LV8746V-TLM-E [ONSEMI]

PWM Constant-Current Control Stepper Motor Driver;
LV8746V-TLM-E
型号: LV8746V-TLM-E
厂家: ONSEMI    ONSEMI
描述:

PWM Constant-Current Control Stepper Motor Driver

文件: 总24页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : ENA1563A  
LV8746V  
Bi-CMOS IC  
http://onsemi.com  
PWM Constant-Current Control  
Stepper Motor Driver  
Overview  
The LV8746V is a stepper motor driver corresponding to the Quarter-step excitation drive that the selection of CLK-IN  
input and a parallel input is possible. It is ideally suited for driving stepper motors used in office equipment and  
amusement applications.  
Function  
PWM current control stepper motor driver incorporated.  
BiCDMOS process IC  
Low on resistance (upper side : 0.84Ω ; lower side : 0.7Ω ; total of upper and lower : 1.54Ω ; Ta = 25°C, I = 1A)  
O
Excitation mode can be set to Full-step, Half-step Full torque, Half-step, or Quarter-step  
CLK-IN input and a parallel input can be selected.  
Motor current selectable in four steps  
Output short-circuit protection circuit (selectable from latch-type or auto-reset-type) incorporated  
Unusual condition warning output pins  
No control supply required  
Specifications  
Absolute Maximum Ratings at Ta = 25°C  
Parameter  
Symbol  
Conditions  
Ratings  
Unit  
V
Supply voltage  
VM max  
VM , VM1 , VM2  
38  
1.2  
Output peak current  
Output current  
I
I
peak  
tw 10ms, duty 20% , Per 1ch  
A
O
O
max  
Per 1ch  
1
A
Logic input voltage  
EMO input voltage  
Allowable power dissipation  
Operating temperature  
Storage temperature  
V
-0.3 to +6  
-0.3 to +6  
3.1  
V
IN  
Vemo  
Pd max  
Topr  
V
*
W
°C  
°C  
-20 to +85  
-55 to +150  
Tstg  
* Specified circuit board : 90.0mm×90.0mm×1.6mm, glass epoxy 2-layer board, with backside mounting.  
Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.  
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current,  
high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating  
Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.  
Allowable Operating Ratings at Ta = 25°C  
Parameter  
Supply voltage range  
Logic input voltage  
Symbol  
Conditions  
Ratings  
Unit  
V
VM  
VM,VM1,VM2  
9 to 35  
0 to 5.5  
V
ST,OE/I12,DM,MD1/I02,MD2/PH2,FR/I11,S  
TP/I01,RST/PH1,ATT1,ATT2  
V
IN  
VREF input voltage range  
VREF  
0 to 3  
V
ORDERING INFORMATION  
See detailed ordering and shipping information on page 24 of this data sheet.  
Semiconductor Components Industries, LLC, 2013  
July, 2013  
72413NK 20130618-S00002/O1609SY No.A1563-1/24  
LV8746V  
Electrical Characteristics at Ta = 25°C, VM = 24V, VREF = 1.5V  
Ratings  
typ  
Parameter  
Symbol  
Conditions  
Unit  
min  
max  
300  
Standby mode current drain  
Current drain  
IMst  
ST = “L”, I(VM)+I(VM1)+I(VM2)  
190  
μA  
IM  
ST = “H”, OE = “L”, with no load ,  
I(VM)+I(VM1)+I(VM2)  
3.3  
5
mA  
VREG5 output voltage  
Thermal shutdown temperature  
Thermal hysteresis width  
Motor driver  
Vreg5  
TSD  
I
= -1mA  
4.5  
5
180  
40  
5.5  
V
O
Design guarantee  
Design guarantee  
150  
210  
°C  
°C  
ΔTSD  
Output on resistance  
Ronu  
Rond  
I
I
= 1A, Upper-side on resistance  
= 1A, Lower-side on resistance  
0.84  
0.7  
1.1  
0.9  
50  
Ω
Ω
O
O
Output leakage current  
Diode forward voltage  
Logic pin input current(ST)  
I
leak  
VM=35V  
ID = -1A  
μA  
V
O
VD  
1.0  
8
1.3  
15  
I
I
I
L
H
L
V
= 0.8V  
= 5V  
3
50  
3
μA  
μA  
μA  
IN  
IN  
IN  
IN  
IN  
V
78  
8
110  
15  
OE/I12,DM,MD1/I02,MD2/PH2,FR/I11,  
STP/I01,RST/PH1,ATT1,ATT2,  
Logic pin input current(Except ST)  
V
V
= 0.8V  
= 5V  
IN  
IN  
I
H
30  
2.0  
0
50  
70  
5.5  
μA  
V
IN  
Logic input  
voltage  
High  
Low  
V
h
ST,OE/I12,DM,MD1/I02,MD2/PH2,FR/I11,S  
TP/I01,RST/PH1,ATT1,ATT2  
IN  
V
l
0.8  
V
IN  
Quarter step  
resolution  
Vtdac0_W  
Step 0 (When initialized : channel 1  
comparator level)  
0.29  
0.3  
0.31  
V
Vtdac1_W  
Vtdac2_W  
Vtdac3_W  
Vtdac0_M  
Step 1 (Initial state+1)  
0.29  
0.185  
0.09  
0.3  
0.2  
0.1  
0.3  
0.31  
0.215  
0.11  
V
V
V
V
Step 2 (Initial state+2)  
Step 3 (Initial state+3)  
Current setting  
comparator  
threshold  
Half step  
resolution  
Step 0 (When initialized : channel 1  
comparator level)  
0.29  
0.31  
voltage  
Vtdac2_M  
Vtdac0_H  
Step 2 (Initial state+1)  
0.185  
0.29  
0.2  
0.3  
0.215  
0.31  
V
V
(CLK-IN input)  
Half step  
Step 0 (When initialized : channel 1  
comparator level)  
resolution  
( Full torque)  
Vtdac2_H  
Vtdac2_F  
Step 2 (Initial state+1)  
0.29  
0.29  
0.3  
0.3  
0.31  
0.31  
V
V
Full step  
Step 2  
resolution  
Current setting comparator  
threshold voltage  
Vtdac11  
Vtdac01  
Vtdac10  
Vtatt00  
Vtatt01  
Vtatt10  
Vtatt11  
Fchop  
I01 = H , I11 = H  
I01 = L , I11 = H  
I01 = H , I11 = L  
ATT1 = L, ATT2 = L  
ATT1 = H, ATT2 = L  
ATT1 = L, ATT2 = H  
ATT1 = H, ATT2 = H  
Rchop = 20KΩ  
0.29  
0.185  
0.09  
0.29  
0.185  
0.135  
0.09  
45  
0.3  
0.2  
0.31  
0.215  
0.11  
0.31  
0.215  
0.165  
0.11  
75  
V
V
(parallel input)  
0.1  
V
Current setting comparator  
threshold voltage  
0.3  
V
0.2  
V
(current attenuation rate switching)  
0.15  
0.1  
V
V
Chopping frequency  
VREF pin input current  
Charge pump  
62.5  
kHz  
μA  
Iref  
VREF = 1.5V  
-0.5  
VG output voltage  
Rise time  
VG  
28  
90  
28.75  
125  
30  
V
tONG  
VG = 0.1μF , Between CP1-CP2 0.1uF  
ST = ”H”VG = VM+4V  
Rchop = 20KΩ  
0.5  
mS  
Oscillator frequency  
Fosc  
150  
kHz  
Output short-circuit protection  
EMO pin saturation voltage  
CEM pin charge current  
CEM pin threshold voltage  
Vsatemo  
Icem  
Iemo = 1mA  
Vcem = 0V  
80  
10  
160  
13  
mV  
μA  
V
7
Vthcem  
0.8  
1.0  
1.2  
No.A1563-2/24  
LV8746V  
Package Dimensions  
unit : mm (typ)  
3333A  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
15.0  
44  
23  
22  
(4.7)  
1
0.65  
0.22  
0.2  
(0.68)  
SIDE VIEW  
SSOP44K(275mil)  
Pd max - Ta  
4.0  
*1 With components mounted on the exposed die-pad board  
*2 With no components mounted on the exposed die-pad board  
Two-layer circuit board 1 *1  
3.10  
3.0  
Two-layer circuit board 2 *2  
2.20  
2.0  
1.61  
1.14  
1.0  
0
0
20  
40  
60  
80  
100  
No.A1563-3/24  
LV8746V  
Substrate Specifications (Substrate recommended for operation of LV8746V)  
Size  
Material  
: 90mm × 90mm × 1.6mm (two-layer substrate [2S0P])  
: Glass epoxy  
Copper wiring density : L1 = 85% / L2 = 90%  
L1 : Copper wiring pattern diagram  
L2 : Copper wiring pattern diagram  
Cautions  
1) The data for the case with the Exposed Die-Pad substrate mounted shows the values when 90% or more of the  
Exposed Die-Pad is wet.  
2) For the set design, employ the derating design with sufficient margin.  
Stresses to be derated include the voltage, current, junction temperature, power loss, and mechanical stresses such as  
vibration, impact, and tension.  
Accordingly, the design must ensure these stresses to be as low or small as possible.  
The guideline for ordinary derating is shown below :  
(1)Maximum value 80% or less for the voltage rating  
(2)Maximum value 80% or less for the current rating  
(3)Maximum value 80% or less for the temperature rating  
3) After the set design, be sure to verify the design with the actual product.  
Confirm the solder joint state and verify also the reliability of solder joint for the Exposed Die-Pad, etc.  
Any void or deterioration, if observed in the solder joint of these parts, causes deteriorated thermal conduction,  
possibly resulting in thermal destruction of IC.  
No.A1563-4/24  
LV8746V  
Pin Assignment  
VG  
VM  
1
2
3
4
5
6
7
8
9
44 NC  
43 OUT1A  
42 PGND1  
41 NC  
CP2  
CP1  
VREG5  
ATT2  
ATT1  
EMO  
CEM  
40 NC  
39 NC  
38 VM1  
37 NC  
36 RF1  
35 NC  
NC 10  
RCHOP 11  
NC 12  
34 OUT1B  
33 OUT2A  
32 NC  
LV8746V  
RST/PH1 13  
STP/I01 14  
FR/I11 15  
MD2/PH2 16  
MD1/I02 17  
DM 18  
31 RF2  
30 NC  
29 VM2  
28 NC  
27 NC  
OE/I12 19  
ST 20  
26 NC  
25 PGND2  
24 OUT2B  
23 NC  
VREF 21  
GND 22  
Top view  
No.A1563-5/24  
LV8746V  
Block Diagram  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
No.A1563-6/24  
LV8746V  
Pin Functions  
Pin No.  
Pin Name  
Pin Functtion  
Equivalent Circuit  
6
7
ATT2  
Motor holding current switching pin.  
Motor holding current switching pin.  
CLK-IN is input , RESET input pin /  
Parallel is input , Channel 1  
ATT1  
13  
RST/PH1  
VREG5  
forward/reverse rotation pin.  
14  
15  
16  
17  
STP/I01  
FR/I11  
CLK-IN is input , STEP signal input pin /  
Parallel is input , Channel 1 output  
control input pin.  
CLK-IN is input , forward/reverse signal  
input pin / Parallel is input , Channel 1  
output control input pin.  
MD2/PH2  
MD1/I02  
CLK-IN is input , Excitation mode  
switching pin / Parallel is input , Channel  
2 forward/reverse rotation pin.  
CLK-IN is input , Excitation mode  
switching pin / Parallel is input , Channel  
2 output control input pin.  
GND  
18  
19  
DM  
Drive mode switching pin.  
OE/I12  
CLK-IN is input , output enable signal  
input pin / Parallel is input , Channel 2  
output control input pin.  
20  
ST  
Chip enable pin.  
VREG5  
GND  
24  
25  
42  
29  
OUT2B  
PGND2  
PGND1  
VM2  
Channel 2 OUTB output pin.  
Power system ground pin2.  
Power system ground pin1.  
Channel 2 motor power supply  
connection pin.  
38  
29  
31  
RF2  
Channel 2 current-sense resistor  
connection pin.  
33  
34  
36  
OUT2A  
OUT1B  
RF1  
Channel 2 OUTA output pin.  
Channel 1 OUTB output pin.  
Channel 1 current-sense resistor  
connection pin.  
33  
43  
34  
24  
38  
43  
VM1  
Channel 1 motor power supply pin.  
Channel 1 OUTA output pin.  
OUT1A  
25 42  
36  
31  
GND  
Continued on next page.  
No.A1563-7/24  
LV8746V  
Continued from preceding page.  
Pin No.  
Pin Name  
VG  
Pin Functtion  
Equivalent Circuit  
2
1
2
3
4
Charge pump capacitor connection pin.  
Motor power supply connection pin.  
Charge pump capacitor connection pin.  
Charge pump capacitor connection pin.  
4
3
1
VM  
VREG5  
CP2  
CP1  
100Ω  
GND  
21  
VREF  
VREG5  
EMO  
Constant current control reference  
voltage input pin.  
VREG5  
GND  
VM  
5
Internal power supply capacitor  
connection pin.  
GND  
8
Output short-circuit state warning output  
pin.  
VREG5  
GND  
Continued on next page.  
No.A1563-8/24  
LV8746V  
Continued from preceding page.  
Pin No.  
9
Pin Name  
CEM  
Pin Functtion  
Equivalent Circuit  
Pin to connect the output short-circuit  
state detection time setting capacitor.  
VREG5  
GND  
11  
RCHOP  
Chopping frequency setting resistor  
connection pin.  
VREG5  
GND  
22  
GND  
NC  
Ground.  
10,12  
23,26  
27,28  
30,32  
35,37  
39,40  
41,44  
No Connection  
(No internal connection to the IC)  
No.A1563-9/24  
LV8746V  
Description of operation  
1.Input Pin Function  
1-1) Chip enable function  
This IC is switched between standby and operating mode by setting the ST pin. In standby mode, the IC is set to  
power-save mode and all logic is reset. In addition, the internal regulator circuit and charge pump circuit do not  
operate in standby mode.  
ST  
Low or Open  
High  
Mode  
Internal regulator  
Charge pump  
Standby mode  
Operating mode  
Standby  
Standby  
Operating  
Operating  
1-2) Input control method switching pin function  
The IC input control method is switched by setting the DM pin. The CLK-IN input control and the parallel input  
control can be selected by setting the DM pin.  
DM  
Low or Open  
High  
Input control method  
CLK-IN input control  
Parallel input control  
2. CLK-IN input control (DM = Low or Open)  
2-1) STEP pin function  
Input  
Operating mode  
ST  
STP  
*
Low  
High  
Standby mode  
Excitation step proceeds  
High  
Excitation step is kept  
2-2) Excitation mode setting function  
MD1  
MD2  
Micro-step resolution  
(Excitation mode)  
Initial position  
Channel 1  
100%  
Channel 2  
-100%  
0%  
Low  
Low  
Low  
Full step (2 phase excitation)  
High  
Half step (1-2 phase excitation)  
Full torque  
100%  
Low  
High  
High  
Half step (1-2 phase excitation)  
100%  
100%  
0%  
0%  
High  
Quarter step  
(W1-2 phase excitation)\  
This is the initial position of each excitation mode in the initial state after power-on and when the counter is reset.  
2-3) Setting constant-current control reference voltage  
ATT1  
ATT2  
Current setting reference voltage  
Low  
Low  
VREF / 5 x 100%  
High  
Low  
Low  
VREF / 5 x 67%  
High  
High  
VREF / 5 x 50%  
High  
VREF / 5 x 33%  
The voltage input to the VREF pin can be switched to four-step settings depending on the statuses of the two inputs, ATT1 and ATT2. This is effective for reducing  
power consumption when motor holding current is supplied.  
Set current value calculation method.  
The reference voltage is set by the voltage applied to the VREF pin and the two inputs ATT1 and ATT2. The output  
current (output current at a constant-current drive current ratio of 100%) can be set from this reference voltage and the  
RF resistance value.  
I
= (VREF/5) ×(current attenuation ratio)/ RF resistance  
OUT  
Example : At VREF of 1.5V, a reference voltage setting of 100% [(ATT1, ATT2) = (L, L)] and an RF resistance of  
0.47Ω, the output current is set as shown below.  
I
= 1.5V/5 × 100%/0.47Ω = 0.64A  
OUT  
No.A1563-10/24  
LV8746V  
2-4) Input Timming  
TstepL  
TstepH  
STEP  
MD1  
MD2  
Tds  
Tdh  
(md1 step) (step md1)  
Tds  
Tdh  
(md2 step) (step md2)  
Tdh  
(step fr)  
Tds  
(fr step)  
FR  
TstepH/TstepL : Clock H/L pulse width (min 500ns)  
Tds : Data set-up time (min 500ns)  
Tdh : Data hold time (min 500ns)  
2-5) Blanking period  
If, when exercising PWM constant-current chopping control over the motor current, the mode is switched from decay  
to charge, the recovery current of the parasitic diode may flow to the current sensing resistance, causing noise to be  
carried on the current sensing resistance pin, and this may result in erroneous detection. To prevent this erroneous  
detection, a blanking period is provided to prevent the noise occurring during mode switching from being received.  
During this period, the mode is not switched from charge to decay even if noise is carried on the current sensing  
resistance pin. In the blanking time for this IC, it is fixed one sixteenth of chopping cycle.  
2-6) Reset function  
RST  
Low  
High  
Operating mode  
Normal operation  
Reset state  
RST  
RESET  
STEP  
1ch output  
2ch output  
0%  
Initial state  
When the RST pin is set to High, the excitation position of the output is forcibly set to the initial state. When RST is  
then set to Low, the excitation position is advanced by the next STEP input.  
No.A1563-11/24  
LV8746V  
2-7) Output enable function  
OE  
Operating mode  
Output ON  
Low  
High  
Output OFF  
OE  
Power save mode  
STEP  
1ch output  
0%  
2ch output  
Output is high-impedance  
When the OE pin is set High, the output is forced OFF and goes to high impedance.  
However, the internal logic circuits are operating, so the excitation position proceeds when the STEP signal is input.  
Therefore, when OE is returned to Low, the output level conforms to the excitation position proceeded by the STEP  
input.  
2-8) Forward/reverse switching function  
FR  
Low  
High  
Operating mode  
CW  
CCW  
FR  
CW mode  
CCW mode  
CW mode  
STEP  
Excitation position  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(5)  
(4)  
(3)  
(4)  
(5)  
1ch output  
2ch output  
The internal D/A converter proceeds by one bit at the rising edge of the input STEP pulse.  
In addition, CW and CCW mode are switched by setting the FR pin.  
In CW mode, the channel 2 current phase is delayed by 90° relative to the channel 1 current.  
In CCW mode, the channel 2 current phase is advanced by 90° relative to the channel 1 current.  
No.A1563-12/24  
LV8746V  
2-9) Chopping frequency setting  
For constant-current control, chopping operation is made with the frequency determined by the external resistor  
The chopping frequency to be set with the resistance connected to the RCHOP pin (pin 11) is as shown below.  
Chopping frequenccy setting(reference data)  
100  
80  
60  
40  
20  
0
25  
35  
45  
55  
15  
2-10) Output current vector locus (one step is normalized to 90 degrees)  
100.0  
θ2 (Full-step/  
Half-step  
θ 4  
full torque)  
θ 3  
66.7  
θ 2  
33.3  
θ 1  
θ 0  
0.0  
0.0  
33.3  
66.7  
100.0  
Channel 2 current ratio (%)  
Setting current ration in each micro-step mode  
STEP  
Quarter-step (%)  
Half-step (%)  
Half-step full torque (%)  
Full-step (%)  
Channel 1 Channel 2  
Channel 1 Channel 2  
Channel 1 Channel 2  
Channel 1  
Channel 2  
100  
θ0  
θ1  
θ2  
θ3  
θ4  
0
33.3  
66.7  
100  
100  
100  
100  
66.7  
33.3  
0
0
66.7  
100  
100  
66.7  
0
0
100  
100  
100  
0
100  
100  
No.A1563-13/24  
LV8746V  
2-11) Typical current waveform in each excitation mode  
Full step (CW mode)  
STEP  
(%)  
100  
l1  
I2  
0
-100  
(%)  
100  
0
-100  
Half step Full torque (CW mode)  
STEP  
(%)  
100  
I1  
I2  
0
-100  
(%)  
100  
0
-100  
No.A1563-14/24  
LV8746V  
Half step (CW mode)  
STEP  
(%)  
100  
I1  
I2  
0
-100  
(%)  
100  
0
-100  
Quarter step (CW mode)  
STEP  
(%)  
100  
I1  
0
-100  
(%)  
100  
I2  
0
-100  
No.A1563-15/24  
LV8746V  
2-12) Current control operation specification  
(Sine wave increasing direction)  
STEP  
Set current  
Set current  
Coil current  
Forced CHARGE  
section  
fchop  
Current mode CHARGE  
SLOW  
FAST  
CHARGE  
SLOW FAST  
(Sine wave decreasing direction)  
STEP  
Set current  
Coil current  
Forced CHARGE  
section  
Set current  
fchop  
Current mode CHARGE  
SLOW  
FAST  
Forced CHARGE FAST  
section  
CHARGE  
SLOW  
In each current mode, the operation sequence is as described below :  
At rise of chopping frequency, the CHARGE mode begins.(The section in which the CHARGE mode is forced  
regardless of the magnitude of the coil current (ICOIL) and set current (IREF) exists for 1/16 of one chopping cycle.)  
The coil current (ICOIL) and set current (IREF) are compared in this forced CHARGE section.  
When (ICOIL<IREF) state exists in the forced CHARGE section ;  
CHARGE mode up to ICOIL IREF, then followed by changeover to the SLOW DECAY mode, and finally  
by the FAST DECAY mode for the 1/16 portion of one chopping cycle.  
When (ICOIL<IREF) state does not exist in the forced CHARGE section;  
The FAST DECAY mode begins. The coil current is attenuated in the FAST DECAY mode till one cycle of  
chopping is over.  
Above operations are repeated. Normally, the SLOW (+FAST) DECAY mode continues in the sine wave increasing  
direction, then entering the FAST DECAY mode till the current is attenuated to the set level and followed by the SLOW  
DECAY mode.  
No.A1563-16/24  
LV8746V  
3.Parallel input control (DM-High)  
3-1) Parallel input control logic  
I01(02)  
I11(12)  
Output current (I )  
O
Low  
Low  
0
High  
Low  
Low  
I
I
= ((VREF/5)/RF)×1/3  
= ((VREF/5)/RF)×2/3  
O
O
High  
High  
High  
I
= (VREF/5)/RF  
O
PH1(2)  
Low  
current direction  
OUTB OUTA  
OUTA OUTB  
High  
3-2) Setting constant-current control reference voltage  
The constant current control standard voltage setting function is the same specification as the CLK-IN input control.  
3-3) Current control function  
The current control function is the same use as the CLK-IN input control.  
No.A1563-17/24  
LV8746V  
3-4) Typical current waveform in each excitation mode when stepping motor parallel input control  
Full step (CW mode)  
H
I01,I11  
PH1  
H
I02,I12  
PH2  
(%)  
100  
I1  
I2  
0
-100  
(%)  
100  
0
-100  
Half step full torque (CW mode)  
I01  
I11  
PH1  
I02  
I12  
PH2  
(%)  
100  
l1  
l2  
0
-100  
(%)  
100  
0
-100  
No.A1563-18/24  
LV8746V  
Half step (CW mode)  
I01  
I11  
PH1  
I02  
I12  
PH2  
(%)  
100  
I1  
I2  
0
-100  
(%)  
100  
0
-100  
Quarter step (CW mode)  
I01  
I11  
PH1  
I02  
I12  
PH2  
(%)  
100  
I1  
0
-100  
(%)  
100  
I2  
0
-100  
No.A1563-19/24  
LV8746V  
4. Output short-circuit protection function  
This IC incorporates an output short-circuit protection circuit that, when the output has been shorted by an event such  
as shorting to power or shorting to ground, to prevent the thing that IC destroys, the output short-circuit protection  
circuit that turns off the output is built into.  
4-1) Protection function operation(Latch type)  
The detection of the output short-circuited state by the IC causes the output short-circuit protection circuit to be  
activated.  
When the short-circuited state continues for the period of time set using the internal timer (1/4 of chopping cycle), the  
output in which the short-circuiting has been detected is first set to OFF. After this, the output is set to ON again as  
soon as the timer latch time (Tcem) described later has been exceeded, and if the short-circuited state is still detected,  
all the outputs of the channel concerned are switched to the standby mode, and this state is held.  
This state is released by setting ST to low.  
Output ON  
Output ON  
Output OFF  
Standby state  
H-bridge  
output state  
Threshold voltage  
1/4 of chopping  
cycle  
CEM voltage  
Short-circuit  
detection state  
Short- Release  
circuit  
Short-circuit  
Internal counter  
1st counter 1st counter 1st counter  
start stop start  
1st counter  
end  
2nd counter 2nd counter  
start end  
4-2) Unusual condition warning output pins (EMO)  
IC is provided with the EMO pin which notifies the CPU of an unusual condition if the protection circuit operates by  
detecting an unusual condition of the IC. This pin is of the open-drain output type and when an unusual condition is  
detected, the EMO output is placed in the ON (EMO = Low) state.  
Furthermore, the EMO pin is placed in the ON state when one of the following conditions occurs.  
1. Shorting-to-power, shorting-to-ground, or shorting-to-load occurs at the output pin and the output short-circuit  
protection circuit is activated.  
2. The IC junction temperature rises and the thermal protection circuit is activated.  
4-3) Timer latch time (Tcem)  
The time taken for the output to be set to OFF when the output has been short-circuited can be set using capacitor  
Ccem, connected between the CEM pin and GND. The value of capacitor Ccem is determined by the formula given  
below.  
Timer latch : Tcem  
Tcem Ccem × Vtcem/Icem [sec]  
Vtcem : Comparator threshold voltage, typ 1V  
Icem : CEM pin charge current, typ 10μA  
No.A1563-20/24  
LV8746V  
5. Charge Pump Circuit  
When the ST pin is set High, the charge pump circuit operates and the VG pin voltage is boosted from the VM voltage  
to the VM + VREG5 voltage. If the VG pin voltage is not boosted sufficiently, the output cannot be controlled, so be  
sure to provide a wait time of tONG or more after setting the ST pin High before starting to drive the motor.  
ST  
VG pin voltage  
VM+VREG5  
VM+4V  
VM  
tONG  
VG Pin Voltage Schematic View  
6. Thermal shutdown function  
The thermal shutdown circuit is included, and the output is turned off when junction temperature Tj exceeds 180 C  
and the abnormal state warning output is turned on at the same time.  
When the temperature falls hysteresis level, output is driven again (automatic restoration)  
The thermal shutdown circuit doesn’t guarantee protection of the set and the destruction prevention of IC, because it  
works at the temperature that is higher than rating (Tjmax=150°C ) of the junction temperature  
TTSD = 180°C (typ)  
ΔTSD = 40°C (typ)  
No.A1563-21/24  
LV8746V  
Application Circuit Example  
Clock Inn mode application circuit  
1
2
VG  
NC 44  
OUT1A 43  
PGND1 42  
0.1μF  
0.1μF  
VM  
CP2  
-
+
3
10μF  
4
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
CP1  
NC  
NC  
5
VREG5  
ATT2  
0.1μF  
6
NC  
logic  
input  
7
ATT1  
VM1  
NC  
5V  
8
EMO  
9
CEM  
RF1  
NC  
100pF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NC  
RCHOP  
NC  
OUT1B  
OUT2A  
NC  
M
RST/PH1  
STP/IO1  
FR/I11  
MD2/PH2  
MD1/IO2  
DM  
RF2  
NC  
logic  
input  
VM2  
NC  
NC  
OE/I12  
ST  
NC  
logic  
input  
PGND2  
OUT2B  
NC  
VREF  
GND  
The setting conditions for the above circuit diagram example are as follows :  
2-phase excitation (MD1/I02 = Low, MD2/PH2 = Low)  
Reset function fixed to normal operation (RST = Low)  
Chopping frequency : 62.5kHz (RCHOP = 20kΩ)  
ATT1  
ATT2  
Current setting reference voltage  
Low  
Low  
VREF/5×100%  
High  
Low  
Low  
VREF/5×67%  
High  
High  
VREF/5×50%  
High  
VREF/5×33%  
The set current value is as follows :  
= (VREF/5× Voltage setting ratio) / RF  
I
OUT  
Example ) When ATT=Low,ATT2=Low (VREF = 1.5V,RF=0.47Ω)  
= (1.5V / 5 × 1 ) / 0.47Ω = 0.64A  
I
OUT  
No.A1563-22/24  
LV8746V  
DC motor driver circuit (DM = High, and the current limit function is in use.)  
1
2
VG  
NC 44  
OUT1A 43  
PGND1 42  
0.1μF  
0.1μF  
VM  
CP2  
-
+
3
10μF  
4
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
CP1  
NC  
NC  
5
VREG5  
ATT2  
0.1μF  
6
NC  
logic  
input  
7
ATT1  
VM1  
NC  
5V  
8
EMO  
9
CEM  
RF1  
NC  
100pF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NC  
RCHOP  
NC  
OUT1B  
OUT2A  
NC  
M
channel1  
control  
logic  
RST/PH1  
STP/IO1  
FR/I11  
MD2/PH2  
MD1/IO2  
DM  
RF2  
NC  
input  
channel2  
control  
logic  
VM2  
NC  
input  
NC  
OE/I12  
ST  
NC  
logic  
input  
PGND2  
OUT2B  
NC  
VREF  
GND  
The setting conditions for the above circuit diagram example are as follows :  
Chopping frequency : 62.5kHz (RCHOP = 20kΩ)  
I01(02)  
I11(12)  
Output current (I  
0
)
O
Low  
Low  
High  
Low  
Low  
I
I
= ((VREF/5) / RF) × 1/3  
= ((VREF/5) / RF) × 2/3  
O
O
High  
High  
High  
I
= (VREF/5) / RF  
O
Example ) When ATT=Low,ATT2=Low,I01(02)=High,I11(12)=High (VREF = 1.5V,RF=0.47Ω)  
= (1.5V / 5 × 1 ) / 0.47Ω = 0.64A  
I
OUT  
PH1(2)  
Low  
High  
Electrical current direction  
OUTB OUTA  
OUTA OUTB  
No.A1563-23/24  
LV8746V  
ORDERING INFORMATION  
Device  
Package  
Shipping (Qty / Packing)  
2000 / Tape & Reel  
SSOP44K (275mil)  
(Pb-Free)  
LV8746V-TLM-E  
SSOP44K (275mil)  
(Pb-Free)  
LV8746V-MPB-E  
30 / Fan-Fold  
ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at  
www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no  
warranty, representation or guarantee regarding the suitabilityof its products for any particular purpose, nor does SCILLC assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical  
experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use  
as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in  
which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for  
any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or  
death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the  
part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PS No.A0000-24/24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY