: 50MHz  
Description  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
6th byte  
Nth byte  
Command  
RDDO  
(clock number)  
(0 - 7)  
(8 - 15)  
(16- 23)  
(24 - 31)  
(32 - 39)  
(40 - 47)  
(8N-8 to 8N-1)  
Dual Output Read  
3Bh  
A23-A16  
A23-A8(8)  
A15-A8  
A7-A0  
Z
RDD (6)  
RDD (6)  
A7-A0(8)  
X, Z  
,
RDIO  
Dual I/O Read  
BBh  
RDD (6)  
RDD (6)  
RDD (6)  
RDD (6)  
Note:  
1. "X" signifies "don’t care" (that is to say, any value may be input).  
2. "Z" signifies "high-impedance".  
3. The "h" following each code indicates that the number given is in hexadecimal notation.  
4. Addresses A23 to A21 for all commands are "Don't care".  
5. "RD" Read data on SO.  
6. "RDD" Dual Read data:  
SIO0=(Bit6, Bit4, Bit2, Bit0)  
SIO1=(Bit7, Bit5, Bit3, Bit1)  
7. "PD" Page Program data on SO.  
8. Dual SPI address input from SIO0 and SIO1:  
SIO0=(A22, A20, A18, A16, A14, A12, A10, A8, A6, A4, A2, A0)  
SIO1=(A23, A21, A19, A17, A15, A13, A11, A9, A7, A5, A3, A1)  
www.onsemi.com  
11  
 
 
LE25S161  
8. Memory Organization  
Table 2. Memory Organization  
16M bits  
Sector  
small sector  
(4KB)  
address space  
(A23 to A0)  
(64KB)  
Symbol :SE  
31  
Symbol :SSE  
SSE[511]  
to  
1FF000h  
1FFFFFh  
SSE[496]  
SSE[495]  
to  
1F0000h  
1EF000h  
1F0FFFh  
1EFFFFh  
30 to 6  
SSE[96]  
SSE[95]  
to  
SSE[80]  
SSE[79]  
to  
SSE[64]  
SSE[63]  
to  
SSE[48]  
SSE[47]  
to  
060000h  
05F000h  
060FFFh  
05FFFFh  
5
4
3
2
1
050000h  
04F000h  
050FFFh  
04FFFFh  
040000h  
03F000h  
040FFFh  
03FFFFh  
030000h  
02F000h  
030FFFh  
02FFFFh  
SSE[32]  
SSE[31]  
to  
020000h  
01F000h  
020FFFh  
01FFFFh  
SSE[16]  
SSE[15]  
to  
010000h  
00F000h  
010FFFh  
00FFFFh  
SSE[4]  
004000h  
003800h  
003000h  
002800h  
002000h  
001800h  
001000h  
000800h  
000000h  
004FFFh  
003FFFh  
0037FFh  
002FFFh  
0027FFh  
001FFFh  
0017FFh  
000FFFh  
0007FFh  
SSE[3]  
SSE[2]  
SSE[1]  
SSE[0]  
0
www.onsemi.com  
12  
LE25S161  
9. Status Registers  
The status registers hold the operating and setting statuses inside the device, and this information can be read by Read  
Status Register (RDSR) and the protect information can be rewritten by Write Status Register (WRSR). There are 8 bits in  
total, and "Table 3. Status registers" gives the significance of each bit.  
Table 3. Status Registers  
Bit  
Name  
Logic  
Function  
Power-on Time Information  
0
0
1
0
1
0
1
0
1
0
1
0
Ready  
RDY  
Bit0  
Erase/Program  
Write disabled  
Write enabled  
Bit1  
Bit2  
Bit3  
Bit4  
WEN  
BP0  
BP1  
BP2  
0
Block protect information  
Protected area switch  
Nonvolatile information  
Block protect  
Bit5  
Bit6  
Bit7  
TB  
Nonvolatile information  
Upper side/Lower side switch  
1
0
1
0
Erase/Program is not suspended  
Erase/Program suspended  
SUS  
0
Write Status Register enabled  
SRWP  
Nonvolatile information  
1
Write Status Register disabled  
Note: All non-volatile bits of the status registers-1 are set "0" in the factory.  
www.onsemi.com  
13  
 
LE25S161  
9-1. Contents of each status register  
9-1-1. RDY (bit 0)  
The RDY register is for detecting the write (Program, Erase and Write Status Register) end. When it is "1", the device is in  
a busy state, and when it is "0", it means that write is completed.  
9-1-2. WEN (bit 1)  
The WEN register is for detecting whether the device can perform write operations. If it is set to "0", the device will not  
perform the write operation even if the write command is input. If it is set to "1", the device can perform write operations  
in any area that is not block-protected.  
WEN can be controlled using the write enable (WREN) and write disable (WRDI). By inputting the write enable (WREN:  
06h), WEN can be set to "1" by inputting the write disable (WRDI: 04h), it can be set to "0." In the following states, WEN  
is automatically set to "0" in order to protect against unintentional writing.  
At power-on  
Upon completion of Erase (SSE, SE, or CHE)  
Upon completion of Page Program (PP or PPL)  
Upon completion of Write Status Register (WRSR)  
* If a write operation has not been performed inside the LE25S161 because, for instance, the command input for any of  
the write operations (SSE, SE, CHE, PP, PPL or WRSR) has failed or a write operation has been performed for a  
protected address, WEN will retain the status established prior to the issue of the command concerned. Furthermore, its  
state will not be changed by a read operation.  
9-1-3. BP0, BP1, BP2, TB (bits 2, 3, 4, 5)  
Block Protect: BP0, BP1, BP2 and TB are status register bits that can be rewritten, and the memory space to be protected  
can be set depending on these bits. For the setting conditions, refer to "Table 4. Protected Level Setting Conditions".  
BP0, BP1, and BP2 are used to select the protected area and TB to allocate the protected area to the higher-order address  
area or lower-order address area.  
Table 4. Protection Level Setting Conditions  
Status Register Bits  
Protected Level  
Protected Block  
Protected Area  
TB  
X
0
BP2  
0
BP1  
0
BP0  
0
0
Whole area unprotected  
Upper side 1/32 protected  
Upper side 1/16 protected  
Upper side 1/8 protected  
Upper side 1/4 protected  
Upper side 1/2 protected  
Lower side 1/32 protected  
Lower side 1/16 protected  
Lower side 1/8 protected  
Lower side 1/4 protected  
Lower side 1/2 protected  
Whole area protected  
None  
T1  
T2  
T3  
T4  
T5  
B1  
B2  
B3  
B4  
B5  
6
0
0
1
1F0000h to 1FFFFFh  
1E0000h to 1FFFFFh  
1C0000h to 1FFFFFh  
180000h to 1FFFFFh  
100000h to 1FFFFFh  
000000h to 00FFFFh  
000000h to 01FFFFh  
000000h to 03FFFFh  
000000h to 07FFFFh  
000000h to 0FFFFFh  
000000h to 1FFFFFh  
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
X
1
1
X
Note: Chip Erase is enabled only when the protection level is 0.  
www.onsemi.com  
14  
 
LE25S161  
9-1-4. SUS (bit 6)  
The SUS register indicates when Erase/Program operation has been suspended. The SUS becomes "1" when the  
Erase/Program operation has been suspended (WSUS: B0h). The SUS is cleared to"0" by Resume (RESM:30h) or  
re-erase/program (SSE, SE, CHE, PP, PPL).  
9-1-5. SRWP (bit 7)  
Write Status Register protect SRWP is the bit for protecting the status registers, and its information can be rewritten.  
When SRWP is "1" and the logic level of the WP pin is low, the Write Status Register (WRSR: 01h) is ignored, and status  
registers BP0, BP1, BP2, TB and SRWP are protected. When the logic level of the WP pin is high, the status registers are  
not protected regardless of the SRWP state. The SRWP setting conditions are shown in "Table 5. SRWP Setting  
Conditions".  
Table 5. SRWP Setting Conditions  
WP  
Pin  
SRWP  
Status Register Protect State  
Unprotected  
0
1
0
1
0
Protected  
Unprotected  
1
Unprotected  
www.onsemi.com  
15  
 
LE25S161  
10. Description of Commands and Operations  
A detailed description of the functions and operations corresponding to each command is presented below.  
10-1. Read Status Register (RDSR)  
The contents of the status registers can be read using the Read Status Register (RDSR). This command can be executed  
even during the following operations.  
Erase (SSE, SE or CHE)  
Page Program (PP or PPL)  
Write Status Register (WRSR)  
"Figure 2. Read Status Register (RDSR)" shows the timing waveforms.  
The sequence of RDSR operation :  
CS goes to low input RDSR command (05h)  
Status Register data (SRWP, SUS, TB, BP2, BP1, BP0,WEN, RDY) out on SO   
completed by CS=high  
* The data output starts from the falling edge of SCK(7th clock)  
This command outputs the contents of the status registers synchronized to the falling edge of the clock (SCK).  
If the clock input is continued after bit0 (RDY) has been output, the data is output by returning to bit7 (SRWP) that was  
first output, after which the output is repeated for as long as the clock input is continued. The data can be read by this  
command at any time (even during a program, erase cycle). By setting CS to high, the device is deselected, and Read  
JEDEC ID cycle is completed. While the device is deselected, the output pin SO is in a high-impedance state  
Figure 2. Read Status Register (RDSR)  
CS  
Mode 3  
0
1
2
3
4
5
6
7
8
15 16  
23  
SCK  
SI  
Mode 0  
8CLK  
05h  
MSB  
High Impedance  
SO  
DATA DATA DATA  
MSB MSB MSB  
DATA: Status Resister, "Table 3 Status Register"  
www.onsemi.com  
16  
 
LE25S161  
10-2. Write Status Register (WRSR)  
The information in status registers BP0, BP1, BP2, TB and SRWP can be rewritten using this command. bit0 ( RDY), bit1  
(WEN) and bit6 (SUS) are read-only bits and cannot be rewritten. The information in bits BP0, BP1, BP2, TB and SRWP  
is stored in the non-volatile memory, and when it is written in these bits, the contents are retained even at power-down.  
"Figure 3. Write Status Register (WRSR)" shows the timing waveforms.  
"Figure 31. Write Status Register Flowcharts" shows the flowcharts.  
The sequence of WRSR operation :  
CS goes to low input WRSR command (01h)  
Status Register data input on SI  
CS goes to high (be executed by the rising CS edge)  
Erase and program are performed automatically inside the device by Write Status Register. So that erasing or other  
processing is unnecessary before executing the command. By the operation of this command, the information in bits BP0,  
BP1, BP2, TB and SRWP can be rewritten. Since bits bit0 (RDY), bit1 (WEN), bit 6 (SUS) of the status register cannot be  
written, no problem will arise if an attempt is made to set them to any value when rewriting the status register. Write  
Status Register ends can be detected by RDY of Read Status Register (RDSR). To initiate Write Status Register, the logic  
level of the WP pin must be set high and status register WEN must be set to "1".  
Self-timed  
Write Cycle  
Figure 3. Write Status Register (WRSR)  
t
WRSR  
CS  
SCK  
SI  
Mode3  
Mode0  
0
1
2
3
4
5
6
7
8
15  
8CLK  
01h  
DATA  
MSB  
High Impedance  
SO  
www.onsemi.com  
17  
 
LE25S161  
10-3. Write Enable (WREN)  
Before performing any of the operations listed below, the device must be placed in the write enable state.  
Erase (SSE, SE, CHE or CHE)  
Page Program (PP or PPL)  
Write Status Register (WRSR)  
Operation is the same as for setting status register WEN to "1", and the state is enabled by this command.  
"Figure 4. Write Enable (WREN)" shows the timing waveforms.  
The sequence of WREN operation :  
CS goes to low input WREN command (06h)  
CS goes to high (be executed by the rising CS edge)  
Figure 4. Write Enable (WREN)  
CS  
Mode3  
0
1 2 3 4 5 6 7  
SCK  
SI  
Mode0  
8CLK  
06h  
MSB  
High Impedance  
SO  
www.onsemi.com  
18  
 
LE25S161  
10-4. Write Disable (WRDI)  
This command sets status register WEN to "0" to prohibit unintentional writing. The write disable state (WEN "0") is  
exited by setting WEN to "1" using the write enable (WREN: 06h).  
"Figure 5. Write Disable (WRDI)" shows the timing waveforms.  
The sequence of WRDI operation :  
CS goes to low input WRDI command (04h)  
CS goes to high (be executed by the rising CS edge)  
Figure 5. Write Disable (WRDI)  
CS  
Mode3  
0
1 2 3 4 5 6 7  
SCK  
SI  
Mode0  
8CLK  
04h  
MSB  
High Impedance  
SO  
www.onsemi.com  
19  
 
LE25S161  
Standard SPI Read  
There are two Read commands, "Low-Power Read (RDLP: 03h)" and "High-Speed Read (RDHS: 0Bh)".  
10-5. Standard SPI Read  
There are two Read commands, Low-Power Read (RDLP) and High-Speed Read (RDHS).  
10-5-1. Low-Power Read command (RDLP)  
Maximum Clock frequency: 33.33MHz  
This command is for reading data out.  
"Figure 6. Low-Power Read (RDLP)" shows the timing waveforms.  
The sequence of RDLP operation :  
CS goes to low input RDLP command (03h) 3 Byte address (A23-A0) input on SI  
the corresponding data out on SO  
continuous data out (n-byte)   
completed by CS=high  
* The data output starts from the falling edge of SCK(31th clock)  
The Address is latched on rising edge of SCK, and the corresponding data is shifted out on SO by the falling edge of SCK.  
The address is automatically incremented to the next higher address after each byte data is shifted out. If the SCK input is  
continued after the internal address arrives at the highest address (1FFFFFh), the internal address returns to the lowest  
address (000000h). By setting CS to high, the device is deselected, and the read cycle is completed. While the device is  
deselected, the output pin SO is in a high-impedance state.  
Figure 6. Low-Power Read (RDLP)  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
47  
SCK  
SI  
Mode0  
8CLK  
03h  
Add  
Add  
Add  
(A23-A16) (A15-A8)  
(A7-A0)  
Byte 1 Byte 2 Byte 3  
DATA DATA DATA  
High Impedance  
SO  
MSB  
MSB  
MSB  
Address A23 to A21 are "Don't care".  
www.onsemi.com  
20  
 
LE25S161  
10-5-2. High-Speed Read command (RDHS)  
Maximum Clock frequency: 70MHz  
This command is for reading data out at the high frequency operation.  
"Figure 7. High-Speed Read (RDHS)" shows the timing waveforms.  
The sequence of RDHS operation :  
CS goes to low input RDHS command (0Bh) 3 Byte address (A23-A0) input on SI  
1 byte dummy cycle the corresponding data out on SO  
continuous data out (n-byte)   
completed by CS=high  
* The data output starts from the falling edge of SCK(39th clock)  
The Address is latched on rising edge of SCK. It is necessary to add 1 dummy byte cycle after address is latched, and the  
corresponding data is shifted out on SO by the falling edge of SCK. The address is automatically incremented to the next  
higher address after each byte data is shifted out. If the SCK input is continued after the internal address arrives at the  
highest address (1FFFFFh), the internal address returns to the lowest address (000000h). By setting CS to high, the device  
is deselected, and the read cycle is completed. While the device is deselected, the output pin SO is in a high-impedance  
state.  
Figure 7. High-Speed Read (RDHS)  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
47 48  
55  
SCK  
SI  
Mode0  
8CLK  
0Bh  
Add  
Add  
Add  
X
(A23-A16) (A15-A8)  
(A7-A0)  
MSB  
Byte 1 Byte 2 Byte 3  
DATA DATA DATA  
High Impedance  
SO  
MSB  
MSB  
MSB  
Address A23 to A21 are "Don't care".  
www.onsemi.com  
21  
 
LE25S161  
10-6. Dual read  
There are two Dual read commands, the Dual Output Read (RDDO) and the Dual I/O Read (RDIO).  
They achieve the twice speed-up from "High-Speed Read (RDHS: 0Bh)". The command list is shown in "Table.1-2.  
Command Settings (Dual SPI)"  
Pin Configurations at Dual SPI Mode  
Standard SPI  
SI  
SO  
Dual SPI  
SIO0  
SIO1  
10-6-1. Dual Output Read command (RDDO)  
Maximum Clock frequency: 50MHz  
The SI and SO pins change into the input/output pin (SIOx) during this operation. It makes the data output x2 bit and has  
achieved a high-speed output. bit7, 5, 3 and bit1are output from SIO0. bit6, 4, 2 and bit0 are output from SIO1.  
"Figure 8. Dual Output Read (RDDO)" shows the timing waveforms.  
The sequence of RDDO operation :  
CS goes to low input RDDO command (3Bh) 3 Byte address (A23-A0) input on SI  
1 byte dummy cycle the corresponding data out on SI/SIO0 and SO/SIO1  
continuous data out (n-byte) per 4clock   
completed by CS=high  
* The data output starts from the falling edge of SCK(39th clock)  
Output Data  
SI/SIO0  
SO/SIO1  
bit6,4,2,0  
bit7,5,3,1  
The Address is latched on rising edge of SCK. It is necessary to add 1 dummy byte cycle after address is latched, and the  
corresponding data is shifted out on SI/SIO0 and SO/SIO1 by the falling edge of SCK. The address is automatically  
incremented to the next higher address after each byte data (4 clock cycles) is shifted out. If the SCK input is continued  
after the internal address arrives at the highest address (1FFFFFh), the internal address returns to the lowest address  
(000000h). By setting CS to high, the device is deselected, and the read cycle is completed. While the device is deselected,  
the output pin SO is in a high-impedance state.  
Figure 8. Dual Output Read (RDDO)  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
43 44  
47  
SCK  
Mode0  
8CLK  
3Bh  
Byte 1 Byte 2 Byte 3  
DATA0 DATA0 DATA0  
dummy  
bit  
Add  
Add  
Add  
SIO0  
SIO1  
(A23-A16) (A15-A8)  
(A7-A0)  
MSB  
4CLK  
4CLK  
High Impedance  
DATA1  
DATA1 DATA1  
MSB  
MSB  
MSB  
DATA0: bit6,bit4,bit2,bit0  
DATA1: bit7,bit5,bit3,bit1  
Address A23 to A21 are "Don't care".  
www.onsemi.com  
22  
 
LE25S161  
10-6-2. Dual I/O Read command (RDIO)  
Maximum Clock frequency: 50MHz  
The SI and SO pins change into the input/output pin (SIOx) during this operation. It makes the address input and data  
output x2 bit and has achieved a high-speed output. Add1 (A23, A21, -, A3 and A1) is input from SIO1 and Add0 (A22,  
A20, -, A2 and A0) is input from SIO0. bit7, 5, 3 and bit1are output from SIO0. bit6, 4, 2 and bit0 are output from SIO1.  
"Figure 9. Dual I/O Read (RDIO)" shows the timing waveforms.  
The sequence of RDIO operation :  
CS goes to low input RDIO command (BBh)  
3 Byte address (A23-A0) input on SI/SIO0 and SO/SIO1 by 12 clock cycle  
2 dummy clock (SI/SIO0 and SO/SIO1 are don’t care)  
+ 2 dummy clock (must set SI/SIO0 and SO/SIO1 high impedance)  
the corresponding data out on SI/SIO0 and SO/SIO  
continuous data out (n-byte) per 4clock   
completed by CS=high  
* The data output starts from the falling edge of SCK(23th clock)  
Input Address  
A22,20,18 --,A2,A0  
A23,21,19 --,A3,A1  
Output Data  
bit6,4,2,0  
bit7,5,3,1  
SI/SIO0  
SO/SIO1  
The Address is latched on rising edge of SCK. It is necessary to add 4 dummy clocks after address is latched,  
2CLK of the latter half of the dummy clock is in the state of high impedance, the controller can switch I/O for this period.  
The corresponding data is shifted out on SI/SIO0 and SO/SIO1 by the falling edge of SCK. The address is automatically  
incremented to the next higher address after each byte data (4 clock cycles) is shifted out. If the SCK input is continued  
after the internal address arrives at the highest address (1FFFFFh), the internal address returns to the lowest address  
(000000h). By setting CS to high, the device is deselected, and the read cycle is completed. While the device is deselected,  
the output pin SO is in a high-impedance state.  
Figure 9. Dual I/O Read (RDIO)  
CS  
0
1
2
3
4
5
6
7
8
22 23 24  
27 28  
31  
20 21  
19  
Mode3  
Mode0  
SCK  
dummy  
bit  
8CLK  
BBh  
Byte 1 Byte2  
Byte3  
Add1:A22,A20-A2,A0  
X
SIO0  
SIO1  
DATA0 DATA0 DATA0  
MSB  
4CLK  
12CLK  
2CLK  
2CLK  
X
High Impedance  
Add2:A23,A21-A3,A1  
DATA1 DATA1 DATA1  
MSB  
MSB  
MSB  
DATA0: bit6,bit4,bit2,bit0  
DATA1: bit7,bit5,bit3,bit1  
Address A23 to A21 are "Don't care".  
www.onsemi.com  
23  
 
LE25S161  
10-7. Small Sector Erase (SSE)  
Small Sector Erase is an operation that sets the memory cell data in any small sector to "1". A small sector consists of  
4Kbytes.  
"Figure 10. Small Sector Erase (SSE)" shows the timing waveforms.  
"Figure 32. Small Sector Erase Flowcharts" shows the flowcharts.  
The sequence of SSE operation :  
CS goes to low input SSE command (20h or D7h) 3 Byte address (A23-A0) input on SI  
CS goes to high (be executed by the rising CS edge)  
* A20 to A12 are valid address  
After the correct input sequence the internal erase operation is executed by the rising CS edge, and it is completed  
automatically by the control exercised by the internal timer (tSSE). The end of erase operation can also be detected by  
status register (RDY).  
Figure 10. Small Sector Erase (SSE)  
Self-timed  
Erase Cycle  
t
SSE  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31  
SCK  
SI  
Mode0  
8CLK  
20h / D7h  
Add  
Add  
Add  
(A23-A16) (A15-A8)  
(A7-A0)  
MSB  
High Impedance  
SO  
Address A23 to A21, A11 to A0 are "Don't care".  
www.onsemi.com  
24  
 
LE25S161  
10-8. Sector Erase (SE)  
Sector Erase is an operation that sets the memory cell data in any sector to "1". A sector consists of 64Kbytes.  
"Figure 11. Sector Erase (SE)" shows the timing waveforms.  
"Figure 33. Sector Erase Flowcharts" shows the flowcharts.  
The sequence of SE operation :  
CS goes to low input SE command (D8h) 3 Byte address (A23-A0) input on SI  
CS goes to high (be executed by the rising CS edge)  
* A20 to A16 are valid address  
After the correct input sequence the internal erase operation is executed by the rising CS edge, and it is completed  
automatically by the control exercised by the internal timer (tSE). The end of erase operation can also be detected by  
status register (RDY).  
Figure 11. Sector Erase (SE)  
Self-timed  
Erase Cycle  
t
SE  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31  
SCK  
SI  
Mode0  
8CLK  
D8h  
Add  
Add  
Add  
(A23-A16) (A15-A8)  
(A7-A0)  
MSB  
High Impedance  
SO  
Address A23 to A21 , A15 to A0 are "Don't care.  
www.onsemi.com  
25  
 
LE25S161  
10-9. Chip Erase (CHE)  
Chip Erase is an operation that sets the memory cell data in all sectors to "1".  
"Figure 12. Chip Erase (CHE)" shows the timing waveforms.  
"Figure 34. Chip Erase Flowcharts" shows the flowcharts.  
The sequence of CHE operation :  
CS goes to low input CHE command (60h or C7h)  
CS goes to high (be executed by the rising CS edge)  
After the correct input sequence the internal erase operation is executed by the rising CS edge, and it is completed  
automatically by the control exercised by the internal timer (tSE). The end of erase operation can also be detected by  
status register (RDY).  
Figure 12. Chip Erase (CHE)  
Self-timed  
Erase Cycle  
t
CHE  
CS  
Mode3  
Mode0  
0
1 2 3 4 5 6 7  
SCK  
8CLK  
60h / C7h  
SI  
MSB  
High Impedance  
SO  
www.onsemi.com  
26  
 
LE25S161  
10-10. Page Program  
10-10-1. Normal Page Program (PP)  
10-10-2. Low-Power Page Program (PPL)  
There are two Page Program commands, Normal program (PP: 02h ) and Low-Power program (PPL: 0Ah) These two  
commands are completely functionally the same. By selecting the Low-Power program (PPL), the operating current is  
reduced, but the program cycle time is extended. (Iccpp > Iccppl , tPPL > tPP)  
Page Program is an operation that programs any number of bytes from 1 to 256 bytes within the same sector page (page  
addresses: A20 to A8). Before initiating Page Program, the data on the page concerned must be erased using Small Sector  
Erase, Sector Erase, or Chip Erase. Page Program (PP, PPL) allows only previous erased data (FFh).  
"Figure 13. Normal Page Program (PP)". "Figure 14. Low-power Page Program (PPL)" shows the timing waveforms.  
"Figure 35. Page Program Flowcharts" shows the flowcharts.  
The sequence of PP or PPL operation :  
CS goes to low input PP command (02h) or PPL command (0Ah)  
3 Byte address (A23-A0) input on SI  
n-Byte data input on SI   
CS goes to high (be executed by the rising CS edge)  
The program data must be loaded in 1-byte increments. If the data loaded has exceeded 256 bytes, the 256 bytes loaded  
last are programmed. After the correct input sequence the internal program operation is executed by the rising CS edge,  
and it is completed automatically by the control exercised by the internal timer (tPP or tPPL). The end of program  
operation can also be detected by status register (RDY).  
Self-timed  
Program Cycle  
Figure 13. Normal Page Program (PP)  
t
PP  
CS  
Mode3  
Mode0  
2079  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
47  
SCK  
Byte  
256  
8CLK  
02h  
Byte 1 Byte 2  
PD PD  
Add  
Add  
Add  
SI  
PD  
(A23-A16) (A15-A8)  
(A7-A0)  
MSB  
High Impedance  
SO  
Address A23 to A21 are "Don't care".  
Self-timed  
Program Cycle  
Figure 14. Low-Power Page Program (PPL)  
t
PPL  
CS  
Mode3  
0
1
2
3
2079  
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
47  
SCK  
Mode0  
Byte  
256  
8CLK  
0Ah  
Byte 1 Byte 2  
PD PD  
Add  
Add  
Add  
SI  
PD  
(A23-A16) (A15-A8)  
(A7-A0)  
MSB  
High Impedance  
SO  
Address A23 to A21 are "Don't care".  
www.onsemi.com  
27  
 
 
LE25S161  
10-11. Write Suspend (WSUS)  
The Write Suspend (WSUS) allow the system to interrupt Small Sector Erase (SSE), Sector Erase (SE), Chip Erase (CHE)  
or Page Program (PP, PPL).  
"Figure 15. Write Suspend (WSUS)" shows the timing waveforms.  
The sequence of WSUS operation :  
CS goes to low input WSUS command (B0h)  
CS goes to high (be executed by the rising CS edge)  
After the command has been input, the device becomes consumption current equivalent to standby within 20 us. The  
recovery time (tRSUS) is needed before next command from suspend. The internal operation status could be checked by  
using status register RDY bit or SUS bit, but the device will not accept another command until it is ready.  
The Write Suspend is valid Erase cycle (SSE, SE and CHE) or Program cycle (PP, PPL).  
If the Erase (SSE, SE, CHE) or Program (PP, PPL) entry during the suspension, the suspension will be canceled  
automatically. And a new Erase (SSE, SE, CHE), Program (PP, PPL) will be executed. In this case, it is  
necessary to erase/program the suspended area again.  
During Write Suspend, Read (RDSR, RDLP, RDHS, RDDO, RDIO) and Resume (RESM) can be accepted.  
If the Software Reset is executed during the suspension, the suspension will be canceled automatically.  
Figure 15. Write Suspend (WSUS)  
Recovery time  
from Suspend  
t
RSUS  
CS  
20us  
Mode3  
Mode0  
0
1
2
3
4
5
6
7
3 4 5 6 7  
0 1 2  
SCK  
8CLK  
B0h  
Next Command  
(Read or Resume)  
MSB  
SI  
MSB  
High Impedance  
SO  
Operation Current  
= Isb  
www.onsemi.com  
28  
 
LE25S161  
10-12. Resume (RESM)  
This command (RESM) restarts erase cycle (SSE, SE, CHE) or program cycle (PP, PPL) that was suspended.  
"Figure 16. Resume (RESM)" shows the timing waveforms.  
The sequence of RESM operation :  
CS goes to low input RESM command (30h)  
CS goes to high (be executed by the rising CS edge)  
The internal operation status could be checked by using status register RDY bit or SUS bit.  
This command will be ignored if the previous Write Suspend operation was interrupted by unexpected power off or  
re-erase/program (cancel of suspend) or Software Reset(RST). To execute Write Suspend (WSUS) again after Resume, it  
is necessary to wait for some time (tSUS).  
Figure 16. Resume (RESM)  
Self-timed  
Write Cycle  
t
t
t
t
CHE/ SE/ SSE/  
t
PP/ PPL  
CS  
Mode3  
Mode0  
0
1 2 3 4 5 6 7  
SCK  
8CLK  
30h  
SI  
MSB  
High Impedance  
SO  
www.onsemi.com  
29  
 
LE25S161  
10-13. Read ID  
Read ID is an operation that reads the manufacturer code (RJID) and device ID information (RID). These Read ID  
commands are not accepted during writing. There are two methods of reading the silicon ID, each of which is assigned a  
device ID.  
10-13-1. Read JEDEC ID (RJID)  
This command (RJID) is compatible with the JEDEC standard for SPI compatible serial memories.  
"Table 6. JEDEC ID codes" lists the silicon ID codes.  
"Figure 17. Read JEDEC ID (RJID)" shows the timing waveforms.  
The sequence of RJID operation :  
CS goes to low input RJID command (9Fh)  
Manufacture code (62h) out on SO Memory type code (16h) out on SO  
Memory capacity code out on SO (15h) Reserve code (00h)   
completed by CS=high  
* The 4-byte code is output repeatedly as long as clock inputs are present  
* The data output starts from the falling edge of SCK(7th clock)  
By setting CS to high, the device is deselected, and Read JEDEC ID cycle is completed. While the device is deselected,  
the output pin SO is in a high-impedance state.  
Table 6. JEDEC ID codes  
Output code  
62h  
16h  
Manufacturer code  
Memory type  
Memory capacity code  
Reserve code  
2 byte device ID  
15h (16M Bit)  
00h  
Figure 17. Read JEDEC ID (RJID)  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39  
SCK  
SI  
Mode0  
8CLK  
9Fh  
High Impedance  
SO  
00h  
MSB  
62h  
MSB  
62h  
MSB  
16h  
MSB  
15h  
MSB  
www.onsemi.com  
30  
 
 
LE25S161  
10-13-2. Read Device ID (RID)  
This command (RID) is an operation that reads the Device ID.  
"Table 7. Device ID code" lists the device ID codes.  
"Figure 18. Read Device ID (RID)" shows the timing waveforms.  
The sequence of RID operation :  
CS goes to low input RID command (ABh) 3 byte dummy cycle  
Device ID (88h) out on SO   
completed by CS=high  
* The Device ID (88h) is output repeatedly as long as clock inputs are present  
* The data output starts from the falling edge of SCK(31th)  
By setting CS to high, the device is deselected, and Read ID cycle is completed. While the device is deselected, the output  
pin SO is in a high-impedance state.  
Table 7. Device ID code  
Output Code  
88h  
1 byte device ID  
(LE25S161)  
Figure 18. Read Device ID (RID)  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39  
SCK  
SI  
Mode0  
8CLK  
ABh  
X
X
X
High Impedance  
SO  
88h  
MSB  
88h  
MSB  
www.onsemi.com  
31  
 
 
LE25S161  
10-14. Deep Power-down (DP)  
The standby current can be further reduced with this command (DP).  
"Figure 19. Deep Power-down (DP)" shows the timing waveforms.  
The sequence of DP operation :  
CS goes to low input DP command (B9h)  
CS goes to high (be executed by the rising CS edge)  
The deep power-down command issued during an internal write operation will be ignored.  
The deep power-down state is exited using the deep power-down exit (EDP). All other commands are ignored.  
Figure 19. Deep Power-down (DP)  
Deep Power-down Standby  
Standby current (Isb)  
Current (Idsb)  
CS  
t
DP  
Mode3  
Mode0  
0
1 2 3 4 5 6 7  
SCK  
8CLK  
B9h  
SI  
MSB  
High Impedance  
SO  
www.onsemi.com  
32  
 
LE25S161  
10-15. Exit Deep Power-down (EDP) / Read Device ID (RDDI)  
The Exit Deep Power-down (EDP) / Read Device ID (RID) command is a multi-purpose command. It can be used to exit  
the device from the deep power-down state, or read the device ID information.  
Exit Deep Power-down (EDP)  
The exit deep power-down command consists only of the first byte cycle, and it is initiated by inputting (ABh).  
"Figure 20. Exiting from Deep Power-down" shows the timing waveforms.  
The sequence of EDP operation :  
CS goes to low input EDP command (ABh)  
CS goes to high (be executed by the rising CS edge)  
Figure 20. Exiting from Deep Power-down (EDP)  
Deep Power-down Standby  
Standby current (Isb)  
current (Idsb)  
CS  
t
RDP  
Mode3  
Mode0  
0
1 2 3 4 5 6 7  
SCK  
8CLK  
ABh  
SI  
MSB  
High Impedance  
SO  
www.onsemi.com  
33  
 
LE25S161  
Read Device ID (RDDI)  
Also the exit from deep power-down is completed by one byte cycle or more of the Read Device ID (RID: ABh).  
"Table 7. Device ID code" lists the device ID codes.  
"Figure 21. Read Device ID " shows the timing waveforms.  
The sequence of EDP & RID operation :  
CS goes to low input RID command (ABh) 3 byte dummy cycle  
Device ID out on SO   
completed by CS=high  
* The Device ID is output repeatedly as long as clock inputs are present  
* The data output starts from the falling edge of SCK(31th clock)  
By setting CS to high, the device is deselected, and Read ID cycle is completed. While the device is deselected, the output  
pin SO is in a high-impedance state.  
Figure 21. Read Device ID  
Standby  
Deep Power-down Standbycurrent (Idsb)  
current (Isb)  
CS  
SCK  
SI  
t
RDP  
Mode3  
Mode0  
0
1
2
3
4
5
6
7
8
31 32  
39  
24 Dummy  
Bits  
8CL  
ABh  
X
X
High Impedance  
SO  
Dev ID  
Dev ID  
Dev ID  
MSB  
www.onsemi.com  
34  
 
LE25S161  
10-16. Software Reset  
The Software Reset reset the device to the state just after power-on. This operation consists of two commands: the Reset  
Enable (RSTEN) and the Reset command (RST).  
"Figure 22. Software Reset" shows the timing waveforms.  
The sequence of Software Reset operation :  
CS goes to low input RSTEN command (66h)  
CS goes to high  
CS goes to low input RST command (99h)  
CS goes to high (be executed by the rising CS edge)  
When the Software Reset is executed, an internal write (erase/program) operation is cancel, a suspended status is reset,  
and all volatility status register bits (WEN/ RDY/SUS) are reset. After the internal reset time (tRST), the device will  
become stand-by state. If the Software Reset is executed during a write (erase/program) operation, any dates on the write  
operation will be broken.  
The Reset command must input just after input the Reset Enable command. If another command input after the Reset  
Enable command, the Reset-Enable state will be invalid.  
Figure 22. Software Reset  
Internal reset time  
(tRST)  
CS  
Mode3  
0
1
2
3
4
5
6
7
0 1 2 3  
4 5 6 7  
SCK  
Mode0  
8CLK  
66h  
8CLK  
99h  
SI  
MSB  
High Impedance  
MSB  
SO  
www.onsemi.com  
35  
 
LE25S161  
10-17. Read SFDP (RSFDP)  
The Read SFDP (Serial Flash Discoverable Parameter) is an operation that reads the parameter about device  
configurations, available commands and other features. The SFDP parameters are stored in internal parameter tables.  
These parameter tables can be interrogated by host system software to enable adjustments needed to accommodate  
divergent features from multiple vendors. SFDP is a standard of JEDEC. JESD216. Rev 1.0.  
"Table 8. SFDP Header" shows SFDP Header.  
"Table 9. SFDP Parameter Table" shows SFDP Parameter Table.  
"Figure 23. Read SFDP (RSFDP)" shows the timing waveforms.  
The sequence of RSFDP operation :  
CS goes to low input RSFDP command (5Ah) 3 Byte address (A23-A0) input on SI  
1 byte dummy cycle the corresponding parameter out on SO  
continuous parameter out (n-byte)   
completed by CS=high  
* A10 to A0 are valid address  
* The parameter output starts from the falling edge of SCK(39th clock)  
The Address is latched on rising edge of SCK. It is necessary to add 1 dummy byte cycle after address is latched, and the  
corresponding parameter is shifted out on SO by the falling edge of SCK. The address is automatically incremented to the  
next higher address after each byte parameter is shifted out. By setting CS to high, the device is deselected, and Read  
SFDP cycle is completed. While the device is deselected, the output pin SO is in a high-impedance state.  
Figure 23. Read SFDP (RSFDP)  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
47 48  
55  
SCK  
SI  
Mode0  
8CLK  
5Ah  
Add  
Add  
Add  
X
(A23-A16) (A15-A8)  
(A7-A0)  
MSB  
Byte 1  
Byte 2 Byte 3  
High Impedance  
SO  
Param1 Param2 Param3  
MSB MSB MSB  
www.onsemi.com  
36  
 
 
LE25S161  
Table 8. SFDP Header  
SFDP Header 1st and 2nd DWORD  
Byte Address  
(Hex)  
Data  
(Hex)  
Description  
Comment  
Bits  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
7:0  
53h  
46h  
44h  
50h  
05h  
01h  
02h  
FFh  
15:8  
50444653h  
(SFDP)  
SFDP Signature  
23:16  
31:24  
7:0  
SFDP Minor Revision Number  
SFDP Major Revision Number  
Number of Parameter Headers  
Unused  
Start from 00h  
Start from 01h  
15:8  
02h indicates 3 parameters  
23:16  
31:24  
1st Parameter Header (JDEC Basic Flash parameters)  
Description  
Byte Address  
(Hex)  
Data  
(Hex)  
Comment  
Bits  
7:0  
ID number (JEDEC ID)  
00h(JEDEC specified header)  
Start from 00h  
08h  
00h  
Parameter Table Minor Revision  
Number  
09h  
15:8  
00h  
Parameter Table Major Revision  
Number  
Parameter Table Length  
(in double word)  
Start from 01h  
0Ah  
0Bh  
23:16  
31:24  
01h  
10h  
How many DWORDs in the Parameter table  
10h indicates 16 DWORDs  
0Ch  
0Dh  
0Eh  
0Fh  
7:0  
40h  
00h  
00h  
FFh  
First address of JEDEC Flash  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
15:8  
23:16  
31:24  
2nd Parameter Header (Vender parameters 1)  
Byte Address  
(Hex)  
Data  
(Hex)  
Description  
Comment  
Bits  
7:0  
ID number  
(ON Semiconductor  
manufacturer ID)  
62h(ON Semiconductor manufacturer ID)  
10h  
62h  
Parameter Table Minor Revision  
Number  
Parameter Table Major Revision  
Number  
Parameter Table Length  
(in double word)  
Start from 00h  
Start from 01h  
11h  
12h  
13h  
15:8  
23:16  
31:24  
00h  
01h  
04h  
How many DWORDs in the Parameter table  
04h indicates 4 DWORDs  
14h  
15h  
16h  
17h  
7:0  
C0h  
00h  
00h  
FFh  
First address of On Semiconductor  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
15:8  
23:16  
31:24  
www.onsemi.com  
37  
 
LE25S161  
Table 9. SFDP Parameter Tables  
Parameter Table : JDEC Basic Flash Parameter Tables (from 1th DWORD to 4th DWORD)  
Byte  
Address  
(Hex)  
Data  
(Binary)  
Data  
(Hex)  
Description  
Comment  
Bits  
1:0  
00b: Reserved  
01b: support 4 KB Erase  
10b: Reserved  
11b: not support 4KB Erase  
Block/Sector Erase Sizes  
Write Granularity  
01b  
0: 1Byte, 1:64 Byte or larger  
2
3
1b  
0b  
Volatile Status Register Block Protect  
bits  
0: Non-volatile  
1: Volatile  
40h  
E5h  
0: use 50h opcode, 1: use 06h opcode  
Note: If target flash status register is nonvolatile,  
then bits 3 and 4 must be set to 00b.  
Write Enable Instruction Select for  
Writing to Volatile Status Register  
4
0b  
Unused  
Contains 111b and can never be changed  
7:5  
15:8  
16  
111b  
0010_0000b  
1b  
4KB Erase Instruction  
(1-1-2) Fast Read  
20h  
41h  
42h  
43h  
20h  
91h  
0=not support 1=support  
00: 3Byte only, 01: 3 or 4Byte,  
10: 4Byte only, 11: Reserved  
Address Bytes  
18:17  
19  
00b  
0b  
Double Transfer Rate (DTR)  
Clocking  
0=not support 1=support  
(1-2-2) Fast Read  
(1-4-4) Fast Read  
(1-1-4) Fast Read  
Unused  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
20  
21  
1b  
0b  
22  
0b  
1b  
23  
Unused  
31:24  
1111_1111b  
FFh  
44h  
45h  
46h  
47h  
Flash Memory Density  
16 M bits  
31:0  
4:0  
-
00FFFFFFh  
(1-4-4) Fast Read Number of Wait  
states (dummy clocks)  
(1-4-4) Fast Read Number of Mode  
Clocks  
0 0000b: Wait states (dummy Clocks) not support  
000b: Mode Bits not support  
0_0000b  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
00h  
FFh  
00h  
FFh  
08h  
3Bh  
04h  
BBh  
7:5  
000b  
(1-4-4) Fast Read Instruction  
15:8  
20:16  
1111_1111b  
0_0000b  
(1-1-4) Fast Read Number of Wait  
states (dummy clocks)  
(1-1-4) Fast Read Number of Mode  
Clocks  
0 0000b: Wait states (dummy Clocks) not support  
000b: Mode Bits not support  
23:21  
31:24  
4:0  
000b  
(1-1-4) Fast Read Instruction  
1111_1111b  
0_1000b  
(1-1-2) Fast Read Number of Wait  
states (dummy clocks)  
(1-1-2) Fast Read Number of Mode  
Clocks  
0 0000b: Wait states (dummy Clocks) not support  
000b: Mode Bits not support  
7:5  
000b  
(1-1-2) Fast Read Instruction  
15:8  
20:16  
0011_1011b  
0_0100b  
(1-2-2) Fast Read Number of Wait  
states (dummy clocks)  
(1-2-2) Fast Read Number of Mode  
Clocks  
0 0000b: Wait states (dummy Clocks) not support  
000b: Mode Bits not support  
23:21  
31:24  
000b  
(1-2-2) Fast Read Instruction  
1011_1011b  
www.onsemi.com  
38  
LE25S161  
Parameter Table : JDEC Basic Flash Parameter Tables (from 5th DWORD to 8th DWORD)  
Byte  
Address  
(Hex)  
Data  
(Binary)  
Data  
(Hex)  
Description  
Comment  
Bits  
(2-2-2) Fast Read  
0=not support 1=support  
0
3:1  
4
0b  
111b  
0b  
Reserved  
Default all 1’s  
50h  
EEh  
(4-4-4) Fast Read  
Reserved  
0=not support 1=support  
Default all 1’s  
7:5  
111b  
51h  
52h  
53h  
54h  
55h  
FFh  
FFh  
FFh  
FFh  
FFh  
Reserved  
Default all 1’s  
31:8  
-
Reserved  
Default all 1’s  
15:0  
-
(2-2-2) Fast Read Number of Wait  
states (dummy clocks)  
(2-2-2) Fast Read Number of Mode  
Clocks  
0 0000b: Wait states (dummy Clocks) not support  
000b: Mode Bits not support  
20:16  
0_0000b  
56h  
00h  
23:21  
31:24  
15:0  
000b  
(2-2-2) Fast Read Instruction  
57h  
1111_1111b  
-
FFh  
58h  
59h  
FFh  
FFh  
Reserved  
Default all 1’s  
(4-4-4) Fast Read Number of Wait  
states (dummy clocks)  
(4-4-4) Fast Read Number of Mode  
Clocks  
0 0000b: Wait states (dummy Clocks) not support  
000b: Mode Bits not support  
20:16  
0_0000b  
5Ah  
00h  
23:21  
31:24  
7:0  
000b  
(4-4-4) Fast Read Instruction  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
1111_1111b  
0000_1100b  
0010_0000b  
0001_0000b  
1101_1000b  
FFh  
0Ch  
20h  
10h  
D8h  
Sector/block size = 2^N bytes  
0Ch indicates 4Kbytes  
Sector Type 1 Size  
Sector Type 1 erase Instruction  
Sector Type 2 Size  
15:8  
Sector/block size = 2^N bytes  
10h indicates 64Kbytes  
23:16  
31:24  
Sector Type 2 erase Instruction  
www.onsemi.com  
39  
LE25S161  
Parameter Table : JDEC Basic Flash Parameter Tables (from 9th DWORD to 12th DWORD)  
Byte  
Address  
(Hex)  
Data  
(Binary)  
Data  
(Hex)  
Description  
Comment  
Bits  
Sector/block size = 2^N bytes  
00h indicates not exist  
Sector Type 3 Size  
60h  
61h  
62h  
63h  
7:0  
0000_0000b  
1111_1111b  
0000_0000b  
1111_1111b  
00h  
FFh  
00h  
FFh  
Sector Type 3 erase Instruction  
Sector Type 4 Size  
15:8  
Sector/block size = 2^N bytes  
00h indicates not exist  
23:16  
31:24  
Sector Type 4 erase Instruction  
SE (64K-Byte erase):  
150ms=2*(n+1)*15ms  
n=4  
SSE (4K-Byte erase)  
10ms: ((n+1)*1ms=10ms)  
n=9  
SE (64K-Byte erase)  
15ms: ((n+1)*1ms=15ms)  
n=14  
Multiplier from typical erase time to  
maximum erase time  
3:0  
0100b  
64h  
94h  
70h  
10:4  
00_01001b  
Sector Type 1 Erase, Typical time  
Sector Type 2 Erase, Typical time  
65h  
66h  
67h  
17:11  
24:18  
00_01110b  
00_00000b  
00h  
00h  
Sector Type 3 Erase, Typical time  
Sector Type 4 Erase, Typical time  
-
-
31:25  
3:0  
00_00000b  
0010b  
(n+1)*0.3ms  
Multiplier from typical time to max  
time for Page or byte program  
=0.9ms: n=2,  
0.9ms > 0.7ms(spec)  
68h  
82h  
E6h  
07h  
0Ch  
Page Size  
256Bytes=2^8  
7:4  
1000b  
(n+1)*64µs  
Page Program Typical time  
13:8  
1_00110b  
=448us: n=6,  
448µs > 400µs(spec)  
69h  
6Ah  
15:14  
18:16  
Byte Program Typical time,  
first byte  
(n+1)*8us  
=128us: n=15,  
1_1111b  
0_0000b  
Byte Program Typical time,  
additional byte  
(count+1)*1µs/byte  
=1us/byte: Count=0  
(n+1)*16ms  
23:19  
Chip Erase, Typical time  
Reserved  
30:24  
31  
00_01100b  
0b  
=208ms: n=12  
208ms = 210ms(spec)  
6Bh  
-
xxx0b: May not initiate a new erase anywhere  
xxx1b: May not initiate  
suspended page size  
a new erase in the program  
xx0xb: May not initiate a new page program anywhere  
xx1xb: May not initiate a new page program in the program  
suspended page size  
x0xxb: Refer to vendor datasheet for read restrictions  
x1xxb: May not initiate a read in the program suspended  
page size  
Prohibited Operations During  
Program Suspend  
3:0  
1101b  
0xxxb: Additional erase or program restrictions apply  
1xxxb: The erase and program restrictions in bits 1:0 are  
sufficient  
6Ch  
FDh  
xxx0b: May not initiate a new erase anywhere  
xxx1b: May not initiate  
suspended sector size  
a new erase in the erase  
xx0xb: May not initiate a page program anywhere  
xx1xb: May not initiate  
suspended sector size  
x0xxb: Refer to vendor datasheet for read restrictions  
x1xxb: May not initiate a read in the erase suspended  
sector size  
a page program in the erase  
Prohibited Operations During Erase  
Suspend  
7:4  
1111b  
0xxxb: Additional erase or program restrictions apply  
1xxxb: The erase and program restrictions in bits 5:4 are  
sufficient  
Reserved  
-
8
0b  
Program Resume to  
Suspend Interval  
6Dh  
12:9  
0000b  
80h  
<64µs: (count+1)*64µs, count=0  
15:13  
19:16  
Suspend in-progress  
Program max latency  
10_00100b  
0000b  
40µs: ((4+1)*8us=40µs)  
6Eh  
6Fh  
08h  
44h  
Erase Resume to  
Suspend Interval  
Suspend in-progress  
erase max latency  
23:20  
<64µs: (count+1)*64µs, count=0  
40µs: ((4+1)*8µs=40us)  
30:24  
31  
10_00100b  
0b  
Suspend /resume supported  
0=support 1=not support  
www.onsemi.com  
40  
LE25S161  
Parameter Table : JDEC Basic Flash Parameter Tables (from 13th DWORD to 16th DWORD)  
Byte  
Address  
(Hex)  
Data  
(Binary)  
Data  
(Hex)  
Description  
Comment  
Bits  
Program Resume Instruction  
(program operation)  
Program Suspend Instruction  
(program operation)  
Resume Instruction  
(write or erase type operation)  
30h (as same as erase resume)  
B0h (as same as erase suspend)  
30h (as same as program resume)  
B0h (as same as program suspend)  
70h  
71h  
72h  
73h  
7:0  
0011_0000b  
1011_0000b  
0011_0000b  
30h  
B0h  
30h  
B0h  
15:8  
23:16  
Suspend Instruction  
(write or erase type operation)  
31:24  
1:0  
1011_0000b  
00b  
Reserved  
74h  
04h  
Status Register Polling  
Device Busy  
Use legacy polling by reading the Status Register  
with 05h instruction  
7:2  
0000_01b  
Exit Deep Power down to next  
operation delay  
10_00100b  
1010_1011b  
1011_1001b  
14:8  
40µs: ((4+1)*8µs=40µs)  
75h  
76h  
C4h  
15  
22:16  
23  
Exit Deep Power down Instruction  
Enter Deep Power down Instruction  
ABh  
B9h  
D5h  
5Ch  
00h  
30:24  
31  
77h  
78h  
Deep Power down Supported  
0=support 1=not support  
-
0b  
0000b  
0000b  
0b  
(4-4-4) Mode Disable Sequences  
3:0  
7:4  
(4-4-4) Mode Enable Sequences  
-
8
(0-4-4) Mode supported  
(0-4-4) Mode Exit Method  
(0-4-4) Mode Entry Method  
Quad Enable requirements (QER)  
Hold and WP Disable  
0=not support 1=support  
79h  
9
0b  
00h  
-
15:10  
19:16  
22:20  
23  
00_0000b  
0000b  
000b  
-
00b:not have a QE bit  
7Ah  
7Bh  
00h  
00h  
0: not supported  
-
0b  
Reserved  
31:24  
0000_0000b  
xxx_xxx1b: Non-Volatile Status Register 1, powers-up to  
last written value, use  
instruction 06h to enable write  
xx1_xxxxb: Status Register 1 contains a mix of volatile and  
non-volatile bits. The 06h instruction is used to enable  
writing of the register.  
Volatile or Non-Volatile Register and  
Write Enable Instruction for Status  
Register 1  
6:0  
001_1001b  
7Ch  
19h  
Reserved  
-
7
0b  
Soft Reset and  
Rescue Sequence Support  
Issue reset enable instruction 66h, and then issue  
reset instruction 99h.  
13:8  
01_0000b  
7Dh  
10h  
15:14  
23:16  
31:24  
00b  
Exit 4-Byte Addressing  
Enter 4-Byte Addressing  
7Eh  
7Fh  
0000_0000b  
0000_0000b  
00h  
00h  
www.onsemi.com  
41  
LE25S161  
Parameter Table : Vender(ON Semiconductor) Parameter 1 Tables (from 1th DWORD to 4th DWORD)  
Byte  
Data  
(Hex)  
LE25S161  
Data  
(Binary)  
Description  
Comment  
Address  
(Hex)  
Bits  
1900h=1.900V  
1950h=1.950V  
2000h=2.000V  
2200h=2.200V  
1600h=1.600V  
1650h=1.650V  
1700h=1.700V  
1800h=1.800V  
2400h=2.400V  
50h  
19h  
2700h=2.700V  
3000h=3.000V  
3600h=3.600V  
20000h=2.000V  
22000h=2.200V  
23000h=2.300V  
27000h=2.700V  
C0h  
C1h  
Supply Maximum Voltage  
15:0  
-
-
50h  
16h  
C2h  
C3h  
Supply Minimum Voltage  
31:16  
0=not support  
1= support  
0=active logic is 0  
1=active logic is 1  
0=not support  
1= support  
0=active logic is 0  
1=active logic is 1  
0=not support  
1= support  
RESET Pin  
0
1
2
3
4
0b  
0b  
1b  
0b  
1b  
RESET Active Logic Level  
HOLD Pin  
14h  
C4h  
HOLD Active Logic Level  
WP Pin  
0=active logic is 0  
1=active logic is 1  
WP Active Logic Level  
Reserved  
5
0b  
00b  
7:6  
00b  
FFh  
FFh  
FFh  
C5h  
C6h  
C7h  
1111_1111b  
1111_1111b  
1111_1111b  
Reserved  
All FFh  
9Fh  
31:8  
9Fh  
62h  
JDEC ID Operation code  
C8h  
C9h  
7:0  
1001_1111b  
0110_0010b  
JDEC ID Read Data  
(Manufacture code)  
JDEC ID Read Data  
(Memory type)  
JDEC ID Read Data  
(Memory capacity code)  
62h (ON Semiconductor)  
16h  
15:8  
CAh  
CBh  
23:16  
31:24  
0001_0110b  
0001_0101b  
16h  
15h  
15h (16M bits)  
Device ID Operation code  
Device ID Read Data  
ABh  
CCh  
CDh  
7:0  
1010_1011b  
1000_1000b  
ABh  
88h  
88h(LE25S161)  
15:8  
CEh  
CFh  
1111_1111b  
1111_1111b  
FFh  
FFh  
Reserved  
All FFh  
31:16  
www.onsemi.com  
42  
LE25S161  
11. Hold Function  
Using the HOLD pin, the hold function suspends serial communication (it places it in the hold status). "Figure 24. HOLD  
Function" shows the timing waveforms. The device is placed in the hold status at the falling HOLD edge while the logic  
level of SCK is low, and it exits from the hold status at the rising HOLD edge. When the logic level of SCK is  
high, HOLD must not rise or fall. The hold function takes effect when the logic level of CS is low, the hold status is exited  
and serial communication is reset at the rising CS edge. In the hold status, the SO output is in the high-impedance state,  
and SI and SCK are "don't care".  
Figure 24. HOLD Function  
Active  
HOLD  
Active  
CS  
t
t
HS  
HS  
SCK  
t
t
HH  
HH  
HOLD  
SO  
t
t
HLZ  
HHZ  
High Impedance  
www.onsemi.com  
43  
 
LE25S161  
12. Power-on  
In order to protect against unintentional writing, CS must be within at V -0.3 to V +0.3 on power-on. After  
DD  
DD  
power-on, the supply voltage has stabilized at V  
The device is in the standby state after power is turned on.  
(min) or higher, and waits for t  
before CS is driven to "Low".  
DD  
VSL  
Figure 25. Power-on Timing  
V
DD  
V
V
(Max)  
DD  
DD  
Program, Erase and Write Commands are Ignored  
CS  
Chip Select ( ="L") is Not Allowed  
(Min)  
tVSL  
Read Command is  
allowed  
Full Access Allowed  
Reset  
State  
V
WI  
t
PUW  
0V  
time  
Power-up timing  
spec  
Parameter  
CS  
Symbol  
unit  
min  
300  
max  
t
µs  
µs  
V
V
(Min) to  
Low  
VSL  
DD  
Time to Write Operation  
Operation Inhibit Voltage  
t
100  
1.0  
500  
1.5  
PUW  
V
WI  
www.onsemi.com  
44  
LE25S161  
13. Hardware Data Protection  
LE25S161 incorporates a power-on reset function. The following conditions must be met in order to ensure that the power  
reset circuit will operate stably.  
No guarantees are given for data in the event of an instantaneous power failure occurring during the writing period.  
Figure 26. Power-down Timing  
V
DD  
V
V
(Max)  
DD  
DD  
(Min)  
t
PD  
0V  
vBOT  
Power-down timing  
spec  
Parameter  
Symbol  
unit  
min  
10  
max  
0.2  
power-down time  
t
ms  
V
PD  
power-down voltage  
V
BOT  
14. Software Data Protection  
The LE25S161 eliminates the possibility of unintentional operations by not recognizing commands under the following  
conditions.  
When a write command is input and the rising CS edge timing is not in a byte cycle (8 CLK units of SCK)  
When the Page Program data is not in 1-byte increments  
When the Write Status Register command is input for 2 bytes cycles or more  
15. Decoupling Capacitor  
0.1µF ceramic capacitor must be provided to each device and connected between V  
device will operate stably.  
and V in order to ensure that the  
SS  
DD  
www.onsemi.com  
45  
LE25S161  
16. Specifications  
16-1. Absolute Maximum Ratings  
Parameter  
Maximum supply voltage  
DC voltage (all pins)  
Storage temperature  
Symbol  
Conditions  
Ratings  
unit  
V
With respect to V  
With respect to V  
0.5 to +2.6  
SS  
SS  
0.5 to V +0.5  
V
DD  
Tstg  
55 to +150  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed,  
damage may occur and reliability may be affected.  
16-2. Operating Conditions  
Parameter  
Symbol  
Conditions  
Ratings  
unit  
V
Operating supply voltage  
1.65 to 1.95  
Operating  
40 to +90  
°C  
ambient temperature  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended  
Operating Ranges limits may affect device reliability.  
16-3. Data retention, Rewriting cycles  
Parameter  
Symbol  
cycRW  
tDRET  
condition  
min  
100,000  
100,000  
20  
max  
unit  
Status resister write  
Program/Erase  
cycles/  
Sector  
Rewrite Cycles  
Data retention  
year  
16-4. Pin Capacitance at Ta=25°C, f=1MHz  
Ratings  
max  
12  
Parameter  
Symbol  
Conditions  
unit  
Output pin capacitance  
Input pin Capacitance  
C
V
V
=0V  
SO  
pF  
pF  
SO  
C
=0V  
IN  
6
IN  
Note: These parameter values do not represent the results of measurements undertaken for all devices but rather values for  
some of the sampled devices.  
16-5. AC Test Conditions  
Input pulse level··········· 0.2V  
Input rising/falling time ·· 5ns  
to 0.8V  
DD  
DD  
Input timing level ········· 0.3V , 0.7V  
DD  
DD  
Output timing level ······· 1/2×V  
Output load················· 15pF  
DD  
Note: As the test conditions for "typ", the measurements are conducted using 1.8V for V  
at room temperature.  
DD  
Input / Output timing level  
0.7VDD  
Input level  
0.8VDD  
0.2VDD  
1/2VDD  
0.3VDD  
www.onsemi.com  
46  
LE25S161  
16-6. DC Characteristics  
V
=1.65 to 1.95V  
Ratings  
DD  
Parameter  
Symbol  
Conditions  
unit  
min  
typ  
max  
4.5  
Low-Power Read  
(RDLP: 03h)  
33.33MHz  
33.33MHz  
70MHz  
3.5  
4.0  
6.0  
5.0  
6.0  
mA  
mA  
mA  
mA  
mA  
5.5  
7.0  
7.0  
8.0  
SCK=  
0.1V /0.9V  
DD  
,
High-Speed Read  
(RDHS: 0Bh)  
DD  
Read mode  
HOLD=WP=  
I
CCR  
operating current  
0.9V  
,
DD  
SO=open  
Dual Output Read  
(RDDO: 3Bh)  
or  
Dual I/O Read  
(RDIO: BBh)  
33.33MHz  
50MHz  
t
=max,  
SSE  
Average current  
Small Sector Erase operating current  
Sector Erase operating current  
Chip Erase operating current  
I
3.5  
3.5  
4.0  
4.5  
4.5  
5.0  
mA  
mA  
mA  
CCSSE  
t
=max  
SE  
Average current  
I
CCSE  
t
=max  
CHE  
Average current  
I
CCCHE  
Normal  
t
=max  
PP  
Average current  
Program mode  
operating current  
I
6.5  
5.0  
7.5  
6.5  
mA  
mA  
CCPP  
Low-Power  
t
=max  
PPL  
Program mode  
operating current  
I
CCPPL  
Average current  
=V  
,
=
=V  
,
,
CS  
HOLD WP  
CMOS  
DD  
SS DD,  
DD  
SO=open,  
I
9
50  
12  
µA  
µA  
SB  
SI=V /V  
standby current  
Deep Power-down standby current  
=V  
,
=
=V  
CS  
HOLD WP  
DD  
SS DD,  
DD  
SO=open,  
I
3.0  
DSB  
SI=V /V  
Input leakage current  
Output leakage current  
Input low voltage  
I
2.0  
2.0  
µA  
µA  
V
LI  
I
LO  
V
0.3  
0.3V  
IL  
DD  
Input high voltage  
V
0.7V  
V
+0.3  
V
IH  
DD  
DD  
0.2  
0.4  
I
I
I
=100µA, V =V  
DD DD  
min  
min  
min  
OL  
OL  
OH  
Output low voltage  
Output high voltage  
V
V
V
OL  
=1.6mA, V =V  
DD DD  
V
=100µA, V =V  
DD DD  
V
-0.2  
DD  
OH  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be  
indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
47  
LE25S161  
16-7. AC Characteristics  
Ratings  
typ  
Parameter  
Symbol  
unit  
min  
max  
Low-Power Read (RDLP: 03h)  
Dual Output Read (RDDO: 3Bh)  
33.33  
50  
Clock  
f
MHz  
V/ns  
CLK  
Dual I/O Read  
(RDIO: BBh)  
frequency  
Other instructions  
70  
0.1  
11  
Input signal rising/falling time  
t
RF  
33.33MHz  
50MHz  
SCK logic high level pulse  
width  
t
8
6
ns  
ns  
CLHI  
70MHz  
33.33MHz  
50MHz  
11  
8
SCK logic low level pulse  
width  
t
CLLO  
70MHz  
6
CS  
CS  
active setup time  
t
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SLCH  
not active hold time  
t
CHSL  
Data setup time  
Data hold time  
t
3
DS  
t
3
DH  
CS  
CS  
CS  
wait pulse width  
active hold time  
t
20  
6
CPH  
t
CHSH  
not active setup time  
t
6
SHCH  
CS  
Output high impedance time from  
t
8
10  
8
CHZ  
33.33MHz  
50MHz  
Output data time from SCK  
Output data hold time  
t
ns  
V
8
70MHz  
t
1
0
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
HO  
Output low impedance time from SCK  
t
CLZ  
HOLD  
HOLD  
setup time  
hold time  
t
HS  
t
HH  
HOLD  
HOLD  
Output low impedance time from  
t
8
8
HLZ  
Output high impedance time from  
t
HHZ  
WP  
WP  
setup time  
hold time  
t
20  
20  
WPS  
t
WPH  
Write status register time  
t
5
8
WRSR  
256Byte  
0.40  
0.70  
Normal Page Programming  
cycle time  
t
ms  
ms  
0.14 +  
PP  
nByte  
0.35 + n * 0.35/256  
1.20  
n * 0.26/256  
0.60  
256Byte  
nByte  
Low-Power Page Programming  
cycle time  
t
0.14 +  
n * 0.46/256  
10  
PPL  
0.50 + n * 0.70/256  
Small Sector Erase cycle time  
Sector Erase cycle time  
Chip Erase cycle time  
t
120  
150  
2400  
40  
ms  
ms  
ms  
µs  
SSE  
t
15  
SE  
t
210  
CHE  
Recovery time from suspend  
Deep Power-down time  
Deep Power-down recovery time  
Internal reset time  
t
RSUS  
t
5
µs  
DP  
t
40  
µs  
RDP  
tRST  
40  
µs  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be  
indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
48  
LE25S161  
17. Timing waveforms  
Figure 27. Serial Input Timing  
t
CPH  
CS  
t
t
t
t
t
SHCH  
CHSL  
SLCH  
CLHI CLLO  
t
CHSH  
SCK  
t
t
DH  
DS  
SI  
DATA VALID  
High Impedance  
High Impedance  
SO  
Figure 28. Serial Output Timing  
CS  
SCK  
t
t
t
CHZ  
CLZ  
HO  
SO  
SI  
DATA VALID  
t
V
Figure 29. Hold Timing  
CS  
t
t
HS  
t
t
HS  
HH  
HH  
SCK  
HOLD  
SI  
t
t
HLZ  
HHZ  
High Impedance  
Figure 30. Status Resister Write Timing  
CS  
t
t
WPH  
WPS  
WP  
www.onsemi.com  
49  
LE25S161  
Figure 31. Write Status Register Flowcharts  
Write Status Register  
Start  
06h  
Write enable  
(WREN)  
01h  
Set Write Status  
Register command  
(WRSR)  
Data  
Program start on rising  
edge of CS  
Set  
05h  
Read Status Register  
command  
(RDSR)  
NO  
Bit 0= "0" ?  
YES  
End of Write Status  
Register  
* Automatically placed in write disabled state  
at the end of the Write Status Register  
www.onsemi.com  
50  
 
LE25S161  
Figure 32. Small Sector Erase Flowcharts  
Figure 33. Sector Erase Flowcharts  
Sector Erase  
Start  
Small Sector Erase  
Start  
Write enable  
(WREN)  
06h  
Write enable  
(WREN)  
06h  
Set Sector Erase  
command  
(SE)  
Set Small Sector  
Erase command  
(SSE)  
D8h  
20h / D7h  
Address 1  
Address 2  
Address 3  
Address 1  
Address 2  
Address 3  
Start erase on rising  
edge of CS  
Start erase on rising  
edge of CS  
Set  
Set  
05h  
Read Status Register  
command  
(RDSR)  
05h  
Read Status Register  
command  
(RDSR)  
NO  
Bit 0 = "0" ?  
YES  
NO  
Bit 0 = "0" ?  
YES  
End of erase  
End of erase  
* Automatically placed in write disabled  
state at the end of the erase  
* Automatically placed in write disabled  
state at the end of the erase  
www.onsemi.com  
51  
 
 
LE25S161  
Figure 34. Chip Erase Flowcharts  
Chip Erase  
Start  
Write enable  
06h  
(WREN)  
Set Chip Erase  
command  
(CHE)  
60h / C7h  
Start erase on rising  
edge of CS  
Set  
05h  
Read Status Register  
command  
(RDSR)  
Bit 0 = "0" ?  
YES  
NO  
End of erase  
* Automatically placed in write disabled state at  
the end of the erase  
www.onsemi.com  
52  
 
LE25S161  
Figure 35. Page Program Flowcharts  
Page Program  
Start  
06h  
Write enable  
(WREN)  
02h or 0Ah  
Address 1  
Set Page Program  
command  
(PP/PPL)  
*02h: Normal Program Mode (PP)  
*0Ah: Low-Power Program Mode (PPL)  
Address 2  
Address 3  
Data 0  
Data n  
Start program on rising  
edge of CS  
Set  
05h  
Read Status Register  
command  
(RDSR)  
NO  
Bit 0= "0" ?  
YES  
End of  
programming  
* Automatically placed in write disabled state at  
the end of the programming operation.  
www.onsemi.com  
53  
 
LE25S161  
ORDERING INFORMATION  
Device  
Package  
Shipping (Qty / Packing)  
2000 / Tape & Reel  
SOIC 8, 150 mils  
(Pb-Free / Halogen Free)  
LE25S161MDTWG  
LE25S161FDTWG  
LE25S161XATAG  
LE25S161PCTXG  
VSOIC8 NB  
(Pb-Free / Halogen Free)  
3000 / Tape & Reel  
4000 / Tape & Reel  
2000 / Tape & Reel  
WLCSP8, 2.92x1.53  
(Pb-Free / Halogen Free)  
UDFN8 4x3, 0.8P  
(Pb-Free / Halogen Free)  
† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel  
Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF  
ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiariesin the United States  
and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of  
SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without  
further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitabilityof its products for any particular purpose,  
nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including  
without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can  
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are  
not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applicationsintended to support or  
sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers,  
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was  
negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all  
applicable copyright laws and is not for resale in any manner.  
www.onsemi.com  
54  

相关型号:

LE25S161XBTAG

串行闪存,16 Mb (2048K x 8)
ONSEMI

LE25S161_16

Serial Flash Memory
ONSEMI

LE25S20FD

Serial Flash Memory
ONSEMI

LE25S20FD-AH

Serial Flash Memory
ONSEMI

LE25S20FD_17

Serial Flash Memory
ONSEMI

LE25S20MB

Serial Flash Memory 2 Mb
ONSEMI

LE25S20MB-AH

Serial Flash Memory 2 Mb
ONSEMI

LE25S20MB_17

Serial Flash Memory 2 Mb
ONSEMI

LE25S20XA

Serial Flash Memory
ONSEMI

LE25S20XATAG

Serial Flash Memory
ONSEMI

LE25S40AMC

Serial Flash Memory
ONSEMI

LE25S40AMCTWG

Serial Flash Memory
ONSEMI