LE25S161XBTAG [ONSEMI]

串行闪存,16 Mb (2048K x 8);
LE25S161XBTAG
型号: LE25S161XBTAG
厂家: ONSEMI    ONSEMI
描述:

串行闪存,16 Mb (2048K x 8)

闪存
文件: 总40页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Serial Flash Memory  
16 Mb (2048K x 8)  
8
8
1
1
VSOIC8 NB  
CASE 753AA  
SOIC 8  
CASE 751BD  
LE25S161  
Overview  
The LE25S161 is a SPI bus flash memory device with a 16 Mbit  
(2048K x 8bit) configuration. It uses a single power supply. While  
making the most of the features inherent to a serial flash memory  
device, the LE25S161 is housed in an 8pin ultraminiature package.  
All these features make this device ideally suited to storing program in  
applications such as portable information devices, which are required  
to have increasingly more compact dimensions.  
1
UDFN8  
CASE 506DC  
WLCSP8  
CASE 567YR  
MARKING DIAGRAM  
The LE25S161 also has a small sector erase capability which makes  
the device ideal for storing parameters or data that have fewer rewrite  
cycles and conventional EEPROMs cannot handle due to insufficient  
capacity.  
5S161  
00  
ALYW  
5S16100 = Specific Device Code  
Features  
A
L
Y
W
= Assembly Site  
= Wafer Lot Number  
= Year of Production  
= Work Week  
Operations Power Supply: 1.65 to 1.95 V Supply Voltage Range  
Operating Frequency: 70 MHz (Max)  
Temperature Range: –40 to +90°C  
Serial Interface: SPI Mode 0, Mode 3 Supported  
ORDERING INFORMATION  
Electronic Identification: JDEC ID, Device ID, Serial Flash  
Device  
Package  
Shipping  
Discoverable Parameter (SFDP)  
Sector Size: 4 kbytes/Small Sector, 64 kbytes/Sector  
Erase Functions: Small Sector Erase (SSE), Sector Erase (SE),  
Chip Erase (CHE)  
LE25S161FDTWG  
VSOIC8 NB  
(PbFree /  
Halide Free)  
3000 /  
Tape & Reel  
LE25S161MDTWG  
LE25S161PCTXG  
LE25S161XBTAG  
SOIC8  
(PbFree /  
Halide Free)  
2000 /  
Tape & Reel  
Page Program Function: 256 bytes/Page  
Status Functions: Ready/Busy Information, Protect Information  
UDFN8  
(PbFree /  
Halide Free)  
2000 /  
Tape & Reel  
Low Operation Current: 5.0 mA (Lowpower Program Mode, Typ),  
3.5 mA (LowPower Read Mode, Typ)  
Erase Time: 10 ms (SSE, Typ), 15 ms (SE, Typ),  
210 ms (CHE, Typ)  
Page Program Time (tPP): 0.4 ms/256 bytes (Typ.),  
0.7 ms/256 bytes (Max.)  
Emergency Shutdown of the Current Consumption:  
Transition to a Standby State in Less than 20 ms from the  
Active by Write Suspend  
WLCSP8  
(PbFree /  
Halide Free)  
4000 /  
Tape & Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Transition to a Standby State in Less than 40 ms from the  
Active by Software Reset  
High Reliability: 100,000 Erase/Program Cycles  
20 Years Data Retention Period  
Package:  
LE25S161FDTWG VSOIC8 NB, CASE 753AA  
LE25S161MDTWG SOIC 8, 150 mils, CASE 751BD  
LE25S161PCTXG UDFN8 4 x 3, 0.8P, CASE 506DC  
LE25S161XBTAG WLCSP8, 2.92 x 1.53, CASE 567YR  
KGD  
*This product is licensed from Silicon Storage Technology, Inc. (USA).  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
February, 2022 Rev. 2  
LE25S161/D  
LE25S161  
PACKAGE TYPES AND PIN CONFIGURATIONS  
(Top View)  
(Top View)  
CS  
1
8
V
DD  
CS  
1
8
V
DD  
SO (SIO1)  
WP  
2
3
4
7
6
5
HOLD  
SCK  
SO (SIO1)  
WP  
2
3
4
7
6
5
HOLD  
SCK  
V
SS  
SI (SIO0)  
V
SS  
SI (SIO0)  
Figure 1. SOIC8 (LE25S161MDTWG) and  
VSOIC8 NB (LE25S161FDTWG)  
Figure 2. UDFN8 (LE25S161PCTXG)  
(Top View)  
(Ball Side View)  
A
B
VDD  
HOLD  
SCK  
CS  
SO/SIO1  
WP  
VDD  
A
B
CS  
SO/  
SIO1  
HOLD  
WP  
SCK  
C
D
C
D
SI/  
SIO0  
VSS  
SI/SIO0  
1
VSS  
2
2
1
Figure 3. WLCSP8 (LE25S161XBTAG)  
Table 1. PIN CONFIGURATION  
Pad No.  
Name  
CS  
A2  
B2  
C2  
D2  
D1  
C1  
B1  
A1  
SO (SIO1)  
WP  
V
SS  
SI (SIO0)  
SCK  
HOLD  
V
DD  
www.onsemi.com  
2
LE25S161  
4
3
2
1
5
6
7
8
Figure 4. KGD  
Table 2. PIN CONFIGURATION  
Pad No.  
Name  
CS  
1
2
3
4
5
6
7
8
SO (SIO1)  
WP  
V
SS  
SI (SIO0)  
SCK  
HOLD  
V
DD  
PIN DESCRIPTION  
Table 3. PIN DESCRIPTION  
Symbol  
Pin Name  
IIO  
Description  
CS  
Chip Select  
I
The device becomes active when the logic level of this pin is low; it is deselected  
and placed in standby status when the logic level of the pin is high.  
SCK  
Serial Clock  
I
This pin controls the data input/output timing.  
The input data and addresses are latched synchronized to the rising edge of the  
serial clock, and the data is output synchronized to the falling edge of the serial  
clock.  
SI  
Serial Data Input  
I/O  
I/O  
The data and addresses are input from this pin, and latched internally synchronized  
to the rising edge of the serial clock.  
(SIO0)  
(Serial Data Input Output)  
(It changes into input/output pin during the Dual operation.)  
SO  
(SIO1)  
Serial Data Output  
(Serial Data Input Output)  
The data stored inside the device is output from this pin synchronized to the falling  
edge of the serial clock.  
(It changes into input/output pin during the Dual operation.)  
WP  
Write Protect  
I
I
The Write Status Register Protect (SRWP) takes effect when the logic level of this  
pin is low.  
HOLD  
Hold  
Serial communication is suspended when the logic level of this pin is low.  
This pin supplies the 1.65 to 1.95 V supply voltage.  
This pin supplies the 0 V supply voltage.  
V
DD  
Power Supply  
Ground  
V
SS  
www.onsemi.com  
3
LE25S161  
BLOCK DIAGRAM  
16 MBit  
Flash EEPROM  
Cell Array  
Energy−  
consumption  
Control Unit  
Power  
Circuit  
Memory Control Logic  
Decoder Logic  
Command  
Logic  
&
Serialparallel Conversion Logic  
Serial Interface  
SI  
(SIO0)  
SO  
(SIO1)  
SCK  
CS  
WP  
HOLD  
Figure 5. Block Diagram  
www.onsemi.com  
4
LE25S161  
DEVICE OPERATION  
Standard SPI Modes  
taken into the device interior in synchronization with the  
rising edge of SCK, which causes the device to execute  
operation according to the command that is input.  
The LE25S161 supports both serial interface SPI mode 0  
and SPI mode 3. At the falling CS edge, SPI mode 0 is  
automatically selected if the logic level of SCK is low, and  
SPI mode 3 is automatically selected if the logic level of  
SCK is high.  
The read, erase, program and other required functions of  
the device are executed through the command registers. The  
serial I/O corrugate is shown in “Figure 6. SPI Modes” and  
the command list are shown in “Table 5. Command Settings  
(Standard SPI)”. At the falling CS edge the device is  
selected, and serial input is enabled for the commands,  
addresses, etc. These inputs are normalized in 8 bit units and  
CS  
Mode3  
SCK  
Mode0  
8CLK  
1st byte  
SI  
Nth byte  
2nd byte  
LSB  
(Bit0)  
MSB  
(Bit7)  
High Impedance  
DATA  
DATA  
SO  
Figure 6. SPI Modes  
Dual SPI Modes  
Table 4. PIN CONFIGURATIONS AT DUAL SPI MODE  
The LE25S161 supports Dual SPI operations when using  
“Dual Output Read (RDDO: 3Bh)”, “Dual I/O Read (RDIO:  
BBh)”. The SI and SO pins change into the input/output pin  
(SIOx) during the Dual SPI modes. The command list is  
shown in “Table 6. Command Settings (Dual SPI)”.  
Standard SPI  
Dual SPI  
SIO0  
SI  
SO  
SIO1  
www.onsemi.com  
5
 
LE25S161  
Table 5. COMMAND SETTINGS (STANDARD SPI) MAX: 70 MHz (EXCEPT RDLP)  
st  
nd  
rd  
th  
th  
th  
th  
Description  
1
Byte  
2
Byte  
3
Byte  
4
Byte  
5
Byte  
6
Byte  
N
Byte  
(Clock Number)  
(07)  
06h  
04h  
05h  
01h  
03h  
(815)  
(1623)  
(2431)  
(3239)  
(4047)  
(8N8 to 8N1)  
Command  
WREN  
WRDI  
Write Enable  
Write Disable  
RDSR  
Read Status Register  
Write Status Register  
WRSR  
RDLP  
DATA  
LowPower Read  
(Max: 33.33 MHz)  
A23A16  
A15A8  
A15A8  
A7A0  
A7A0  
RD  
(Note 5)  
RD  
(Note 5)  
RD (Note 5)  
RD (Note 5)  
RDHS  
HighSpeed Read  
0Bh  
A23A16  
X
RD  
(Note 5)  
SSE  
SE  
Small Sector Erase (4 kB)  
Sector Erase (64 kB)  
Chip Erase (16 Mbits)  
Normal Page Program  
LowPower Page Program  
Write Suspend  
20h / D7h  
D8h  
A23A16  
A23A16  
A15A8  
A15A8  
A7A0  
A7A0  
CHE  
PP  
60h / C7h  
02h  
A23A16  
A15A8  
A7A0  
PD  
(Note 6)  
PD  
(Note 6)  
PD (Note 6)  
PPL  
0Ah  
WSUS  
RESM  
RJID  
B0h  
Resume  
30h  
Manufacture  
(62h)  
Read JEDEC ID  
9Fh  
Memory  
Type  
(16h)  
Capacity  
(15h)  
RID  
Read Device ID  
ABh  
5Ah  
X
X
X
Device ID  
(88h)  
(Exit power down mode)  
RSFDP  
Read SFDP  
A23A16  
A15A8  
A7A0  
X
RD  
(Note 5)  
RD (Note 5)  
DP  
Deep Power Down  
B9h  
ABh  
EDP  
Exit Deep  
Power Down  
RSTEN  
RST  
Reset Enable  
Reset  
66h  
99h  
1. “X” signifies “don’t care” (that is to say, any value may be input).  
2. “Z” signifies “highimpedance”.  
3. The “h” following each code indicates that the number given is in hexadecimal notation.  
4. Addresses A23 to A21 for all commands are “Don’t care”.  
5. “RD” Read data on SO.  
6. “PD” Page Program data on SO.  
Table 6. COMMAND SETTINGS (DUAL SPI) MAX: 50 MHz  
st  
nd  
rd  
th  
th  
th  
th  
Description  
(Clock Number)  
1
Byte  
2
Byte  
(815)  
3
Byte  
4
Byte  
5
Byte  
6
Byte  
N
Byte  
(07)  
(1623)  
(2431)  
(3239)  
(4047)  
(8N8 to 8N1)  
Command  
RDDO  
Dual Output Read  
3Bh  
A23A16  
A15A8  
A7A0  
Z
RDD  
(Note 11)  
RDD (Note 11)  
RDIO  
Dual I/O Read  
BBh  
A23A8  
A7A0  
RDD  
RDD  
(Note 11)  
RDD  
(Note 11)  
RDD (Note 11)  
(Note 12) (Note 12), (Note 11)  
X, Z  
7. “X” signifies “don’t care” (that is to say, any value may be input).  
8. “Z” signifies “highimpedance”.  
9. The “h” following each code indicates that the number given is in hexadecimal notation.  
10.Addresses A23 to A21 for all commands are “Don’t care”.  
11. “RDD” Dual Read data:  
SIO0 = (Bit6, Bit4, Bit2, Bit0)  
SIO1 = (Bit7, Bit5, Bit3, Bit1)  
12.Dual SPI address input from SIO0 and SIO1:  
SIO0 = (A22, A20, A18, A16, A14, A12, A10, A8, A6, A4, A2, A0)  
SIO1 = (A23, A21, A19, A17, A15, A13, A11, A9, A7, A5, A3, A1)  
www.onsemi.com  
6
 
LE25S161  
MEMORY ORGANIZATION  
Table 7. MEMORY ORGANIZATION (16 Mbits)  
Sector (64 kB)  
Symbol: SE  
Small Sector (4 kB)  
Symbol: SSE  
Address Space (A23 to A0)  
31  
SSE[511]  
to  
1FF000h  
1FFFFFh  
SSE[496]  
SSE[495]  
to  
1F0000h  
1EF000h  
1F0FFFh  
1EFFFFh  
30 to 6  
SSE[96]  
SSE[95]  
to  
060000h  
05F000h  
060FFFh  
05FFFFh  
5
4
3
2
1
0
SSE[80]  
SSE[79]  
to  
050000h  
04F000h  
050FFFh  
04FFFFh  
SSE[64]  
SSE[63]  
to  
040000h  
03F000h  
040FFFh  
03FFFFh  
SSE[48]  
SSE[47]  
to  
030000h  
02F000h  
030FFFh  
02FFFFh  
SSE[32]  
SSE[31]  
to  
020000h  
01F000h  
020FFFh  
01FFFFh  
SSE[16]  
SSE[15]  
to  
010000h  
00F000h  
010FFFh  
00FFFFh  
SSE[4]  
SSE[3]  
004000h  
003800h  
003000h  
002800h  
002000h  
001800h  
001000h  
000800h  
000000h  
004FFFh  
003FFFh  
0037FFh  
002FFFh  
0027FFh  
001FFFh  
0017FFh  
000FFFh  
0007FFh  
SSE[2]  
SSE[1]  
SSE[0]  
www.onsemi.com  
7
LE25S161  
STATUS REGISTERS  
The status registers hold the operating and setting statuses  
inside the device, and this information can be read by Read  
Status Register (RDSR) and the protect information can be  
rewritten by Write Status Register (WRSR). There are 8 bits  
in total, and “Table 8. Status registers” gives the significance  
of each bit.  
Table 8. STATUS REGISTERS  
Bit  
Name  
Logic  
Function  
Ready  
Poweron Time Information  
Bit0  
RDY  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
Erase/Program  
Write disabled  
Write enabled  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
WEN  
BP0  
0
Block protect information  
Protected area switch  
Nonvolatile information  
BP1  
BP2  
TB  
Block protect  
Upper side/Lower side switch  
Nonvolatile information  
SUS  
SRWP  
Erase/Program is not suspended  
Erase/Program suspended  
0
Write Status Register enabled  
Write Status Register disabled  
Nonvolatile information  
13.All nonvolatile bits of the status registers1 are set “0” in the factory.  
Contents of Each Status Register  
Upon completion of Page Program (PP or PPL)  
RDY (Bit 0)  
Upon completion of Write Status Register (WRSR)  
The RDY register is for detecting the write (Program,  
Erase and Write Status Register) end. When it is “1”, the  
device is in a busy state, and when it is “0”, it means that  
write is completed.  
*If a write operation has not been performed inside the  
LE25S161 because, for instance, the command input for  
any of the write operations (SSE, SE, CHE, PP, PPL or  
WRSR) has failed or a write operation has been performed  
for a protected address, WEN will retain the status  
established prior to the issue of the command concerned.  
Furthermore, its state will not be changed by a read  
operation.  
WEN (Bit 1)  
The WEN register is for detecting whether the device can  
perform write operations. If it is set to “0”, the device will  
not perform the write operation even if the write command  
is input. If it is set to “1”, the device can perform write  
operations in any area that is not blockprotected.  
WEN can be controlled using the write enable (WREN)  
and write disable (WRDI). By inputting the write enable  
(WREN: 06h), WEN can be set to “1” by inputting the write  
disable (WRDI: 04h), it can be set to “0.” In the following  
states, WEN is automatically set to “0” in order to protect  
against unintentional writing.  
BP0, BP1, BP2, TB (Bits 2, 3, 4, 5)  
Block Protect: BP0, BP1, BP2 and TB are status register  
bits that can be rewritten, and the memory space to be  
protected can be set depending on these bits. For the setting  
conditions, refer to “Table 9. Protected Level Setting  
Conditions”.  
BP0, BP1, and BP2 are used to select the protected area  
and TB to allocate the protected area to the higherorder  
address area or lowerorder address area.  
At poweron  
Upon completion of Erase (SSE, SE, or CHE)  
www.onsemi.com  
8
 
LE25S161  
Table 9. PROTECTION LEVEL SETTING CONDITIONS  
Status Register Bits  
Protected  
Level  
TB  
X
0
BP2  
0
BP1  
0
BP0  
0
Protected Block  
Protected Area  
None  
0
Whole area unprotected  
Upper side 1/32 protected  
Upper side 1/16 protected  
Upper side 1/8 protected  
Upper side 1/4 protected  
Upper side 1/2 protected  
Lower side 1/32 protected  
Lower side 1/16 protected  
Lower side 1/8 protected  
Lower side 1/4 protected  
Lower side 1/2 protected  
Whole area protected  
T1  
T2  
T3  
T4  
T5  
B1  
B2  
B3  
B4  
B5  
6
0
0
1
1F0000h to 1FFFFFh  
1E0000h to 1FFFFFh  
1C0000h to 1FFFFFh  
180000h to 1FFFFFh  
100000h to 1FFFFFh  
000000h to 00FFFFh  
000000h to 01FFFFh  
000000h to 03FFFFh  
000000h to 07FFFFh  
000000h to 0FFFFFh  
000000h to 1FFFFFh  
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
X
1
1
X
14.Chip Erase is enabled only when the protection level is 0.  
SUS (Bit 6)  
are protected. When the logic level of the WP pin is high, the  
status registers are not protected regardless of the SRWP  
state. The SRWP setting conditions are shown in “Table 10.  
SRWP Setting Conditions”.  
The SUS register indicates when Erase/Program  
operation has been suspended. The SUS becomes “1” when  
the Erase/Program operation has been suspended (WSUS:  
B0h). The SUS is cleared to “0” by Resume (RESM: 30h)  
or reerase/program (SSE, SE, CHE, PP, PPL).  
Table 10. SRWP SETTING CONDITIONS  
SRWP (Bit 7)  
WP Pin  
SRWP  
Status Register Protect State  
Unprotected  
Write Status Register protect SRWP is the bit for  
protecting the status registers, and its information can be  
rewritten. When SRWP is “1” and the logic level of the WP  
pin is low, the Write Status Register (WRSR: 01h) is  
ignored, and status registers BP0, BP1, BP2, TB and SRWP  
0
0
1
0
1
Protected  
1
Unprotected  
Unprotected  
www.onsemi.com  
9
 
LE25S161  
DESCRIPTION OF COMMANDS AND OPERATIONS  
A detailed description of the functions and operations  
corresponding to each command is presented below.  
Status Register data (SRWP, SUS, TB, BP2, BP1,  
BP0,WEN, RDY) out on SO →→  
completed by CS = high  
*The data output starts from the falling edge of SCK (7th  
clock)  
Read Status Register (RDSR)  
The contents of the status registers can be read using the  
Read Status Register (RDSR). This command can be  
executed even during the following operations.  
Erase (SSE, SE or CHE)  
Page Program (PP or PPL)  
Write Status Register (WRSR)  
Figure 7. Read Status Register (RDSR)” shows the  
timing waveforms.  
This command outputs the contents of the status registers  
synchronized to the falling edge of the clock (SCK).  
If the clock input is continued after bit0 (RDY) has been  
output, the data is output by returning to bit7 (SRWP) that  
was first output, after which the output is repeated for as long  
as the clock input is continued. The data can be read by this  
command at any time (even during a program, erase cycle).  
By setting CS to high, the device is deselected, and Read  
JEDEC ID cycle is completed. While the device is  
deselected, the output pin SO is in a highimpedance state  
The sequence of RDSR operation:  
CS goes to low input RDSR command (05h)  
CS  
Mode 3  
0
1
2
3
4
5
6
7
8
15 16  
23  
SCK  
SI  
Mode 0  
8CLK  
05h  
MSB  
High Impedance  
SO  
DATA DATA DATA  
MSB MSB MSB  
DATA: Status Resister, “Table 8. Status Register”  
Figure 7. Read Status Register (RDSR)  
www.onsemi.com  
10  
 
LE25S161  
Write Status Register (WRSR)  
Figure 8. Write Status Register (WRSR)” shows the  
timing waveforms.  
Figure 37. Write Status Register Flowcharts” shows the  
flowcharts.  
The information in status registers BP0, BP1, BP2, TB  
and SRWP can be rewritten using this command. bit0  
(RDY), bit1 (WEN) and bit6 (SUS) are readonly bits and  
cannot be rewritten. The information in bits BP0, BP1, BP2,  
TB and SRWP is stored in the nonvolatile memory, and  
when it is written in these bits, the contents are retained even  
at powerdown.  
The sequence of WRSR operation:  
CS goes to low input WRSR command (01h)  
Status Register data input on SI  
CS goes to high (be executed by the rising CS edge)  
Selftimed Write Cycle  
t WRSR  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15  
SCK  
SI  
Mode0  
8CLK  
01h  
DATA  
MSB  
High Impedance  
SO  
Figure 8. Write Status Register (WRSR)  
Write Enable (WREN)  
Write Disable (WRDI)  
Before performing any of the operations listed below, the  
device must be placed in the write enable state.  
Erase (SSE, SE, CHE or CHE)  
This command sets status register WEN to “0” to prohibit  
unintentional writing. The write disable state (WEN “0”) is  
exited by setting WEN to “1” using the write enable  
(WREN: 06h).  
Figure 10. Write Disable (WRDI)” shows the timing  
waveforms.  
Page Program (PP or PPL)  
Write Status Register (WRSR)  
Operation is the same as for setting status register WEN  
to “1”, and the state is enabled by this command.  
Figure 9. Write Enable (WREN)” shows the timing  
waveforms.  
The sequence of WRDI operation:  
CS goes to low input WRDI command (04h)  
CS goes to high (be executed by the rising CS edge)  
The sequence of WREN operation:  
CS  
CS goes to low input WREN command (06h)  
CS goes to high (be executed by the rising CS edge)  
Mode3  
0
1 2 3  
4 5 6 7  
SCK  
SI  
CS  
Mode0  
8CLK  
04h  
Mode3  
0
1 2 3  
4 5 6 7  
SCK  
SI  
Mode0  
MSB  
8CLK  
06h  
High Impedance  
SO  
Figure 10. Write Disable (WRDI)  
MSB  
High Impedance  
SO  
Figure 9. Write Enable (WREN)  
www.onsemi.com  
11  
 
LE25S161  
Standard SPI Read  
There are two Read commands, “LowPower Read  
(RDLP: 03h)” and “HighSpeed Read (RDHS: 0Bh)”.  
completed by CS = high  
*The data output starts from the falling edge of SCK (31th  
clock)  
LowPower Read command (RDLP) Maximum Clock  
Frequency: 33.33 MHz  
This command is for reading data out.  
Figure 11. LowPower Read (RDLP)” shows the timing  
waveforms.  
The Address is latched on rising edge of SCK, and the  
corresponding data is shifted out on SO by the falling edge  
of SCK. The address is automatically incremented to the  
next higher address after each byte data is shifted out. If the  
SCK input is continued after the internal address arrives at  
the highest address (1FFFFFh), the internal address returns  
to the lowest address (000000h). By setting CS to high, the  
device is deselected, and the read cycle is completed. While  
the device is deselected, the output pin SO is in a  
highimpedance state.  
The sequence of RDLP operation:  
CS goes to low input RDLP command (03h) 3 Byte  
address (A23 A0) input on SI  
the corresponding data out on SO  
continuous data out (nbyte) →→  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40 47  
SCK  
SI  
Mode0  
8CLK  
03h  
Add  
Add  
Add  
(A23A16) (A15A8)  
(A7A0)  
Byte 1 Byte 2 Byte 3  
DATA DATA DATA  
High Impedance  
SO  
MSB  
MSB  
MSB  
Address A23 to A21 are “Don’t care”.  
Figure 11. LowPower Read (RDLP)  
www.onsemi.com  
12  
 
LE25S161  
HighSpeed Read Command (RDHS) Maximum Clock  
frequency: 70 MHz  
This command is for reading data out at the high  
frequency operation.  
Figure 12. HighSpeed Read (RDHS)” shows the timing  
waveforms.  
The Address is latched on rising edge of SCK. It is  
necessary to add 1 dummy byte cycle after address is  
latched, and the corresponding data is shifted out on SO by  
the falling edge of SCK. The address is automatically  
incremented to the next higher address after each byte data  
is shifted out. If the SCK input is continued after the internal  
address arrives at the highest address (1FFFFFh), the  
internal address returns to the lowest address (000000h). By  
setting CS to high, the device is deselected, and the read  
cycle is completed. While the device is deselected, the  
output pin SO is in a highimpedance state.  
The sequence of RDHS operation:  
CS goes to low input RDHS command (0Bh) 3 Byte  
address (A23 A0) input on SI  
1 byte dummy cycle the corresponding data out on SO  
continuous data out (nbyte) →→  
completed by CS = high  
*The data output starts from the falling edge of SCK(39th  
clock)  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
47 48  
55  
SCK  
SI  
Mode0  
8CLK  
0Bh  
Add  
Add  
Add  
X
(A23A16) (A15A8)  
(A7A0)  
MSB  
Byte 1 Byte 2 Byte 3  
DATA DATA DATA  
MSB MSB MSB  
High Impedance  
SO  
Address A23 to A21 are “Don’t care”.  
Figure 12. HighSpeed Read (RDHS)  
Dual Read  
1 byte dummy cycle the corresponding data out on  
There are two Dual read commands, the Dual Output Read  
(RDDO) and the Dual I/O Read (RDIO).  
They achieve the twice speedup from ”HighSpeed  
Read (RDHS: 0Bh)”. The command list is shown in  
Table 6. Command Settings (Dual SPI)”  
SI/SIO0 and SO/SIO1  
continuous data out (nbyte) per 4 clock →→  
completed by CS = high  
*The data output starts from the falling edge of SCK (39th  
clock)  
Output Data  
Table 11. PIN CONFIGURATIONS AT DUAL SPI MODE  
SI/SIO0  
SO/SIO1 bit7, 5, 3, 1  
bit6, 4, 2, 0  
Standard SPI  
Dual SPI  
SIO0  
The Address is latched on rising edge of SCK. It is  
necessary to add 1 dummy byte cycle after address is  
latched, and the corresponding data is shifted out on SI/SIO0  
and SO/SIO1 by the falling edge of SCK. The address is  
automatically incremented to the next higher address after  
each byte data (4 clock cycles) is shifted out. If the SCK  
input is continued after the internal address arrives at the  
highest address (1FFFFFh), the internal address returns to  
the lowest address (000000h). By setting CS to high, the  
device is deselected, and the read cycle is completed. While  
the device is deselected, the output pin SO is in a  
highimpedance state.  
SI  
SO  
SIO1  
Dual Output Read Command (RDDO) Maximum Clock  
Frequency: 50 MHz  
The SI and SO pins change into the input/output pin  
(SIOx) during this operation. It makes the data output x2 bit  
and has achieved a highspeed output. bit7, 5, 3 and bit1are  
output from SIO0. bit6, 4, 2 and bit0 are output from SIO1.  
Figure13. Dual Output Read (RDDO)” shows the timing  
waveforms.  
The sequence of RDDO operation:  
CS goes to low input RDDO command (3Bh) 3 Byte  
address (A23 A0) input on SI  
www.onsemi.com  
13  
 
LE25S161  
CS  
Mode3  
Mode0  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
43 44  
47  
SCK  
8CLK  
3Bh  
Byte 1  
Byte 2 Byte 3  
dummy  
bit  
Add  
Add  
Add  
DATA0 DATA0 DATA0  
SIO0  
SIO1  
(A23A16) (A15A8)  
(A7A0)  
MSB  
4CLK  
4CLK  
High Impedance  
DATA1  
DATA1 DATA1  
MSB  
MSB  
MSB  
DATA0: bit6, bit4, bit2, bit0  
DATA1: dit7, bit5, bit3, bit1  
Address A23 to A21 are “Don’t care”.  
Figure 13. Dual Output Read (RDDO)  
Dual I/O Read Command (RDIO) Maximum Clock  
Frequency: 50 MHz  
continuous data out (nbyte) per 4 clock →→  
completed by CS = high  
The SI and SO pins change into the input/output pin  
(SIOx) during this operation. It makes the address input and  
data output x2 bit and has achieved a highspeed output.  
Add1 (A23, A21, , A3 and A1) is input from SIO1 and  
Add0 (A22, A20, , A2 and A0) is input from SIO0. bit7, 5,  
3 and bit1 are output from SIO0. bit6, 4, 2 and bit0 are output  
from SIO1.  
*The data output starts from the falling edge of SCK (23th  
clock)  
Input Address  
Output Data  
bit6, 4, 2, 0  
bit7, 5, 3, 1  
SI/SIO0  
A22, 20, 18 , A2, A0  
SO/SIO1 A23, 21, 19 , A3, A1  
The Address is latched on rising edge of SCK. It is  
necessary to add 4 dummy clocks after address is latched,  
2CLK of the latter half of the dummy clock is in the state of  
high impedance, the controller can switch I/O for this  
period. The corresponding data is shifted out on SI/SIO0 and  
SO/SIO1 by the falling edge of SCK. The address is  
automatically incremented to the next higher address after  
each byte data (4 clock cycles) is shifted out. If the SCK  
input is continued after the internal address arrives at the  
highest address (1FFFFFh), the internal address returns to  
the lowest address (000000h). By setting CS to high, the  
device is deselected, and the read cycle is completed. While  
the device is deselected, the output pin SO is in a  
highimpedance state.  
Figure 14. Dual I/O Read (RDIO)” shows the timing  
waveforms.  
The sequence of RDIO operation:  
CS goes to low input RDIO command (BBh)  
3 Byte address (A23 A0) input on SI/SIO0 and  
SO/SIO1 by 12 clock cycle  
2 dummy clock (SI/SIO0 and SO/SIO1 are don’t care)  
+ 2 dummy clock (must set SI/SIO0 and SO/SIO1 high  
impedance)  
the corresponding data out on SI/SIO0 and SO/SIO  
CS  
0
1
2
3
4
5
6
7
8
22 23 24  
19  
20 21  
27 28  
31  
Mode3  
Mode0  
SCK  
dummy  
bit  
8CLK  
BBh  
Byte 1 Byte2  
Byte3  
Add1: A22, A20A2, A0  
X
DATA0 DATA0 DATA0  
SIO0  
SIO1  
MSB  
4CLK  
12CLK  
2CLK  
2CLK  
X
High Impedance  
DATA1 DATA1 DATA1  
Add2: A23, A21A3, A1  
MSB  
MSB  
MSB  
DATA0: bit6, bit4, bit2, bit0  
DATA1: dit7, bit5, bit3, bit1  
Address A23 to A21 are “Don’t care”.  
Figure 14. Dual I/O Read (RDIO)  
www.onsemi.com  
14  
 
LE25S161  
Small Sector Erase (SSE)  
CS goes to low input SSE command (20h or D7h) →  
3 Byte address (A23 A0) input on SI  
Small Sector Erase is an operation that sets the memory  
cell data in any small sector to “1”. A small sector consists  
of 4 kbytes.  
Figure 15. Small Sector Erase (SSE)” shows the timing  
waveforms.  
CS goes to high (be executed by the rising CS edge)  
*A20 to A12 are valid address  
After the correct input sequence the internal erase  
operation is executed by the rising CS edge, and it is  
completed automatically by the control exercised by the  
internal timer (tSSE). The end of erase operation can also be  
detected by status register (RDY).  
Figure 38. Small Sector Erase Flowcharts” shows the  
flowcharts.  
The sequence of SSE operation:  
Selftimed Erase Cycle  
t SSE  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31  
SCK  
SI  
Mode0  
8CLK  
20h / D7h  
Add  
Add  
Add  
(A23A16) (A15A8)  
(A7A0)  
MSB  
High Impedance  
SO  
Address A23 to A21, A11 to A0 are “Don’t care”.  
Figure 15. Small Sector Erase (SSE)  
Sector Erase (SE)  
CS goes to low input SE command (D8h) 3 Byte  
address (A23 A0) input on SI  
Sector Erase is an operation that sets the memory cell data  
in any sector to “1”. A sector consists of 64 kbytes.  
Figure 16. Sector Erase (SE)” shows the timing  
waveforms.  
Figure 39. Sector Erase Flowcharts” shows the  
flowcharts.  
CS goes to high (be executed by the rising CS edge)  
*A20 to A16 are valid address  
After the correct input sequence the internal erase  
operation is executed by the rising CS edge, and it is  
completed automatically by the control exercised by the  
internal timer (tSE). The end of erase operation can also be  
detected by status register (RDY).  
The sequence of SE operation:  
Selftimed Erase Cycle  
tSE  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31  
SCK  
SI  
Mode0  
8CLK  
D8h  
Add  
Add  
Add  
(A23A16) (A15A8)  
(A7A0)  
MSB  
High Impedance  
SO  
Address A23 to A21, A15 to A0 are “Don’t care”.  
Figure 16. Sector Erase (SE)  
www.onsemi.com  
15  
 
LE25S161  
Chip Erase (CHE)  
Chip Erase is an operation that sets the memory cell data  
in all sectors to “1”.  
Figure 17. Chip Erase (CHE)” shows the timing  
waveforms.  
Figure40. Chip Erase Flowcharts” shows the flowcharts  
CS goes to low input CHE command (60h or C7h)  
CS goes to high (be executed by the rising CS edge)  
After the correct input sequence the internal erase  
operation is executed by the rising CS edge, and it is  
completed automatically by the control exercised by the  
internal timer (tSE). The end of erase operation can also be  
detected by status register (RDY).  
The sequence of CHE operation:  
Selftimed Erase Cycle  
tCHE  
CS  
Mode3  
0
1
2
3
4
5
6
7
SCK  
Mode0  
8CLK  
60h / C7h  
SI  
MSB  
High Impedance  
SO  
Figure 17. Chip Erase (CHE)  
Page Program  
Figure 41. Page Program Flowcharts” shows the  
flowcharts.  
Normal Page Program (PP)  
The sequence of PP or PPL operation:  
LowPower Page Program (PPL)  
CS goes to low input PP command (02h) or PPL  
command (0Ah)  
There are two Page Program commands, Normal program  
(PP: 02h ) and LowPower program (PPL: 0Ah). These two  
commands are completely functionally the same. By  
selecting the LowPower program (PPL), the operating  
current is reduced, but the program cycle time is extended.  
(Iccpp > Iccppl, tPPL > tPP)  
Page Program is an operation that programs any number  
of bytes from 1 to 256 bytes within the same sector page  
(page addresses: A20 to A8). Before initiating Page  
Program, the data on the page concerned must be erased  
using Small Sector Erase, Sector Erase, or Chip Erase. Page  
Program (PP, PPL) allows only previous erased data (FFh).  
Figure 18. Normal Page Program (PP)”. “Figure 19.  
Lowpower Page Program (PPL)” shows the timing  
waveforms.  
3 Byte address (A23 A0) input on SI  
nByte data input on SI →→  
CS goes to high (be executed by the rising CS edge)  
The program data must be loaded in 1byte increments. If  
the data loaded has exceeded 256 bytes, the 256 bytes loaded  
last are programmed. After the correct input sequence the  
internal program operation is executed by the rising CS  
edge, and it is completed automatically by the control  
exercised by the internal timer (tPP or tPPL). The end of  
program operation can also be detected by status register  
(RDY).  
www.onsemi.com  
16  
 
LE25S161  
Selftimed Program Cycle  
tPP  
CS  
Mode3  
Mode0  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
47  
2079  
SCK  
Byte  
256  
8CLK  
02h  
Byte 1 Byte 2  
PD PD  
Add  
Add  
Add  
SI  
PD  
(A23A16) (A15A8)  
(A7A0)  
MSB  
High Impedance  
SO  
Address A23 to A21, A15 to A0 are “Don’t care”.  
Figure 18. Normal Page Program (PP)  
Selftimed Program Cycle  
tPPL  
CS  
Mode3  
Mode0  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
47  
2079  
SCK  
Byte  
256  
8CLK  
0Ah  
Byte 1 Byte 2  
PD PD  
Add  
Add  
Add  
SI  
PD  
(A23A16) (A15A8)  
(A7A0)  
MSB  
High Impedance  
SO  
Address A23 to A21, A15 to A0 are “Don’t care”.  
Figure 19. LowPower Page Program (PPL)  
Write Suspend (WSUS)  
checked by using status register RDY bit or SUS bit, but the  
device will not accept another command until it is ready.  
The Write Suspend is valid Erase cycle (SSE, SE and  
CHE) or Program cycle (PP, PPL).  
If the Erase (SSE, SE, CHE) or Program (PP, PPL) entry  
during the suspension, the suspension will be canceled  
automatically. And a new Erase (SSE, SE, CHE),  
Program (PP, PPL) will be executed. In this case, it is  
necessary to erase/program the suspended area again.  
During Write Suspend, Read (RDSR, RDLP, RDHS,  
RDDO, RDIO) and Resume (RESM) can be accepted.  
If the Software Reset is executed during the suspension,  
the suspension will be canceled automatically.  
The Write Suspend (WSUS) allow the system to interrupt  
Small Sector Erase (SSE), Sector Erase (SE), Chip Erase  
(CHE) or Page Program (PP, PPL).  
Figure 20. Write Suspend (WSUS)” shows the timing  
waveforms.  
The sequence of WSUS operation:  
CS goes to low input WSUS command (B0h)  
CS goes to high (be executed by the rising CS edge)  
After the command has been input, the device becomes  
consumption current equivalent to standby within 20 ms. The  
recovery time (tRSUS) is needed before next command  
from suspend. The internal operation status could be  
www.onsemi.com  
17  
LE25S161  
tRSUS  
CS  
20 ms  
Mode3  
Mode0  
0
1
2
3
4
5
6
7
3
4 5 6 7  
0 1 2  
SCK  
8CLK  
B0h  
Next Command  
(Read or Resume)  
SI  
MSB  
High Impedance  
MSB  
SO  
Operation Current  
= Isb  
Figure 20. Write Suspend (WSUS)  
Resume (RESM)  
The internal operation status could be checked by using  
status register RDY bit or SUS bit.  
This command (RESM) restarts erase cycle (SSE, SE,  
CHE) or program cycle (PP, PPL) that was suspended.  
Figure 21. Resume (RESM)” shows the timing  
waveforms.  
This command will be ignored if the previous Write  
Suspend operation was interrupted by unexpected power off  
or reerase/program (cancel of suspend) or Software Reset  
(RST). To execute Write Suspend (WSUS) again after  
Resume, it is necessary to wait for some time (tSUS).  
The sequence of RESM operation:  
CS goes to low input RESM command (30h)  
CS goes to high (be executed by the rising CS edge)  
Selftimed Write Cycle  
t / t / t  
CHE SE SSE  
/
t
/ t  
PP PPL  
CS  
Mode3  
0
1 2 3  
4 5 6 7  
SCK  
Mode0  
8CLK  
30h  
SI  
MSB  
High Impedance  
SO  
Figure 21. Resume (RESM)  
Read ID  
Figure 22. Read JEDEC ID (RJID)” shows the timing  
Read ID is an operation that reads the manufacturer code  
(RJID) and device ID information (RID). These Read ID  
commands are not accepted during writing. There are two  
methods of reading the silicon ID, each of which is assigned  
a device ID.  
waveforms.  
The sequence of RJID operation:  
CS goes to low input RJID command (9Fh)  
Manufacture code (62h) out on SO Memory type code  
(16h) out on SO  
Read JEDEC ID (RJID)  
Memory capacity code out on SO (15h) Reserve code  
(00h) →→  
completed by CS = high  
This command (RJID) is compatible with the JEDEC  
standard for SPI compatible serial memories.  
Table 12. JEDEC ID codes” lists the silicon ID codes.  
www.onsemi.com  
18  
 
LE25S161  
*The 4byte code is output repeatedly as long as clock  
inputs are present  
Table 12. JEDEC ID CODES  
Output Code  
62h  
*The data output starts from the falling edge of SCK (7th  
clock)  
Manufacturer code  
By setting CS to high, the device is deselected, and Read  
JEDEC ID cycle is completed. While the device is  
deselected, the output pin SO is in a highimpedance state.  
2 byte device ID  
Memory type  
Memory capacity code  
Reserve code  
16h  
15h (16 MBit)  
00h  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39  
SCK  
SI  
Mode0  
8CLK  
9Fh  
High Impedance  
SO  
00h  
MSB  
62h  
MSB  
62h  
MSB  
16h  
MSB  
15h  
MSB  
Figure 22. Read JEDEC ID (RJID)  
Read Device ID (RID)  
This command (RID) is an operation that reads the Device  
ID.  
completed by CS = high  
*The Device ID (88h) is output repeatedly as long as clock  
inputs are present  
*The data output starts from the falling edge of SCK (31th)  
By setting CS to high, the device is deselected, and Read  
ID cycle is completed. While the device is deselected, the  
output pin SO is in a highimpedance state.  
Table 13. Device ID Code” lists the device ID codes.  
Figure 23. Read Device ID (RID)” shows the timing  
waveforms.  
The sequence of RID operation:  
CS goes to low input RID command (ABh) 3 byte  
Table 13. DEVICE ID CODE  
Output Code  
dummy cycle  
Device ID (88h) out on SO →→  
1 byte device ID  
88h (LE25S161)  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39  
SCK  
SI  
Mode0  
8CLK  
ABh  
X
X
X
High Impedance  
SO  
88h  
MSB  
88h  
MSB  
Figure 23. Read Device ID (RID)  
www.onsemi.com  
19  
 
LE25S161  
Deep Powerdown (DP)  
The standby current can be further reduced with this  
command (DP).  
Figure 24. Deep Powerdown (DP)” shows the timing  
waveforms.  
CS goes to low input DP command (B9h)  
CS goes to high (be executed by the rising CS edge)  
The deep powerdown command issued during an  
internal write operation will be ignored.  
The deep powerdown state is exited using the deep  
powerdown exit (EDP). All other commands are ignored.  
The sequence of DP operation:  
Deep Powerdown Standby  
Standby current (Isb)  
Current (Idsb)  
CS  
tDP  
Mode3  
0
1 2 3  
4 5 6 7  
SCK  
Mode0  
8CLK  
B9h  
SI  
MSB  
High Impedance  
SO  
Figure 24. Deep Powerdown (DP)  
Exit Deep Powerdown (EDP) / Read Device ID (RDDI)  
The Exit Deep Powerdown (EDP) / Read Device ID  
(RID) command is a multipurpose command. It can be used  
to exit the device from the deep powerdown state, or read  
the device ID information.  
Figure 25. Exiting from Deep Powerdown” shows the  
timing waveforms.  
The sequence of EDP operation:  
CS goes to low input EDP command (ABh)  
CS goes to high (be executed by the rising CS edge)  
Exit Deep Powerdown (EDP)  
The exit deep powerdown command consists only of the  
first byte cycle, and it is initiated by inputting (ABh).  
Deep Powerdown Standby  
Standby current (Isb)  
current (Idsb)  
CS  
tRDP  
Mode3  
0
1 2 3  
4 5 6 7  
SCK  
Mode0  
8CLK  
ABh  
SI  
MSB  
High Impedance  
SO  
Figure 25. Exiting from Deep Powerdown (EDP)  
www.onsemi.com  
20  
 
LE25S161  
Read Device ID (RDDI)  
Device ID out on SO →→  
Also the exit from deep powerdown is completed by one  
byte cycle or more of the Read Device ID (RID: ABh).  
Table 13. Device ID Code” lists the device ID codes.  
Figure 26. Read Device ID” shows the timing  
waveforms.  
completed by CS = high  
*The Device ID is output repeatedly as long as clock inputs  
are present  
*The data output starts from the falling edge of SCK (31th  
clock)  
By setting CS to high, the device is deselected, and Read  
ID cycle is completed. While the device is deselected, the  
output pin SO is in a highimpedance state.  
The sequence of EDP & RID operation:  
CS goes to low input RID command (ABh) 3 byte  
dummy cycle  
Standby  
Deep Powerdown Standby current (Idsb)  
current (Isb)  
CS  
t RDP  
Mode3  
0
1
2
3
4
5
6
7
8
31 32  
39  
SCK  
SI  
Mode0  
24 Dummy  
Bits  
8CL  
ABh  
X
X
High Impedance  
SO  
Dev ID  
Dev ID  
Dev ID  
MSB  
Figure 26. Read Device ID  
Software Reset  
When the Software Reset is executed, an internal write  
(erase/program) operation is cancel, a suspended status is  
reset, and all volatility status register bits (WEN/RDY/SUS)  
are reset. After the internal reset time (tRST), the device will  
become standby state. If the Software Reset is executed  
during a write (erase/program) operation, any dates on the  
write operation will be broken.  
The Reset command must input just after input the Reset  
Enable command. If another command input after the Reset  
Enable command, the ResetEnable state will be invalid.  
The Software Reset reset the device to the state just after  
poweron. This operation consists of two commands: the  
Reset Enable (RSTEN) and the Reset command (RST).  
Figure 27. Software Reset” shows the timing waveforms.  
The sequence of Software Reset operation:  
CS goes to low input RSTEN command (66h)  
CS goes to high  
CS goes to low input RST command (99h)  
CS goes to high (be executed by the rising CS edge)  
Internal reset time  
(tRST)  
CS  
Mode3  
0
1
2
3
4
5
6
7
0 1 2 3  
4
5 6 7  
SCK  
Mode0  
8CLK  
66h  
8CLK  
99h  
SI  
MSB  
High Impedance  
MSB  
SO  
Figure 27. Software Reset  
www.onsemi.com  
21  
 
LE25S161  
Read SFDP (RSFDP)  
1 byte dummy cycle the corresponding parameter out on  
The Read SFDP (Serial Flash Discoverable Parameter) is  
an operation that reads the parameter about device  
configurations, available commands and other features. The  
SFDP parameters are stored in internal parameter tables.  
These parameter tables can be interrogated by host system  
software to enable adjustments needed to accommodate  
divergent features from multiple vendors. SFDP is a  
standard of JEDEC. JESD216. Rev 1.0.  
Table 14. SFDP Header” shows SFDP Header.  
Table 15. SFDP Parameter Table” shows SFDP  
Parameter Table.  
Figure 28. Read SFDP (RSFDP)” shows the timing  
waveforms.  
SO  
continuous parameter out (nbyte) →→  
completed by CS = high  
*A10 to A0 are valid address  
*The parameter output starts from the falling edge of SCK  
(39th clock)  
The Address is latched on rising edge of SCK. It is  
necessary to add 1 dummy byte cycle after address is  
latched, and the corresponding parameter is shifted out on  
SO by the falling edge of SCK. The address is automatically  
incremented to the next higher address after each byte  
parameter is shifted out. By setting CS to high, the device is  
deselected, and Read SFDP cycle is completed. While the  
device is deselected, the output pin SO is in a  
highimpedance state.  
The sequence of RSFDP operation:  
CS goes to low input RSFDP command (5Ah) 3 Byte  
address (A23 A0) input on SI  
CS  
Mode3  
0
1
2
3
4
5
6
7
8
15 16  
23 24  
31 32  
39 40  
47 48  
55  
SCK  
SI  
Mode0  
8CLK  
5Ah  
Add  
Add  
Add  
X
(A23A16) (A15A8)  
(A7A0)  
MSB  
Byte 1  
Byte 2 Byte 3  
High Impedance  
SO  
Param1 Param2 Param3  
MSB MSB MSB  
Figure 28. Read SFDP (RSFDP)  
www.onsemi.com  
22  
 
LE25S161  
Table 14. SFDP HEADER  
Byte Address  
(Hex)  
Description  
SFDP HEADER 1st AND 2nd DWORD  
SFDP Signature  
Comment  
Bits  
Data (Hex)  
50444653h (SFDP)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
7:0  
53h  
46h  
44h  
50h  
05h  
01h  
02h  
FFh  
15:8  
23:16  
31:24  
7:0  
SFDP Minor Revision Number  
SFDP Major Revision Number  
Number of Parameter Headers  
Unused  
Start from 00h  
Start from 01h  
15:8  
02h indicates 3 parameters  
23:16  
31:24  
1st PARAMETER HEADER (JDEC BASIC FLASH PARAMETERS)  
ID Number (JEDEC ID)  
00h (JEDEC specified header)  
Start from 00h  
08h  
09h  
0Ah  
0Bh  
7:0  
00h  
00h  
01h  
10h  
Parameter Table Minor Revision Number  
Parameter Table Major Revision Number  
15:8  
Start from 01h  
23:16  
31:24  
Parameter Table Length (in Double Word) How many DWORDs in the Parameter  
table 10h indicates 16 DWORDs  
Parameter Table Pointer (PTP)  
Unused  
First address of JEDEC Flash Parameter  
table  
0Ch  
0Dh  
0Eh  
0Fh  
7:0  
40h  
00h  
00h  
FFh  
15:8  
23:16  
31:24  
2nd PARAMETER HEADER (VENDER PARAMETERS 1)  
ID Number (onsemi  
Manufacturer ID)  
62h (ON Semiconductor manufacturer ID)  
10h  
7:0  
62h  
Parameter Table Minor Revision Number  
Parameter Table Major Revision Number  
Start from 00h  
Start from 01h  
11h  
12h  
13h  
15:8  
23:16  
31:24  
00h  
01h  
04h  
Parameter Table Length (in Double Word) How many DWORDs in the Parameter  
table 04h indicates 4 DWORDs  
Parameter Table Pointer (PTP)  
Unused  
First address of On Semiconductor  
Parameter table  
14h  
15h  
16h  
17h  
7:0  
C0h  
00h  
00h  
FFh  
15:8  
23:16  
31:24  
www.onsemi.com  
23  
LE25S161  
Table 15. SFDP PARAMETER TABLE  
Description  
Byte  
Address  
(Hex)  
Data  
(Binary)  
Data  
(Hex)  
Comment  
Bits  
JDEC Basic Flash Parameter Tables (from 1st DWORD TO 4th DWORD)  
Block/Sector Erase Sizes  
00b: Reserved  
40h  
1:0  
01b  
E5h  
01b: support 4 kB Erase  
10b: Reserved  
11b: not support 4 kB Erase  
Write Granularity  
0: 1 Byte, 1:64 Byte or larger  
2
3
1b  
0b  
Volatile Status Register Block Protect  
Bits  
0: Nonvolatile  
1: Volatile  
Write Enable Instruction Select for Writ- 0: use 50h opcode, 1: use 06h opcode  
4
0b  
ing to Volatile Status Register  
NOTE: If target flash status register is  
nonvolatile, then bits 3 and 4 must be  
set to 00b.  
Unused  
Contains 111b and can never be  
changed  
7:5  
111b  
4 kB Erase Instruction  
(112) Fast Read  
Address Bytes  
20h  
41h  
42h  
15:8  
16  
0010_0000b  
20h  
91h  
0 = not support 1 = support  
1b  
00: 3 Byte only, 01: 3 or 4 Byte,  
10: 4 Byte only, 11: Reserved  
18:17  
00b  
Double Transfer Rate (DTR) Clocking  
(122) Fast Read  
(144) Fast Read  
(114) Fast Read  
Unused  
0 = not support 1 = support  
0 = not support 1 = support  
0 = not support 1 = support  
0 = not support 1 = support  
19  
20  
0b  
1b  
21  
0b  
22  
0b  
23  
1b  
1111_1111b  
Unused  
43h  
31:24  
31:0  
FFh  
Flash Memory Density  
16 M bits  
44h  
45h  
46h  
47h  
00FFFFFFh  
(144) Fast Read Number of Wait  
0 0000b: Wait states (dummy Clocks)  
not support  
48h  
4:0  
7:5  
0_0000b  
000b  
00h  
States (Dummy Clocks)  
(144) Fast Read Number of Mode  
Clocks  
000b: Mode Bits not support  
(144) Fast Read Instruction  
49h  
4Ah  
15:8  
1111_1111b  
0_0000b  
FFh  
00h  
(114) Fast Read Number of Wait  
States (Dummy Clocks)  
0 0000b: Wait states (dummy Clocks)  
not support  
20:16  
(114) Fast Read Number of Mode  
Clocks  
000b: Mode Bits not support  
23:21  
000b  
(114) Fast Read Instruction  
4Bh  
4Ch  
31:24  
4:0  
1111_1111b  
0_1000b  
FFh  
08h  
(112) Fast Read Number of Wait  
States (Dummy Clocks)  
0 0000b: Wait states (dummy Clocks)  
not support  
(112) Fast Read Number of Mode  
Clocks  
000b: Mode Bits not support  
7:5  
000b  
(112) Fast Read Instruction  
4Dh  
4Eh  
15:8  
0011_1011b  
0_0100b  
3Bh  
04h  
(122) Fast Read Number of Wait  
States (Dummy Clocks)  
0 0000b: Wait states (dummy Clocks)  
not support  
20:16  
(122) Fast Read Number of Mode  
000b: Mode Bits not support  
23:21  
31:24  
000b  
Clocks  
(122) Fast Read Instruction  
4Fh  
1011_1011b  
BBh  
www.onsemi.com  
24  
 
LE25S161  
Table 15. SFDP PARAMETER TABLE (continued)  
Byte  
Address  
(Hex)  
Data  
(Binary)  
Data  
(Hex)  
Description  
Comment  
Bits  
JDEC BASIC FLASH PARAMETER TABLES (FROM 5th DWORD TO 8th DWORD)  
(222) Fast Read  
Reserved  
0 = not support 1 = support  
Default all 1’s  
50h  
0
3:1  
4
0b  
111b  
0b  
EEh  
(444) Fast Read  
Reserved  
0 = not support 1 = support  
Default all 1’s  
7:5  
31:8  
111b  
Reserved  
Default all 1’s  
51h  
52h  
53h  
FFh  
FFh  
FFh  
Reserved  
Default all 1’s  
54h  
55h  
15:0  
FFh  
FFh  
(222) Fast Read Number of Wait  
0 0000b: Wait states (dummy Clocks)  
not support  
56h  
20:16  
23:21  
0_0000b  
000b  
00h  
states (Dummy Clocks)  
(222) Fast Read Number of Mode  
Clocks  
000b: Mode Bits not support  
(222) Fast Read Instruction  
57h  
31:24  
15:0  
1111_1111b  
FFh  
Reserved  
Default all 1’s  
58h  
59h  
FFh  
FFh  
(444) Fast Read Number of Wait  
0 0000b: Wait states (dummy Clocks)  
not support  
5Ah  
20:16  
23:21  
0_0000b  
000b  
00h  
States (Dummy Clocks)  
(444) Fast Read Number of Mode  
Clocks  
000b: Mode Bits not support  
(444) Fast Read Instruction  
5Bh  
5Ch  
31:24  
7:0  
1111_1111b  
0000_1100b  
FFh  
0Ch  
Sector Type 1 Size  
Sector/block size = 2^N bytes  
0Ch indicates 4 kbytes  
Sector Type 1 Erase Instruction  
Sector Type 2 Size  
5Dh  
5Eh  
15:8  
0010_0000b  
0001_0000b  
20h  
10h  
Sector/block size = 2^N bytes  
10h indicates 64 kbytes  
23:16  
Sector Type 2 Erase Instruction  
5Fh  
60h  
31:24  
7:0  
1101_1000b  
0000_0000b  
D8h  
00h  
JDEC BASIC FLASH PARAMETER TABLES (FROM 9th DWORD TO 12th DWORD)  
Sector Type 3 Size  
Sector/block size = 2^N bytes  
00h indicates not exist  
Sector Type 3 Erase Instruction  
Sector Type 4 Size  
61h  
62h  
15:8  
1111_1111b  
0000_0000b  
FFh  
00h  
Sector/block size = 2^N bytes  
00h indicates not exist  
23:16  
Sector Type 4 Erase Instruction  
63h  
64h  
31:24  
3:0  
1111_1111b  
0100b  
FFh  
94h  
Multiplier from Typical Erase Time to  
Maximum Erase Time  
SE (64 kByte erase):  
150 ms = 2 x (n + 1) x 15 ms  
n = 4  
Sector Type 1 Erase, Typical Time  
Sector Type 2 Erase, Typical Time  
SSE (4 kByte erase)  
10 ms: ((n + 1) x 1 ms = 10 ms)  
n = 9  
10:4  
00_01001b  
00_01110b  
65h  
70h  
SE (64 kByte erase)  
17:11  
15 ms: ((n + 1) x 1 ms = 15 ms)  
n = 14  
66h  
67h  
00h  
00h  
Sector Type 3 Erase, Typical Time  
Sector Type 4 Erase, Typical Time  
24:18  
31:25  
00_00000b  
00_00000b  
www.onsemi.com  
25  
LE25S161  
Table 15. SFDP PARAMETER TABLE (continued)  
Byte  
Address  
(Hex)  
Data  
(Binary)  
Data  
(Hex)  
Description  
Comment  
Bits  
JDEC BASIC FLASH PARAMETER TABLES (FROM 9th DWORD TO 12th DWORD)  
Multiplier from Typical Time to Max  
Time for Page or Byte Program  
(n + 1) x 0.3 ms  
= 0.9 ms: n = 2, 0.9 ms > 0.7 ms (spec)  
68h  
3:0  
0010b  
82h  
Page Size  
256 Bytes =2^8  
7:4  
1000b  
Page Program Typical Time  
(n + 1) x 64 ms  
69h  
6Ah  
6Bh  
13:8  
1_00110b  
E6h  
07h  
0Ch  
= 448 ms: n = 6, 448 ms > 400 ms (spec)  
Byte Program Typical Time, First Byte  
(n + 1) x 8 ms  
= 128 ms: n = 15  
15:14  
18:16  
23:19  
1_1111b  
Byte Program Typical Time, Additional  
Byte  
(count + 1) x 1 ms/byte  
= 1 ms/byte: Count = 0  
0_0000b  
Chip Erase, Typical Time  
(n + 1) x 16 ms  
= 208 ms: n = 12, 208 ms = 210 ms  
(spec)  
30:24  
00_01100b  
Reserved  
31  
0b  
Prohibited Operations During Program  
Suspend  
xxx0b: May not initiate a new erase  
anywhere  
6Ch  
3:0  
1101b  
FDh  
xxx1b: May not initiate a new erase in  
the program suspended page size  
xx0xb: May not initiate a new page  
program anywhere  
xx1xb: May not initiate a new page  
program in the program suspended  
page size  
x0xxb: Refer to vendor datasheet for  
read restrictions  
x1xxb: May not initiate a read in the  
program suspended page size  
0xxxb: Additional erase or program  
restrictions apply  
1xxxb: The erase and program  
restrictions in bits 1:0 are sufficient  
Prohibited Operations During Erase  
Suspend  
xxx0b: May not initiate a new erase  
anywhere  
xxx1b: May not initiate a new erase in  
the erase suspended sector size  
xx0xb: May not initiate a page program  
anywhere  
7:4  
1111b  
xx1xb: May not initiate a page program  
in the erase suspended sector size  
x0xxb: Refer to vendor datasheet for  
read restrictions  
x1xxb: May not initiate a read in the  
erase suspended sector size  
0xxxb: Additional erase or program  
restrictions apply  
1xxxb: The erase and program  
restrictions in bits 5:4 are sufficient  
Reserved  
6Dh  
8
0b  
80h  
Program Resume to Suspend Interval  
<64 ms: (count + 1) x 64 ms, count = 0  
40 ms: ((4 + 1) x 8 ms = 40 ms)  
12:9  
0000b  
Suspend Inprogress  
Program Max Latency  
15:13  
19:16  
23:20  
30:24  
10_00100b  
6Eh  
6Fh  
08h  
44h  
Erase Resume to Suspend Interval  
<64 ms: (count + 1) x 64 ms, count = 0  
40 ms: ((4 + 1) x 8 ms = 40 ms)  
0000b  
Suspend Inprogress  
Erase Max Latency  
10_00100b  
Suspend/Resume Supported  
0 = support 1 = not support  
31  
0b  
www.onsemi.com  
26  
LE25S161  
Table 15. SFDP PARAMETER TABLE (continued)  
Byte  
Address  
(Hex)  
Data  
(Binary)  
Data  
(Hex)  
Description  
Comment  
Bits  
JDEC BASIC FLASH PARAMETER TABLES (FROM 13th DWORD TO 16th DWORD)  
Program Resume Instruction  
(Program Operation)  
30h (as same as erase resume)  
B0h (as same as erase suspend)  
30h (as same as program resume)  
B0h (as same as program suspend)  
70h  
71h  
72h  
73h  
74h  
7:0  
0011_0000b  
1011_0000b  
0011_0000b  
1011_0000b  
30h  
B0h  
30h  
B0h  
04h  
Program Suspend Instruction  
(Program Operation)  
15:8  
Resume Instruction  
(Write or Erase Type Operation)  
23:16  
31:24  
Suspend Instruction  
(Write or Erase Type Operation)  
Reserved  
1:0  
7:2  
00b  
Status Register Polling  
Device Busy  
Use legacy polling by reading the  
Status Register with 05h instruction  
0000_01b  
Exit Deep Power Down to Next  
Operation Delay  
40 ms: ((4+1) x 8 ms = 40 ms)  
75h  
14:8  
10_00100b  
1010_1011b  
C4h  
Exit Deep Power Down Instruction  
ABh  
15  
22:16  
23  
76h  
77h  
78h  
79h  
D5h  
5Ch  
00h  
00h  
Enter Deep Power Down Instruction  
B9h  
1011_1001b  
30:24  
31  
Deep Power Down Supported  
(444) Mode Disable Sequences  
(444) Mode Enable Sequences  
0 = support 1 = not support  
0b  
0000b  
0000b  
0b  
3:0  
7:4  
8
(044) Mode Supported  
(044) Mode Exit Method  
(044) Mode Entry Method  
Quad Enable Requirements (QER)  
Hold and WP Disable  
0 = not support 1 = support  
9
0b  
15:10  
19:16  
22:20  
23  
00_0000b  
0000b  
000b  
7Ah  
00h  
00b: not have a QE bit  
0: not supported  
0b  
Reserved  
7Bh  
7Ch  
31:24  
6:0  
0000_0000b  
001_1001b  
00h  
19h  
Volatile or NonVolatile Register and  
xxx_xxx1b: NonVolatile Status  
Write Enable Instruction for Status Reg- Register 1, powersup to last written  
ister 1  
value, use instruction 06h to enable  
write  
xx1_xxxxb: Status Register 1 contains  
a mix of volatile and nonvolatile bits.  
The 06h instruction is used to enable  
writing of the register.  
Reserved  
7
0b  
Soft Reset and  
Rescue Sequence Support  
Issue reset enable instruction 66h, and  
then issue reset instruction 99h.  
7Dh  
13:8  
01_0000b  
10h  
Exit 4Byte Addressing  
Enter 4Byte Addressing  
15:14  
23:16  
31:24  
00b  
7Eh  
7Fh  
0000_0000b  
0000_0000b  
00h  
00h  
www.onsemi.com  
27  
LE25S161  
Table 15. SFDP PARAMETER TABLE (continued)  
Byte  
Address  
(Hex)  
Data  
(Binary)  
Data  
(Hex)  
Description  
Comment  
Bits  
VENDER (ON SEMICONDUCTOR) PARAMETER 1 TABLES (FROM 1th DWORD TO 4th DWORD)  
Supply Maximum Voltage  
1900h = 1.900 V  
1950h = 1.950 V  
2000h = 2.000 V  
2200h = 2.200 V  
2400h = 2.400 V  
2700h = 2.700 V  
3000h = 3.000 V  
3600h = 3.600 V  
C0h  
C1h  
15:0  
50h  
19h  
Supply Minimum Voltage  
1600h = 1.600 V  
1650h = 1.650 V  
1700h = 1.700 V  
1800h = 1.800 V  
20000h = 2.000 V  
22000h = 2.200 V  
23000h = 2.300 V  
27000h = 2.700 V  
C2h  
C3h  
31:16  
50h  
16h  
RESET Pin  
0 = not support  
1 = support  
C4h  
0
1
2
3
4
5
0b  
0b  
14h  
RESET Active Logic Level  
HOLD Pin  
0 = active logic is 0  
1 = active logic is 1  
0 = not support  
1 = support  
1b  
HOLD Active Logic Level  
WP Pin  
0 = active logic is 0  
1 = active logic is 1  
0b  
0 = not support  
1 = support  
1b  
WP Active Logic Level  
0 = active logic is 0  
1 = active logic is 1  
0b  
Reserved  
Reserved  
00b  
7:6  
00b  
All FFh  
C5h  
C6h  
C7h  
31:8  
1111_1111b  
1111_1111b  
1111_1111b  
FFh  
FFh  
FFh  
JDEC ID Operation Code  
9Fh  
C8h  
C9h  
7:0  
1001_1111b  
0110_0010b  
9Fh  
62h  
JDEC ID Read Data  
(Manufacture Code)  
62h (ON Semiconductor)  
15:8  
JDEC ID Read Data  
(Memory Type)  
16h  
CAh  
CBh  
23:16  
31:24  
0001_0110b  
0001_0101b  
16h  
15h  
JDEC ID Read Data  
(Memory Capacity Code)  
15h (16 Mbits)  
Device ID Operation Code  
Device ID Read Data  
Reserved  
ABh  
CCh  
CDh  
7:0  
15:8  
31:16  
1010_1011b  
1000_1000b  
ABh  
88h  
88h (LE25S161)  
All FFh  
CEh  
CFh  
1111_1111b  
1111_1111b  
FFh  
FFh  
www.onsemi.com  
28  
LE25S161  
HOLD FUNCTION  
Using the HOLD pin, the hold function suspends serial  
high, HOLD must not rise or fall. The hold function takes  
effect when the logic level of CS is low, the hold status is  
exited and serial communication is reset at the rising CS  
edge. In the hold status, the SO output is in the  
highimpedance state, and SI and SCK are ”don’t care”.  
communication (it places it in the hold status). “Figure 29.  
HOLD Function” shows the timing waveforms. The device  
is placed in the hold status at the falling HOLD edge while  
the logic level of SCK is low, and it exits from the hold status  
at the rising HOLD edge. When the logic level of SCK is  
Active  
CS  
HOLD  
Active  
tHS  
tHS  
SCK  
tHH  
tHH  
HOLD  
tHHZ  
tHLZ  
High Impedance  
SO  
Figure 29. HOLD Function  
www.onsemi.com  
29  
 
LE25S161  
POWERON  
In order to protect against unintentional writing, CS must  
be within at V 0.3 to V +0.3 on poweron. After  
The device is in the standby state after power is turned on.  
DD  
DD  
poweron, the supply voltage has stabilized at V (min) or  
DD  
higher, and waits for t  
before CS is driven to “Low”.  
VSL  
VDD  
VDD (Max)  
Program, Erase and Write Commands are Ignored  
Chip Select (CS = “L”) is Not Allowed  
VDD (Min)  
tVSL  
Read Command is  
allowed  
Full Access Allowed  
Reset  
State  
VWI  
tPUW  
0 V  
time  
Figure 30. Poweron Timing  
Table 16. POWERUP TIMING  
Spec  
Min  
300  
100  
1.0  
Max  
Parameter  
Symbol  
Unit  
ms  
V
DD  
(Min) to CS Low  
t
VSL  
Time to Write Operation  
Operation Inhibit Voltage  
t
500  
1.5  
ms  
PUW  
V
WI  
V
www.onsemi.com  
30  
LE25S161  
HARDWARE DATA PROTECTION  
LE25S161 incorporates a poweron reset function. The  
following conditions must be met in order to ensure that the  
power reset circuit will operate stably.  
No guarantees are given for data in the event of an  
instantaneous power failure occurring during the writing  
period.  
VDD  
VDD (Max)  
VDD (Min)  
tPD  
0 V  
vBOT  
Figure 31. Powerdown Timing  
Table 17. POWERDOWN TIMING  
Spec  
Min  
10  
Max  
Parameter  
Powerdown Time  
Powerdown Voltage  
Symbol  
Unit  
ms  
V
t
PD  
V
BOT  
0.2  
SOFTWARE DATA PROTECTION  
DECOUPLING CAPACITOR  
0.1 mF ceramic capacitor must be provided to each device  
The LE25S161 eliminates the possibility of unintentional  
operations by not recognizing commands under the  
following conditions.  
and connected between V and V in order to ensure that  
DD  
SS  
the device will operate stably.  
When a write command is input and the rising CS edge  
timing is not in a byte cycle (8 CLK units of SCK)  
When the Page Program data is not in 1byte increments  
When the Write Status Register command is input for  
2 bytes cycles or more  
www.onsemi.com  
31  
LE25S161  
SPECIFICATIONS  
Absolute Maximum Ratings  
Table 18. ABSOLUTE MAXIMUM RATINGS  
Parameter  
Maximum Supply Voltage  
DC Voltage (All Pins)  
Symbol  
Conditions  
Rating  
Unit  
V
With respect to V  
With respect to V  
0.5 to +2.6  
SS  
SS  
0.5 to V + 0.5  
V
DD  
Storage Temperature  
Tstg  
55 to +150  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
Operating Conditions  
Table 19. OPERATING CONDITIONS  
Parameter  
Operating Supply Voltage  
Operating Ambient Temperature  
Symbol  
Conditions  
Rating  
Unit  
V
1.65 to 1.95  
40 to +90  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
Data Retention, Rewriting Cycles  
Table 20. DATA RETENTION, REWRITING CYCLES  
Parameter  
Symbol  
Conditions  
Status resister write  
Program/Erase  
Min  
100,000  
100,000  
20  
Max  
Unit  
Rewrite Cycles  
Data Retention  
cycRW  
cycles/  
Sector  
tDRET  
year  
Pin Capacitance at Ta = 255C, f = 1 MHz  
Table 21. PIN CAPACITANCE (Ta = 25°C, f = 1 MHz)  
Rating  
Max  
12  
6
Parameter  
Output Pin Capacitance  
Input Pin Capacitance  
Symbol  
Conditions  
Unit  
pF  
C
V
= 0 V  
SO  
SO  
C
V = 0 V  
IN  
pF  
IN  
NOTE: These parameter values do not represent the results of measurements undertaken for all devices but rather values for some of the  
sampled devices.  
AC Test Conditions  
Input pulse level  
Input rising/falling time  
Input timing level  
Output timing level  
Output load  
0.2 V to 0.8 V  
5 ns  
NOTE: As the test conditions for “typ”, the  
measurements are conducted using 1.8 V for  
DD  
DD  
0.3 V , 0.7 V  
V
DD  
at room temperature.  
DD  
DD  
1/2 x V  
15 pF  
DD  
www.onsemi.com  
32  
LE25S161  
Input level  
Input / Output timing level  
0.8 V  
0.2 V  
DD  
0.7 V  
DD  
DD  
1/2 V  
0.3 V  
DD  
DD  
Figure 32.  
DC Characteristics  
Table 22. DC CHARACTERISTICS  
V
DD  
= 1.65 to 1.95 V  
Rating  
Min  
Typ  
Max  
4.5  
Parameter  
Symbol  
Conditions  
Unit  
Read Mode Operating Current  
I
SCK = 0.1 V  
LowPower  
Read  
(RDLP: 03h)  
33.33 MHz  
3.5  
mA  
CCR  
DD  
/ 0.9 V  
,
DD  
HOLD = WP =  
0.9 V  
,
DD  
HighSpeed  
Read  
(RDHS: 0Bh)  
33.33 MHz  
70 MHz  
4.0  
6.0  
5.0  
5.5  
7.0  
7.0  
SO = open  
Dual Output  
Read  
33.33 MHz  
(RDDO: 3Bh)  
or  
Dual I/O Read  
(RDIO: BBh)  
50 MHz  
6.0  
7.0  
Small Sector Erase Operating  
Current  
I
t
=max  
3.5  
3.5  
4.0  
6.5  
5.0  
9
4.5  
4.5  
5.0  
7.5  
6.5  
50  
mA  
mA  
mA  
mA  
mA  
mA  
CCSSE  
SSE  
Average current  
Sector Erase Operating  
Current  
I
t
SE  
=max  
CCSE  
Average current  
t =max  
CHE  
Chip Erase Operating Current  
I
CCCHE  
Average current  
t =max  
PP  
Normal Program Mode  
Operating Current  
I
CCPP  
Average current  
t =max  
PPL  
LowPower Program Mode  
Operating Current  
I
CCPPL  
Average current  
CMOS Standby Current  
I
SB  
CS = V , HOLD = WP = V  
SI = VSS / V , SO = open  
,
,
DD  
DD  
DD  
DD  
Deep Powerdown Standby  
Current  
I
CS = V , HOLD = WP = V  
SI = VSS / V , SO = open  
3.0  
12  
mA  
DSB  
DD  
DD  
Input Leakage Current  
Output Leakage Current  
Input Low Voltage  
I
2.0  
2.0  
mA  
mA  
V
LI  
I
LO  
V
0.3  
0.3 V  
DD  
IL  
Input High Voltage  
V
V
0.7 V  
V + 0.3  
DD  
V
IH  
DD  
Output Low Voltage  
0.2  
V
I
I
I
= 100 mA, V = V min  
DD DD  
OL  
OL  
OL  
OH  
= 1.6 mA, V = V min  
0.4  
DD  
DD  
Output High Voltage  
V
OH  
= 100 mA, V = V min  
V 0.2  
DD  
V
DD  
DD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
33  
LE25S161  
AC Characteristics  
Table 23. AC CHARACTERISTICS  
Rating  
Min  
Typ  
Max  
33.33  
50  
Parameter  
Symbol  
Unit  
Clock Frequency  
f
MHz  
LowPower Read (RDLP: 03h)  
CLK  
Dual Output Read (RDDO: 3Bh)  
Dual I/O Read (RDIO: BBh)  
Other Instructions  
0.1  
11  
8
70  
Input Signal Rising/Falling Time  
SCK Logic High Level Pulse Width  
t
V/ns  
ns  
RF  
t
33.33 MHz  
50 MHz  
CLHI  
70 MHz  
6
SCK Logic Low Level Pulse Width  
t
ns  
33.33 MHz  
50 MHz  
11  
8
CLLO  
70 MHz  
6
CS Active Setup Time  
CS Not Active Hold Time  
Data Setup Time  
t
t
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SLCH  
6
CHSL  
t
3
DS  
Data Hold Time  
t
3
DH  
CS Wait Pulse Width  
t
20  
6
CPH  
CS Active Hold Time  
t
t
CHSH  
SHCH  
CS Not Active Setup Time  
Output High Impedance Time from CS  
Output Data Time from SCK  
6
t
8
CHZ  
t
V
33.33 MHz  
50 MHz  
10  
8
70 MHz  
8
Output Data Hold Time  
t
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
HO  
Output Low Impedance Time from SCK  
HOLD Setup Time  
t
0
CLZ  
t
6
HS  
HH  
HOLD Hold Time  
t
6
Output Low Impedance Time from HOLD  
Output High Impedance Time from HOLD  
WP Setup Time  
t
8
HLZ  
t
8
HHZ  
t
20  
20  
WPS  
WPH  
WP Hold Time  
t
Write Status Register Time  
Normal Page Programming Cycle Time  
t
5
8
WRSR  
t
256 Byte  
nByte  
0.40  
0.70  
PP  
0.14 + n x 0.26 / 256 0.35 + n x 0.35 / 256  
0.60 1.20  
0.14 + n x 0.46 / 256 0.50 + n x 0.70 / 256  
LowPower Page Programming  
Cycle Time  
t
ms  
256 Byte  
nByte  
PPL  
Small Sector Erase Cycle Time  
Sector Erase Cycle Time  
Chip Erase Cycle Time  
t
10  
15  
210  
120  
150  
2400  
40  
ms  
ms  
ms  
ms  
SSE  
t
SE  
t
CHE  
Recovery Time from Suspend  
Deep Powerdown Time  
Deep Powerdown Recovery Time  
Internal Reset Time  
t
RSUS  
t
5
ms  
DP  
t
40  
ms  
RDP  
tRST  
40  
ms  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
34  
LE25S161  
TIMING WAVEFORMS  
tCPH  
CS  
tSHCH  
tCHSL  
tSLCH  
tCLHI  
tCLLO  
tCHSH  
SCK  
tDS  
tDH  
SI  
DATA VALID  
High Impedance  
High Impedance  
SO  
Figure 33. Serial Input Timing  
CS  
SCK  
tCLZ  
tHO  
tCHZ  
SO  
SI  
DATA VALID  
tV  
Figure 34. Serial Output Timing  
CS  
tHH  
tHS  
tHH  
tHS  
SCK  
HOLD  
SI  
tHLZ  
High Impedance  
tHHZ  
Figure 35. Hold Timing  
CS  
tWPS  
tWPH  
WP  
Figure 36. Status Resister Write Timing  
www.onsemi.com  
35  
LE25S161  
Small Sector Erase  
Start  
Write Status Register  
Start  
Write enable  
(WREN)  
06h  
Set Small Sector  
Erase command  
(SSE)  
20h / D7h  
Address 1  
Address 2  
Address 3  
06h  
Write enable  
(WREN)  
01h  
Set Write Status  
Register command  
(WRSR)  
Data  
Program start on rising  
edge of CS  
Start erase on rising  
edge of CS  
Set  
Set  
05h  
05h  
Read Status Register  
command  
(RDSR)  
Read Status Register  
command  
(RDSR)  
NO  
NO  
Bit 0 = “0” ?  
YES  
Bit 0 = “0” ?  
YES  
End of Write Status  
Register  
End of erase  
* Automatically placed in write disabled state  
at the end of the Write Status Register  
* Automatically placed in write disabled  
state at the end of the erase  
Figure 37. Write Status Register Flowcharts  
Figure 38. Small Sector Erase Flowcharts  
www.onsemi.com  
36  
LE25S161  
Sector Erase  
Start  
Write enable  
(WREN)  
06h  
Chip Erase  
Start  
Set Sector Erase  
command  
(SE)  
D8h  
Write enable  
(WREN)  
Address 1  
Address 2  
Address 3  
06h  
Set Chip Erase  
command  
(CHE)  
60h / C7h  
Start erase on rising  
edge of CS  
Start erase on rising  
edge of CS  
Set  
05h  
Read Status Register  
command  
(RDSR)  
Set  
05h  
Read Status Register  
command  
(RDSR)  
Bit 0 = “0” ?  
YES  
NO  
Bit 0 = “0” ?  
YES  
NO  
End of erase  
End of erase  
* Automatically placed in write disabled  
state at the end of the erase  
* Automatically placed in write disabled state at  
the end of the erase  
Figure 39. Sector Erase Flowcharts  
Figure 40. Chip Erase Flowcharts  
www.onsemi.com  
37  
LE25S161  
Page Program  
Start  
06h  
Write enable  
(WREN)  
02h or 0Ah  
Address 1  
Address 2  
Address 3  
Data 0  
Set Page Program  
command  
(PP/PPL)  
*02h: Normal Program Mode (PP)  
*0Ah: LowPower Program Mode (PPL)  
Data n  
Start program on rising  
edge of CS  
Set  
05h  
Read Status Register  
command  
(RDSR)  
NO  
Bit 0 = “0” ?  
YES  
End of  
programming  
* Automatically placed in write disabled state at  
the end of the programming operation.  
Figure 41. Page Program Flowcharts  
www.onsemi.com  
38  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WLCSP8 2.92x1.53x0.525  
CASE 567YR  
ISSUE O  
DATE 21 NOV 2019  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
*This information is generic. Please refer to  
A
L
= Assembly Location  
= Wafer Lot  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
XXXXX  
XXXXX  
ALYW  
Y
W
= Year  
= Work Week  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON14166H  
WLCSP8 2.92x1.53x0.525  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY