LM324E [ONSEMI]

Single Supply Quad Operational Amplifiers;
LM324E
型号: LM324E
厂家: ONSEMI    ONSEMI
描述:

Single Supply Quad Operational Amplifiers

放大器 光电二极管
文件: 总14页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM324, LM324A, LM324E,  
LM224, LM2902, LM2902E,  
LM2902V, NCV2902  
Single Supply Quad  
Operational Amplifiers  
www.onsemi.com  
The LM324 series are low−cost, quad operational amplifiers with  
true differential inputs. They have several distinct advantages over  
standard operational amplifier types in single supply applications. The  
quad amplifier can operate at supply voltages as low as 3.0 V or as  
high as 32 V with quiescent currents about one−fifth of those  
associated with the MC1741 (on a per amplifier basis). The common  
mode input range includes the negative supply, thereby eliminating the  
necessity for external biasing components in many applications. The  
output voltage range also includes the negative power supply voltage.  
PDIP−14  
N SUFFIX  
CASE 646  
14  
1
SOIC−14  
D SUFFIX  
CASE 751A  
14  
Features  
1
Short Circuited Protected Outputs  
True Differential Input Stage  
TSSOP−14  
DTB SUFFIX  
CASE 948G  
Single Supply Operation: 3.0 V to 32 V  
Low Input Bias Currents: 100 nA Maximum (LM324A)  
Four Amplifiers Per Package  
14  
1
Internally Compensated  
Common Mode Range Extends to Negative Supply  
Industry Standard Pinouts  
PIN CONNECTIONS  
ESD Clamps on the Inputs Increase Ruggedness without Affecting  
Device Operation  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Out 1  
Out 4  
Inputs 4  
, GND  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable  
*
*
)
Inputs 1  
V
1
4
3
)
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
V
EE  
CC  
Compliant  
)
)
*
2
Inputs 2  
Out 2  
Inputs 3  
Out 3  
*
8
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 11 of this data sheet.  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
October, 2016 − Rev. 29  
LM324/D  
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
MAXIMUM RATINGS (T = +25°C, unless otherwise noted.)  
A
Rating  
Symbol  
Value  
Unit  
Power Supply Voltages  
Single Supply  
Vdc  
V
32  
16  
CC  
, V  
Split Supplies  
V
CC  
EE  
Input Differential Voltage Range (Note 1)  
Input Common Mode Voltage Range  
Output Short Circuit Duration  
V
32  
−0.3 to 32  
Continuous  
150  
Vdc  
Vdc  
IDR  
ICR  
SC  
V
t
Junction Temperature  
T
°C  
J
Thermal Resistance, Junction−to−Air (Note 2)  
Case 646  
Case 751A  
Case 948G  
R
118  
156  
190  
°C/W  
JA  
Storage Temperature Range  
T
−65 to +150  
°C  
°C  
stg  
Operating Ambient Temperature Range  
T
A
LM224  
LM324, LM324A, LM324E  
LM2902, LM2902E  
−25 to +85  
0 to +70  
−40 to +105  
−40 to +125  
LM2902V, NCV2902 (Note 3)  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Split Power Supplies.  
2. All R  
measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active.  
JA  
3. NCV2902 is qualified for automitive use.  
ESD RATINGS  
Rating  
HBM  
MM  
Unit  
ESD Protection at any Pin (Human Body Model − HBM, Machine Model − MM)  
NCV2902 (Note 3)  
2000  
2000  
200  
200  
200  
100  
200  
V
V
V
V
LM324E, LM2902E  
LM324DG/DR2G, LM2902DG/DR2G  
All Other Devices  
2000  
www.onsemi.com  
2
 
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, V = GND, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
LM224  
LM324A  
LM324, LM324E  
LM2902, LM2902E LM2902V/NCV2902  
Characteristics  
Symbol Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max  
Unit  
Input Offset Voltage  
V
IO  
mV  
V
CC  
= 5.0 V to 30 V  
V
V
V
= 0 V to  
−1.7 V,  
ICR  
CC  
= 1.4 V, R = 0 ꢁ  
O
S
2.0  
5.0  
7.0  
7.0  
2.0  
3.0  
5.0  
5.0  
2.0  
7.0  
9.0  
9.0  
2.0  
7.0  
10  
10  
2.0  
7.0  
13  
10  
T
= 25°C  
A
T
A
= T  
(Note 4)  
high  
T
A
= T (Note 4)  
low  
Average Temperature  
Coefficient of Input  
Offset Voltage  
V /T  
IO  
7.0  
7.0  
30  
7.0  
7.0  
7.0  
V
/
°
C
T
A
= T to T  
high low  
(Notes 4 and 6)  
Input Offset Current  
I
IO  
3.0  
30  
5.0  
30  
75  
5.0  
50  
5.0  
50  
5.0  
50  
nA  
100  
150  
200  
200  
T
= T to T  
high low  
A
(Note 4)  
Average Temperature  
Coefficient of Input  
Offset Current  
I /T  
IO  
10  
10  
300  
10  
10  
10  
pA/°C  
T
A
= T to T  
high low  
(Notes 4 and 6)  
Input Bias Current  
I
−90  
−150  
−300  
−45  
−100  
−200  
−90  
−250  
−500  
−90  
−250  
−500  
−90  
−250  
−500  
nA  
V
IB  
T
A
= T to T  
high low  
(Note 4)  
Input Common Mode  
Voltage Range  
(Note 5)  
V
ICR  
V
CC  
= 30 V  
0
0
28.3  
28  
0
0
28.3  
28  
0
0
28.3  
28  
0
0
28.3  
28  
0
0
28.3  
28  
T
= +25°C  
A
T
A
= T to T  
high low  
(Note 4)  
Differential Input  
Voltage Range  
V
IDR  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
Large Signal Open  
Loop Voltage Gain  
A
VOL  
V/mV  
50  
100  
25  
100  
25  
100  
25  
100  
25  
100  
R
L
= 2.0 k,  
V
CC  
= 15 V,  
for Large V Swing  
O
25  
15  
15  
15  
15  
T
= T  
to T  
A
high low  
(Note 4)  
Channel Separation  
10 kHz f 20 kHz,  
Input Referenced  
CS  
−120  
−120  
−120  
−120  
−120  
dB  
dB  
dB  
Common Mode  
Rejection,  
R
CMR  
PSR  
70  
85  
65  
65  
70  
65  
65  
70  
50  
50  
70  
50  
50  
70  
10 kꢁ  
S
Power Supply  
Rejection  
65  
100  
100  
100  
100  
100  
4. LM224: T = −25°C, T  
= +85°C  
low  
low  
high  
LM324/LM324A/LM324E: T = 0°C, T  
= +70°C  
high  
= +105°C  
high  
LM2902/LM2902E: T = −40°C, T  
low  
high  
LM2902V & NCV2902: T = −40°C, T  
= +125°C  
low  
NCV2902 is qualified for automotive use.  
5. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of  
the common mode voltage range is V −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude  
CC  
of V  
.
CC  
6. Guaranteed by design.  
www.onsemi.com  
3
 
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, V = GND, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
LM224  
LM324A  
LM324, LM324E  
LM2902, LM2902E LM2902V/NCV2902  
Characteristics  
Symbol Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max  
Unit  
Output Voltage−  
High Limit  
V
OH  
V
3.3  
26  
3.5  
3.3  
26  
3.5  
3.3  
26  
3.5  
3.3  
26  
3.5  
3.3  
26  
3.5  
V
= 5.0 V, R =  
L
CC  
2.0 k, T = 25°C  
A
V
CC  
= 30 V  
R
L
= 2.0 kꢁ  
(T = T  
T
)
)
A
high to low  
(Note 7)  
= 30 V  
27  
28  
27  
28  
27  
28  
27  
28  
27  
28  
V
CC  
R
L
= 10 kꢁ  
(T = T  
T
A
high to low  
(Note 7)  
Output Voltage −  
Low Limit,  
V
5.0  
20  
5.0  
20  
5.0  
20  
5.0  
100  
5.0  
100  
mV  
mA  
OL  
V
CC  
= 5.0 V,  
R
L
= 10 k,  
T
A
= T  
to T  
high low  
(Note 7)  
Output Source Current  
I
O +  
(V = +1.0 V,  
ID  
V
CC  
= 15 V)  
20  
10  
40  
20  
20  
10  
40  
20  
20  
10  
40  
20  
20  
10  
40  
20  
20  
10  
40  
20  
T
= 25°C  
A
T
A
= T  
to T  
high low  
(Note 7)  
Output Sink Current  
(V = −1.0 V,  
I
mA  
O −  
10  
20  
10  
20  
10  
20  
10  
20  
10  
20  
ID  
V
T
= 15 V)  
CC  
= 25°C  
A
5.0  
12  
8.0  
50  
5.0  
12  
8.0  
50  
5.0  
12  
8.0  
50  
5.0  
8.0  
5.0  
8.0  
T
= T  
to T  
A
high low  
(Note 7)  
(V = −1.0 V,  
A
ID  
V
O
= 200 mV,  
T
A
= 25°C)  
Output Short Circuit  
to Ground  
(Note 8)  
I
40  
60  
40  
60  
40  
60  
40  
60  
40  
60  
mA  
mA  
SC  
Power Supply Current  
I
CC  
(T = T  
to T  
)
A
high  
low  
(Note 7)  
3.0  
1.2  
1.4  
0.7  
3.0  
1.2  
3.0  
1.2  
3.0  
1.2  
3.0  
1.2  
V
= 30 V  
CC  
V
O
= 0 V, R = ∞  
L
V
CC  
= 5.0 V,  
V
O
= 0 V, R = ∞  
L
7. LM224: T = −25°C, T  
= +85°C  
low  
low  
high  
LM324/LM324A/LM324E: T = 0°C, T  
= +70°C  
high  
= +105°C  
high  
LM2902/LM2902E: T = −40°C, T  
low  
high  
LM2902V & NCV2902: T = −40°C, T  
= +125°C  
low  
NCV2902 is qualified for automotive use.  
8. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of  
the common mode voltage range is V −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude  
CC  
of V  
.
CC  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
4
 
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
Bias Circuitry  
Common to Four  
Amplifiers  
Output  
V
CC  
Q15  
Q22  
Q16  
Q14  
Q13  
40 k  
Q19  
5.0 pF  
Q12  
Q24  
25  
Q23  
+
Q20  
Q21  
Q18  
Inputs  
-
Q11  
Q9  
Q17  
Q25  
2.4 k  
Q6 Q7  
Q26  
Q2  
Q5  
Q1  
Q8  
Q10  
Q3  
Q4  
2.0 k  
V
EE  
/GND  
Figure 1. Representative Circuit Diagram  
(One−Fourth of Circuit Shown)  
www.onsemi.com  
5
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
CIRCUIT DESCRIPTION  
The LM324 series is made using four internally  
V
= 15 Vdc  
R = 2.0 kꢁ  
CC  
compensated, two−stage operational amplifiers. The first  
stage of each consists of differential input devices Q20 and  
Q18 with input buffer transistors Q21 and Q17 and the  
differential to single ended converter Q3 and Q4. The first  
stage performs not only the first stage gain function but also  
performs the level shifting and transconductance reduction  
functions. By reducing the transconductance, a smaller  
compensation capacitor (only 5.0 pF) can be employed, thus  
saving chip area. The transconductance reduction is  
accomplished by splitting the collectors of Q20 and Q18.  
Another feature of this input stage is that the input common  
mode range can include the negative supply or ground, in  
single supply operation, without saturating either the input  
devices or the differential to single−ended converter. The  
second stage consists of a standard current source load  
amplifier stage.  
L
T = 25°C  
A
5.0 s/DIV  
Figure 2. Large Signal Voltage Follower Response  
Each amplifier is biased from an internal−voltage  
regulator which has a low temperature coefficient thus  
giving each amplifier good temperature characteristics as  
well as excellent power supply rejection.  
3.0 V to V  
CC(max)  
V
CC  
V
CC  
1
2
3
1.5 V to V  
CC(max)  
EE(max)  
1
2
3
1.5 V to V  
4
4
V
EE  
Single Supply  
V
EE  
/GND  
Split Supplies  
Figure 3.  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Phase Margin  
Gain Margin  
1.0  
10  
100  
1000  
10000  
LOAD CAPACITANCE (pF)  
Figure 4. Gain and Phase Margin  
www.onsemi.com  
6
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
20  
18  
16  
14  
12  
10  
8.0  
120  
V
V
= 15 V  
= GND  
CC  
100  
80  
60  
40  
20  
EE  
T = 25°C  
A
Negative  
Positive  
6.0  
4.0  
2.0  
0
0
-20  
0
2.0 4.0 6.0 8.0  
10  
12  
14 16  
18  
20  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
V /V POWER SUPPLY VOLTAGES (V)  
CC EE,  
f, FREQUENCY (Hz)  
Figure 6. Open Loop Frequency  
Figure 5. Input Voltage Range  
14  
12  
550  
500  
R = 2.0 kꢁ  
L
V
V
= 15 V  
= GND  
CC  
Input  
EE  
450  
400  
350  
300  
250  
200  
10  
Gain = -100  
R = 1.0 kꢁ  
Output  
I
R = 100 kꢁ  
8.0  
F
6.0  
4.0  
V
V
= 30 V  
= GND  
CC  
EE  
2.0  
0
T = 25°C  
A
C = 50 pF  
L
0
1.0  
10  
100  
1000  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
f, FREQUENCY (kHz)  
t, TIME (s)  
Figure 7. Large−Signal Frequency Response  
Figure 8. Small−Signal Voltage Follower  
Pulse Response (Noninverting)  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
T = 25°C  
L
A
R = R  
90  
80  
70  
0.3  
0
0
5.0  
10  
15  
20  
25  
30  
35  
0
2.0 4.0 6.0 8.0  
10  
12  
14 16  
18  
20  
V
CC  
, POWER SUPPLY VOLTAGE (V)  
V
CC  
, POWER SUPPLY VOLTAGE (V)  
Figure 9. Power Supply Current versus  
Power Supply Voltage  
Figure 10. Input Bias Current versus  
Power Supply Voltage  
www.onsemi.com  
7
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
50 k  
R1  
5.0 k  
V
CC  
10 k  
V
CC  
V
CC  
R2  
-
V
ref  
-
1/4  
LM324  
V
O
1/4  
LM324  
V
O
+
1
MC1403  
+
f =  
o
1
2
2 RC  
2.5 V  
V
ref  
=
V
CC  
For:  
f
o
= 1.0 kHz  
R = 16 kꢁ  
C = 0.01 F  
R
C
R
R1  
R2  
C
V
O
= 2.5 V ꢁ1 +  
Figure 11. Voltage Reference  
Figure 12. Wien Bridge Oscillator  
R2  
1
C
+
R
e
1
R
Hysteresis  
1/4  
LM324  
V
OH  
-
R1  
V
O
+
V
ref  
-
1/4  
LM324  
a R1  
b R1  
1/4  
LM324  
R1  
e
o
V
V
O
in  
-
V
OL  
+
V
inL  
V
inH  
1
C
R1  
R1 + R2  
-
V
ref  
R
(V - V ) + V  
ref  
V
=
OL  
ref  
inL  
1/4  
LM324  
R1  
R1 + R2  
+
e
2
(V - V ) + V  
ref  
V
inH  
=
R
OH  
ref  
R1  
R1 + R2  
H =  
(V - V )  
OH OL  
e = C (1 + a + b) (e - e )  
1
o
2
Figure 13. High Impedance Differential Amplifier  
Figure 14. Comparator with Hysteresis  
R
1
2 RC  
f =  
o
R
100 k  
R1 = QR  
1
2
C1  
V
ref  
=
V
CC  
R1  
V
in  
R2  
C
C
R2 =  
-
T
R
BP  
1/4  
LM324  
-
100 k  
R3 = T  
N R2  
1/4  
LM324  
-
+
1/4  
LM324  
C1 = 10C  
+
+
For:ꢀf ꢁ=ꢁ1.0 kHz  
Vref  
o
For:ꢀQꢁ= 10  
For:ꢀT ꢁ= 1  
V
ref  
Bandpass  
Output  
R3  
V
ref  
BP  
For:ꢀT ꢁ= 1  
N
R1  
R2  
-
C1  
1/4  
LM324  
R
C
= 160 kꢁ  
= 0.001 F  
Notch Output  
+
R1 = 1.6 Mꢁ  
R2 = 1.6 Mꢁ  
R3 = 1.6 Mꢁ  
V
ref  
Where:ꢀT ꢁ=ꢁCenter Frequency Gain  
BP  
Where:ꢀT ꢁ=ꢁPassband Notch Gain  
N
Figure 15. Bi−Quad Filter  
www.onsemi.com  
8
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
1
2
Triangle Wave  
Output  
V
=
V
CC  
R2  
ref  
300 k  
V
+
ref  
R3  
75 k  
R1  
100 k  
V
CC  
1/4  
LM324  
+
1/4  
LM324  
R3  
C
-
C
R1  
Square  
Wave  
Output  
-
C
-
V
in  
O
1/4  
LM324  
V
V
ref  
O
C
+
CO = 10 C  
R2  
R
f
R1 + R  
V
ref  
R2 R1  
C
1
2
f =  
if R3 =  
V
ref  
=
V
CC  
4 CR R1  
f
R2 + R1  
Figure 16. Function Generator  
Figure 17. Multiple Feedback Bandpass Filter  
Given:ꢀf ꢁ=ꢁcenter frequency  
o
A(f )ꢁ=ꢁgain at center frequency  
o
Choose value f , C  
o
Q
f C  
R3 =  
R1 =  
Then:  
o
R3  
2 A(f )  
o
R1 R3  
R2 =  
2
4Q R1 - R3  
Q f  
o
o
< 0.1  
For less than 10% error from operational amplifier,  
BW  
where f and BW are expressed in Hz.  
o
If source impedance varies, filter may be preceded with  
voltage follower buffer to stabilize filter parameters.  
www.onsemi.com  
9
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
ORDERING INFORMATION  
Device  
Operating Temperature Range  
Package  
Shipping  
LM224DG  
SOIC−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
PDIP−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
PDIP−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
55 Units/Rail  
2500/Tape & Reel  
96 Units/Tube  
LM224DR2G  
LM224DTBG  
LM224DTBR2G  
LM224NG  
−25°C to +85°C  
2500/Tape & Reel  
25 Units/Rail  
LM324DG  
55 Units/Rail  
LM324DR2G  
LM324EDR2G  
LM324DTBG  
LM324DTBR2G  
LM324NG  
2500/Tape & Reel  
2500/Tape & Reel  
96 Units/Tube  
2500/Tape & Reel  
25 Units/Rail  
0°C to +70°C  
LM324ADG  
55 Units/Rail  
LM324ADR2G  
LM324ADTBG  
LM324ADTBR2G  
2500/Tape & Reel  
96 Units/Tube  
2500/Tape & Reel  
LM324ANG  
LM2902DG  
PDIP−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
25 Units/Rail  
55 Units/Rail  
LM2902DR2G  
LM2902EDR2G  
LM2902DTBG  
LM2902DTBR2G  
LM2902NG  
SOIC−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
PDIP−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
PDIP−14 (Pb−Free)  
SOIC−14 (Pb−Free)  
TSSOP−14 (Pb−Free)  
2500/Tape & Reel  
2500/Tape & Reel  
96 Units/Tube  
−40°C to +105°C  
2500/Tape & Reel  
25 Units/Rail  
LM2902VDG  
55 Units/Rail  
LM2902VDR2G  
LM2902VDTBG  
LM2902VDTBR2G  
LM2902VNG  
2500/Tape & Reel  
96 Units/Tube  
2500/Tape & Reel  
25 Units/Rail  
−40°C to +125°C  
NCV2902DR2G*  
NCV2902DTBR2G*  
2500/Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP  
Capable.  
www.onsemi.com  
10  
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
MARKING DIAGRAMS  
PDIP−14  
N SUFFIX  
CASE 646  
14  
1
14  
1
14  
14  
1
LM324AN  
AWLYYWWG  
LMx24N  
AWLYYWWG  
LM2902N  
AWLYYWWG  
LM2902VN  
AWLYYWWG  
1
SOIC−14  
D SUFFIX  
CASE 751A  
14  
14  
14  
14  
*
LM324ADG  
AWLYWW  
LMx24DG  
AWLYWW  
LM2902DG  
AWLYWW  
LM2902VDG  
AWLYWW  
1
1
1
1
14  
14  
LMx24EG  
AWLYWW  
LM2902EG  
AWLYWW  
1
1
TSSOP−14  
DTB SUFFIX  
CASE 948G  
14  
14  
14  
14  
2902  
V
x24  
324A  
2902  
ALYWG  
ALYWG  
ALYWG  
ALYWG  
G
G
G
G
1
1
1
1
x
= 2 or 3  
A
WL, L  
YY, Y  
= Assembly Location  
= Wafer Lot  
= Year  
WW, W = Work Week  
G or G  
= Pb−Free Package  
(Note: Microdot may be in either location)  
*This marking diagram also applies to NCV2902.  
www.onsemi.com  
11  
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
PACKAGE DIMENSIONS  
SOIC−14  
CASE 751A−03  
ISSUE K  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
B
0.25  
C
A
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
SOLDERING FOOTPRINT*  
6.50  
14X  
1.18  
1
1.27  
PITCH  
14X  
0.58  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
12  
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
PACKAGE DIMENSIONS  
TSSOP−14  
CASE 948G  
ISSUE B  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER  
M
S
S
V
ANSI Y14.5M, 1982.  
0.10 (0.004)  
T
U
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
S
0.15 (0.006) T  
U
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
−U−  
L
N
PIN 1  
IDENT.  
F
7
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
S
K
0.15 (0.006) T  
U
A
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
K1  
−V−  
A
B
C
D
F
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
J J1  
1.20  
−−− 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
SECTION N−N  
G
H
J
J1  
K
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
−W−  
C
K1 0.19  
L
M
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
0
8
0
8
_
_
_
_
SEATING  
−T−  
H
G
DETAIL E  
D
PLANE  
SOLDERING FOOTPRINT  
7.06  
1
0.65  
PITCH  
14X  
0.36  
14X  
1.26  
DIMENSIONS: MILLIMETERS  
www.onsemi.com  
13  
LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902  
PACKAGE DIMENSIONS  
PDIP−14  
CASE 646−06  
ISSUE S  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCHES.  
D
A
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-  
AGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.  
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH  
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE  
NOT TO EXCEED 0.10 INCH.  
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM  
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR  
TO DATUM C.  
14  
8
E
H
E1  
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE  
LEADS UNCONSTRAINED.  
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE  
LEADS, WHERE THE LEADS EXIT THE BODY.  
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE  
CORNERS).  
1
7
c
b2  
NOTE 8  
B
END VIEW  
TOP VIEW  
WITH LEADS CONSTRAINED  
NOTE 5  
A2  
A
INCHES  
DIM MIN MAX  
−−−−  
A1 0.015  
MILLIMETERS  
MIN  
−−−  
0.38  
2.92  
0.35  
MAX  
5.33  
−−−  
4.95  
0.56  
NOTE 3  
A
0.210  
−−−−  
L
A2 0.115 0.195  
b
b2  
C
0.014 0.022  
0.060 TYP  
0.008 0.014  
SEATING  
PLANE  
1.52 TYP  
A1  
D1  
0.20  
0.36  
C
M
D
0.735 0.775 18.67 19.69  
D1 0.005  
0.300 0.325  
E1 0.240 0.280  
−−−−  
0.13  
7.62  
6.10  
−−−  
8.26  
7.11  
E
eB  
e
END VIEW  
NOTE 6  
14X  
b
e
eB  
L
0.100 BSC  
−−−− 0.430  
0.115 0.150  
−−−− 10°  
2.54 BSC  
−−−  
2.92  
−−−  
10.92  
3.81  
10 °  
M
M
M
B
0.010  
C A  
SIDE VIEW  
M
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
LM324/D  

相关型号:

LM324EDR2G

Single Supply Quad Operational Amplifiers
ONSEMI

LM324F

Low power quad op amps
NXP

LM324F

Ground Sense Operational Amplifiers
ROHM

LM324F-A

Operational Amplifier, 4 Func, 9000uV Offset-Max, BIPolar, CDIP14
PHILIPS

LM324F-B

Operational Amplifier, 4 Func, 9000uV Offset-Max, BIPolar, CDIP14
PHILIPS

LM324F-E2

Operational Amplifier, 4 Func, 5000uV Offset-Max, PDSO14, SOP-14
ROHM

LM324FJ

Ground Sense Operational Amplifiers
ROHM

LM324FJ-E2

Operational Amplifier, 4 Func, 5000uV Offset-Max, PDSO14, SOP-14
ROHM

LM324FSIIA

Operational Amplifier, 4 Func, 9000uV Offset-Max, BIPolar, CDIP14
PHILIPS

LM324FV

Ground Sense Operational Amplifiers
ROHM

LM324FV-E2

Operational Amplifier, 4 Func, 5000uV Offset-Max, PDSO14, SSOP-14
ROHM

LM324FVJ

Ground Sense Operational Amplifiers
ROHM