LV8968BBUWR2G [ONSEMI]

Multipurpose Three-Phase Brushless DC Predriver, Developed in Compliance with ISO 26262;
LV8968BBUWR2G
型号: LV8968BBUWR2G
厂家: ONSEMI    ONSEMI
描述:

Multipurpose Three-Phase Brushless DC Predriver, Developed in Compliance with ISO 26262

文件: 总35页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Multi-purpose Three-Phase  
BLDC Predriver  
LV8968BBUW  
SPQFP48  
CASE 131AN  
Overview  
The LV8968BB is a multipurpose threephase BLDC predriver for  
automotive applications and developed in compliance with ISO  
26262. This 3phase peripheral predriver offers a BEMF (Back  
ElectroMotive Force) output and the wide operating voltage range and  
AECQ100 qualification make this device ideal for automotive  
applications. Six gate drivers provide 400 mA (typ) gate current to  
external power bridges allowing use of low resistance power FETs as  
well as logic level FETs. All FETs are protected against overcurrent,  
shortcircuit, overtemperature and gate undervoltage. A multitude of  
protection and monitoring features make this device suitable for  
applications with functional safety (FuSa) requirements. Three  
independent lowside source pins allow multiple shunt measurement.  
The device also includes a programmable linear regulator, a fast  
current sense amplifier and a window watchdog for microcontroller  
support. The SPI interface allows for real time parameter setup and  
diagnostics. Critical system parameters can be programmed into  
nonvolatile OTP memory.  
MARKING DIAGRAM  
MP = Assembly Location  
WL = Wafer Lot  
= Year  
WW = Work Week  
Y
ORDERING INFORMATION  
Device  
LV8968BBUWR2G  
Package  
Shipping†  
SPQFP48K  
(PbFree /  
2500 /  
Tape & Reel  
Junction temperature tolerance up to 175°C and control via wide  
level WAKE and PWM signals make the LV8968BB an ideal motor  
predriver for a wide range of ISO 26262 related actuators, fans and  
pumps.  
Halogen Free)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Features  
Full Drive Power from 8 V to 28 V Supply Voltage with Transient  
Tolerance from 4.5 V to 40 V  
SAFETY DESIGN ASIL B  
Extended Voltage Range from 6 V to 33 V Using Logic Level Mode  
ASIL B Product developed in compliance with  
ISO 26262 for which a complete safety package is  
available.  
Up to 30 kHz Motor PWM with Individual Six Gate Control or  
Drive3 Mode with Integrated Programmable Dead Time  
5 V / 3.3 V Linear Regulator for External Loads up to 50 mA  
Extensive System Protection Features Including:  
DrainSource Short Detection for External FET  
Overcurrent Shutoff  
Typical Applications  
Suspension, Park Brake, Transmission,  
Steering Pump, Vacuum Pump, Battery  
Pack Cooling, Sliding Door, Lift Gate etc.  
Robotics  
Light Emobility and Motive Power  
Industrial Equipment  
White Goods  
Low Gate Voltage Warning  
Overtemperature Warning and Shutoff  
Over / Undervoltage Protection  
SPI Interface for Parameter Setup and Diagnostic Access, Dynamic  
Access to Dead Time, Amplifier Gain, and ShortCircuit Levels  
Nonvolatile (OTP) Memory for Storing Critical System Parameters  
Wide Voltage Enable Line and PWM Interface  
Integrated Window Watchdog Timer Function  
AECQ100 Qualified and PPAP Capable  
Thermally Efficient Exposed Die 48 Pin SQFP Package for Transient  
Operation Up to 175°C  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
September, 2022 Rev. 5  
LV8968BBUW/D  
LV8968BBUW  
INTERNAL EQUIVALENT BLOCK DIAGRAM AND APPLICATION CIRCUIT  
Opt.  
Reverse Polarity  
Protection  
BAT  
Opt. Charge  
Pump  
KEY  
PWM  
V3RO V3RI  
WAKE VS  
VGIN VG  
PWMIN  
RX D  
BS 1  
BS 2  
BS 3  
VCC  
VDH  
GH1  
GH2  
GH3  
EN  
VMCRES  
DIAG  
CSB  
SCLK  
SI  
LV8968BB  
SH 1  
SH 2  
SH 3  
GL1  
SO  
AOUT  
IH1  
IL1  
IH2  
IL2  
GL2  
GL3  
IH3  
IL3  
3
SL [1:3]  
ISP  
ISN  
AGND  
ISO  
GND  
Figure 1. Typical Application Diagram  
www.onsemi.com  
2
LV8968BBUW  
PIN ASSIGNMENT  
36  
25  
24  
GH1  
BS1  
VDH  
VG  
SL 3  
NC  
ISP  
ISN  
NC  
VGIN  
VS  
ISO  
AOUT  
AGND  
NC  
LV8968BB  
SQFP48K (7 × 7)  
7 mm × 7 mm  
WAKE  
NC  
EN  
SO  
SI  
V3RO  
V3RI  
SCLK  
CSB  
48  
13  
1
12  
Figure 2. LV8968BB Pinout  
Table 1. PIN ASSIGNMENTS & DESCRIPTION  
Name  
VCC  
IH1  
No.  
1
Description  
5 V or 3.3 V linear regulator output. (Selected by SPI register setting)  
Active high, digital control input to activate GH1.  
Active low, digital control input to activate GL1.  
Active high, digital control input to activate GH2.  
Active low, digital control input to activate GL2.  
Active high, digital control input to activate GH3.  
Active low, digital control input to activate GL3.  
2
IL1  
3
IH2  
4
IL2  
5
IH3  
6
IL3  
7
VMCRES  
8
Open drain reset output for the microcontroller. Goes low for VCC undervoltage fault, optionally for  
watchdog reset and thermal shutdown.  
DIAG  
9
Open drain error or diagnostic output to be connected to microcontroller interrupt line. DIAG  
functionality is defined by internal register settings.  
RXD  
NC  
10  
11  
12  
13  
14  
Open drain PWM data output to microcontroller.  
No connection.  
PWMIN  
CSB  
Input for battery level control signal. The digital level of PWMIN appears on RXD.  
High voltage level translator. Digital level is active low, digital SPI interface chip selection pin.  
SPI interface clock input pin. SI data is latched during the rising edge.  
SCLK  
www.onsemi.com  
3
 
LV8968BBUW  
Table 1. PIN ASSIGNMENTS & DESCRIPTION (continued)  
Name  
SI  
No.  
15  
16  
17  
18  
19  
20  
Description  
SPI interface serial data input pin.  
SO  
SPI interface serial data output pin. High level is pulled to VCC.  
NC  
No connection.  
AGND  
AOUT  
ISO  
Ground pin.  
Output for various internal analog signals. Actual signal is selected via SPI register.  
Output pin for current sense amplifier. Connect to AD converter input of the microcontroller for  
current sensing. Gain, reference, and overcurrent threshold is programmable via SPI register.  
ISN  
ISP  
21  
22  
Current sense amp minus input pin. Connect this pin to the GND side of the shunt resistor with  
Kelvin leads.  
Current sense amp plus input pin. Connect this through to top side of shunt resistor with Kelvin  
leads.  
NC  
23  
24  
No connection.  
SL3  
Lowside source connection of the power stage. Return path for gate current of GL3.  
Connect to source of FET controlled by IL3 or to common source of the power stage.  
GL3  
SH3  
GH3  
BS3  
SL2  
GL2  
SH2  
GH2  
BS2  
SL1  
GL1  
SH1  
GH1  
BS1  
VDH  
VG  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Gate driver output for lowside FETs. Switches voltage level between VG and SL3.  
Use at least 10 W gate resistors to protect against current spikes.  
Connection for the motor phase terminal controlled by GH3 and GL3. Return path for highside  
drivers and input for BEMF sensing.  
Gate driver output for highside FETs. Switches voltage level between BS3 and SH3.  
Use at least 10 W gate resistors to protect against current spikes.  
Supply pin for highside driver GH3. Needs a bootstrap capacitor to SH3 and a diode in reverse  
connection to VG.  
Lowside source connection of the power stage. Return path for gate current of GL2.  
Connect to source of FET controlled by IL2 or to common source of the power stage.  
Gate driver output for lowside FETs. Switches voltage level between VG and SL2.  
Use at least 10 W gate resistors to protect against current spikes.  
Connection for the motor phase terminal controlled by GH2 and GL2.  
Return path for highside drivers and input for BEMF sensing.  
Gate driver output for highside FETs. Switches voltage level between BS2 and SH2.  
Use at least 10 W gate resistors to protect against current spikes.  
Supply pin for highside driver GH2. Needs a bootstrap capacitor to SH2 and a diode in reverse  
connection to VG.  
Lowside source connection of the power stage. Return path for gate current of GL1.  
Connect to source of FET controlled by IL1 or to common source of the power stage.  
Gate driver output for lowside FETs. Switches voltage level between VG and SL1.  
Use at least 10 W gate resistors to protect against current spikes.  
Connection for the motor phase terminal controlled by GH1 and GL1.  
Return path for highside drivers and input for BEMF sensing.  
Gate driver output for highside FETs. Switches voltage level between BS1 and SH1.  
Use at least 10 W gate resistors to protect against current spikes.  
Supply pin for highside driver GH1. Needs a bootstrap capacitor to SH1 and a diode in reverse  
connection to VG.  
Sense input for supply voltage and shortcircuit detection of highside power FETs.  
Connect through 100 W resistor to common drain of the power bridge.  
Power supply pin for lowside gate drive GL[13] directly and GH[13] through bootstrap circuit.  
Connect decoupling capacitor between VG and GND.  
NC  
41  
42  
No Connection.  
VGIN  
Gate supply input. Normally shorted to VS. Insert a charge pump circuit between VS and VGIN if  
low voltage operation is required.  
VS  
43  
Power supply pin.  
www.onsemi.com  
4
LV8968BBUW  
Table 1. PIN ASSIGNMENTS & DESCRIPTION (continued)  
Name  
WAKE  
NC  
No.  
44  
Description  
WAKE up pin for internal power supply. “H” => Operating mode, “L” or “Open” => Sleep mode.  
No connection.  
45  
EN  
46  
Active high digital input. A high on EN will activate the outputs. EN can be used as a hold input to  
allow an external microcontroller to keep the IC operating even if WAKE is low.  
A falling edge on EN clears the error flags.  
V3RO  
V3RI  
47  
48  
Internal regulator output pin. Connect capacitor between this pin and GND.  
Internal regulator feedback pin (Control circuit and Logic power supply).  
Connect to V3RO pin.  
www.onsemi.com  
5
LV8968BBUW  
PIN FUNCTIONALITY  
VS  
VS  
VS  
IH1  
IH2  
IH3  
SCLK  
SI  
V3RO  
VCC  
V3RI  
100 kW  
TYPE1: V3RI  
VS  
TYPE2: V3RO, VCC  
TYPE3: IH1, IH2, IH3, SCLK, SI, EN  
BS  
VS  
VCC  
GH[13]  
VMCRES  
DIAG  
RXD  
30 kW  
IL1  
IL2  
IL3  
SH[13]  
240 kW  
TYPE4: VMCRES, DIAG, RXD  
VG  
TYPE5: IL1, IL2, IL3, CSB  
TYPE6: BS[13], GH[13], SH[13]  
V3RI  
V3RI  
AOUT  
ISO  
GL[13]  
ISP  
ISN  
SL[13]  
TYPE7: GL[13], SL[13]  
TYPE8: AOUT, ISO  
TYPE9: ISP, ISN  
VS  
VS  
VS  
SO  
PWMIN  
WAKE  
TYPE10: SO  
TYPE11: WAKE  
TYPE12: PWMIN  
www.onsemi.com  
6
LV8968BBUW  
PIN FUNCTIONALITY (continued)  
VGIN  
VG  
VDH  
TYPE13: VDH  
TYPE14: VGIN, VG  
Figure 3. Pin Functionality  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Parameter  
Pins  
Ratings  
0.3 to 40  
0.3 to 40  
0.3 to 40  
0.3 to 40  
0.3 to 3.6  
0.3 to 5.5  
0.3 to 40  
0.3 to 40  
0.3 to 40  
Unit  
V
Supply Voltage  
VS, VDH, VGIN  
Gate Voltage to GND  
Bootstrap to GND  
VG  
V
BS[13]  
V
Bootstrap to SH[13]  
Logic Power Supply  
BS[13]  
V
V3RI, V3RO  
V
3.3 V / 5 V Regulator Voltage  
VS Level Signal Voltage  
Digital Inputs  
VCC  
V
WAKE, PWMIN  
V
CSB, EN, SCLK, SI, IH[13], IL[13]  
V
Open Drain Voltage  
VMCRES, RXD, DIAG  
SO  
V
Digital Output Voltage  
Current Sense Input  
Analog Output  
0.3 to V  
+0.3  
V
VCC  
ISP, ISN  
3 to V  
+0.3  
V
V3RI  
ISO, AOUT  
GH[13]  
0.3 to V +0.3  
V3RO  
V
Highside Output to GND  
Motor Phase  
3 to 40  
3 to 40  
3 to 40  
3 to 40  
0.3 to 20  
2430  
V
SH[13]  
V
Lowside Output to GND  
Lowside Source Pin to GND  
Voltage between HS Gate and Phase  
Allowable Power SQFP48K  
GL[13]  
V
SL[13]]  
V
GH[n] to SH[n] for n = {1,2,3}  
at 70°C  
V
mW  
°C/W  
°C/W  
°C  
°C  
°C  
kV  
V
Thermal Resistance  
(JESD517)  
J
J
= Junction Ambient  
= Junction Case  
33  
A
C
2
Storage Temperature  
Junction Temperature  
55 to 150  
40 to 150  
150 to 175  
2
(Note 1)  
ESD Human Body Model  
ESD Charge Device Model  
AEC Q100_002  
AEC Q100_011  
750  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Operation outside the Operating Junction temperature is not guaranteed. Operation above 150°C should not be considered without a written  
agreement from ON Semiconductor Engineering staff.  
www.onsemi.com  
7
 
LV8968BBUW  
Table 3. ELECTRICAL CHARACTERISTICS  
(Valid at a junction temperature range from 40°C to 150°C, for supply Voltage 8.0 V VS 25 V unless otherwise specified.  
Typical values at 25°C and VS = 12 V unless specified otherwise)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
SUPPLY VS RELATED INPUTS  
VS supply voltage range  
VSLOF  
VSNO  
Full logic functionality  
4.5  
8
40 (Note 3)  
V
V
Standard FET operation mode  
(VGVSEL = 0)  
28  
(Note 2)  
VSLO  
ISTBY  
Logic level FET operation mode  
(VGVSEL = 1)  
6
7
33  
V
(Note 2)  
Standby mode, VS & VGIN shorted  
VS = 6 V ~ 25 V  
11  
25  
16  
mA  
VS supply current  
ISLEEP  
Sleep mode at 25°C, VS & VGIN shorted  
50  
1.3  
VS  
200  
1
mA  
V
VTHWKL  
VTHWKH  
RPDWK  
TWTPOR  
TVCSU  
Low level  
High level  
0
WAKE input voltage  
2.7  
50  
V
WAKE pulldown resistor  
WAKE up time for POR  
100  
kW  
ms  
ms  
WAKE pin high  
VCC startup time to active  
state  
1.05  
VG startup time to active  
state  
TVGSU  
1.05  
ms  
OTP download time  
TDNLD  
VTHPIL  
VTHPIH  
RPDPI  
After POR  
Low level  
High level  
125  
0.4×VS  
VS  
ms  
V
0
0.6×VS  
50  
PWMIN switching levels  
V
PWMIN pulldown resistor  
PWMIN frequency range  
INTERNAL REGULATOR  
V3RO output voltage  
100  
3.3  
200  
kW  
kHz  
FPWMIN  
0
30  
V3RO  
V3RO only connect to V3RI  
Source, V3RO = V3RI  
3.135  
3.465  
1
V
Max pull-up current Isource  
IV3RO  
mA  
VCC CONSTANT VOLTAGE OUTPUT  
Output voltage 5 V  
VC5RO  
VCVSEL = 1, No load  
VCVSEL = 0, No load  
4.9  
3.23  
3.0  
5.0  
3.3  
5.1  
V
V
VC3RO  
VC3RL  
VCCVR  
VCCLR  
VCCILIM  
3.37  
Output voltage 3.3 V  
VS = 4.5 V, I  
=-50 mA  
V
VCC  
Voltage regulation  
50  
80  
mV  
mV  
mA  
Load regulation  
Io = 5 mA to 50 mA  
Output current limit  
50  
180  
GATE DRIVERS  
Lowside Rdson to SL[13]  
Lowside Rdson to SH[13]  
Highside Rdson to SH[13]  
Highside Rdson to BS[13]  
Propagation delay ON  
Propagation delay OFF  
RONLSSK “L” level Io = 10 mA  
RONLSSC “H” level Io = 10 mA  
RONHSSK “L” level Io = 10 mA  
RONHSSC “H” level Io = 10 mA  
6
12  
6
15  
22  
W
W
15  
W
12  
22  
W
PDON  
50% IHx to 20% GHx. Cload = 0 nF  
120  
120  
20  
ns  
ns  
ns  
PDOFF  
DPDON  
50% IHx to 80% GHx. Cload = 0 nF  
Propagation delay ON  
Difference GH[13], GL[13]  
a.3 Phase difference of GH1,Gh2 and GH3.  
b.3 Phase difference of GL1,GL2 and GL3.  
20  
20  
Propagation delay OFF  
Difference GH[13], GL[13]  
DPDOFF  
a.3 Phase difference of GH1,Gh2 and GH3.  
b.3 Phase difference of GL1,GL2 and GL3.  
20  
ns  
Output current limit  
IGOLIM  
400  
mA  
FDTI programmable dead time TFDTI  
0.2 ms step by FDTI register 4 bits (Note 4)  
0.2  
3.2  
ms  
BS PINS  
BS internal current  
IBSC  
800  
mA  
www.onsemi.com  
8
 
LV8968BBUW  
Table 3. ELECTRICAL CHARACTERISTICS (continued)  
(Valid at a junction temperature range from 40°C to 150°C, for supply Voltage 8.0 V VS 25 V unless otherwise specified.  
Typical values at 25°C and VS = 12 V unless specified otherwise)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
VG PIN  
VGNO  
Normal mode, VGVSEL = 0, IVG < 40 mA  
Logic level mode, VGVSEL = 1  
VS = 6 V, IVG < 30 mA  
7.0  
5
11.0  
6
12.0  
7
VG output voltage  
V
VGLO  
VGOL  
VGILIM  
5
VG current limit  
40  
180  
mA  
ANALOG OUTPUT (AOUT)  
BEMF divider ratio  
BEMFDR  
BEMFDM  
BEMFST  
VDHDR  
VDHST  
1/16  
BEMF divider mismatch  
BEMF divider settling time  
VDH divider ratio  
2  
2
2
%
for 20% to 80% step  
0.5  
1/32  
0.5  
ms  
VDH divider settling time  
Thermal voltage  
for 20% to 80% step  
2
ms  
mV  
mV/°C  
V
VTMPH  
Tj = 155°C (Note 4)  
705  
+1.9  
Thermal slope  
VTEMPSL (Note 4)  
AOFLSCR  
AOUT full scale range  
AOUT output resistance  
AOUT output current  
2.1  
200  
100  
RONAO  
IAO  
IAOUT = 100 mA  
W
100  
mA  
CURRENT SENSING (ISP, ISN, ISO)  
ISP, ISN input current  
Reference voltage ISO  
IISP/N  
0.2V VISP, VISN 2 V  
CSOFEN = 0, GAIN = 30, ISP = ISN = 0.2 V  
CSOFEN = 1, GAIN = 30, ISP = ISN = 0.2 V  
CSGAIN = 00  
50  
1.425  
0.125  
6.53  
50  
mA  
V
VRCSA0  
VRCSA1  
CSAG00  
CSAG01  
CSAG10  
CSAG11  
CSACMR  
DVCSAIN  
CSAFLSCR  
CSAOST  
1.5  
0.2  
7.5  
15  
1.575  
0.275  
8.63  
V
Gain  
CSGAIN = 01 (Note 4)  
CSGAIN = 10 (Note 4)  
22.5  
30  
CSGAIN = 11  
26  
0.2  
200  
0.1  
34.3  
2
Common mode range  
ISN, ISP differential voltage  
ISO full scale range  
1
V
mV  
V
200  
2.9  
Amplifier settling time  
overcurrent  
Gain = 15, VISN = 0 V, VISP = step  
(200 mV to +200 mV),  
VISO transient from 20% to 80% full scale  
5400  
ns  
Amplifier settling time (normal  
operation) (Note 5)  
CSAOSST VISO = 1 Vpp, settling to 90% (rising edge)  
or 10% (falling edge) ISO load = 10 pF  
540  
ns  
ISO output resistance  
ISO output current  
RCSAO  
ICSAO  
I
=
100 mA  
200  
100  
220  
170  
120  
3.2  
W
ISO  
100  
180  
130  
80  
mA  
mV  
mV  
mV  
ms  
VTHCSA00 OCDL = 00  
VTHCSA01 OCDL = 01  
VTHCSA1X OCDL = 10,11  
200  
150  
100  
Overcurrent voltage level V  
ISP  
V
ISN  
OCMASK programmable  
Overcurrent Mask time  
TOCMASK 0.2 ms step by OCMASK register 4 bits  
0.2  
(Note 4)  
ACTIVE HIGH DIGITAL INPUTS (EN, SCLK, SI, IH[13])  
Highlevel input voltage  
Lowlevel input voltage  
Pulldown resistance  
VTAHH  
VTAHL  
RPDAH  
0.8×V3RO  
V
V
0.2×V3RO  
50  
100  
30  
200  
kW  
ACTIVE LOW DIGITAL INPUTS (CSB, IL[13])  
Highlevel input voltage  
Lowlevel input voltage  
Pullup resistance to VCC  
VTALH  
VTALL  
RPDAL  
V
V
0.8×V3RO  
0.2×V3RO  
15  
60  
kW  
www.onsemi.com  
9
LV8968BBUW  
Table 3. ELECTRICAL CHARACTERISTICS (continued)  
(Valid at a junction temperature range from 40°C to 150°C, for supply Voltage 8.0 V VS 25 V unless otherwise specified.  
Typical values at 25°C and VS = 12 V unless specified otherwise)  
Parameter  
DIGITAL OUTPUTS (SO)  
Output voltage  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
VSOH  
VSOL  
Io = 1 mA  
V
0.2  
V
V
VCC  
Io = 1 mA  
0.2  
OPEN DRAIN OUTPUTS (VMCRES, DIAG, RXD)  
Output voltage  
VODL  
Io = 1 mA  
Vo = 5.5 V  
0.2  
10  
V
Pin leakage current  
ILKOD  
mA  
WARNING AND PROTECTION  
TWT0  
THTSEL = 0  
THTSEL = 1  
Hysteresis  
125  
150  
°C  
°C  
°C  
°C  
°C  
°C  
V
Thermal warning  
(Junction temperature)  
TWT1  
HYSTW  
TSDT0  
TSDT1  
HYSTSD  
VSOVTH  
25  
THTSEL = 0  
THTSEL = 1  
Hysteresis  
150  
175  
Thermal shutdown  
(Junction temperature)  
25  
17  
VS high voltage detection, warning/protec-  
tion response set by VSOVPS  
16  
7
18  
8
VS voltage warning/protection  
VSUVTH  
VS low voltage detection, warning/protec-  
tion response set by VSUVPS  
7.5  
V
V
VDH voltage warning/protection VDHOVTH VDH high voltage detection, warning/protec-  
tion response set by VDOVPS  
25  
26.5  
28  
VGNUVTH Normal mode, VGVSEL = 0  
VGLUVTH  
5
6
4
7
V
V
VG undervoltage  
3.5  
4.5  
Logic level mode, VGVSEL = 1  
VC3UVTH VCVSEL = 0  
VC5UVTH VCVSEL = 1  
VPOR  
2.3  
3.8  
2.7  
4.2  
V
V
VCC undervoltage  
V3R Power on Reset  
2.7  
V
FET short detection Level  
VFSDL  
100 mV step by FSDL register 4 bits  
(Note 4)  
100  
1600  
mV  
FSDL0000 FSDL = 0000  
FSDL0010 FSDL = 0010  
FSDL0100 FSDL = 0100  
FSDL1000 FSDL = 1000  
75  
240  
400  
720  
1280  
3.2  
100  
300  
500  
900  
1600  
125  
360  
mV  
mV  
mV  
mV  
mV  
ms  
FET short Detection level  
600  
1080  
1920  
12.8  
FSDL1111  
TFSDT  
FSDL = 1111  
FET short detection masking  
time  
3.2 ms step by FSDT register 2 bits (Note 4)  
FET short detection debounce TFSFT  
filter time,  
0.8 ms step by FSFT register 2 bits (Note 4)  
0.8  
3.2  
ms  
WATCHDOG  
WD first open window  
WD closed window time  
WD open window time  
WD reset duration  
WDFOW  
WDCW  
WDOW  
WDRD  
WDTWT[2:0] typical values  
WDTWT[2:0] typical values  
WDTWT[2:0] typical values  
3.2  
0.8  
1.6  
409.6  
102.4  
204.8  
ms  
ms  
ms  
ms  
400  
SPI INTERFACE  
SPI clock frequency  
BS internal current  
FSPI  
IBSC  
4.5  
MHz  
800  
mA  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
2. VDH overvoltage warning will be issued for elevated VS supply voltage levels. See the specification of the VDH overvoltage warning  
threshold voltage VDHOVTH.  
3. Valid for limited time duration of 400 ms (Load dump)  
4. Not tested in production. Guaranteed by design and verified during qualification.  
5. Not tested in production, verified on bench.  
www.onsemi.com  
10  
 
LV8968BBUW  
DETAILED FUNCTIONAL DESCRIPTION  
VG  
WAKE  
VS  
V3RI  
VGIN  
V3RO  
VGIN  
VDH  
PWMIN  
RXD  
Gate Voltage  
Regulator  
PWM  
Interface  
Internal  
Regulator  
BS1  
LDO 3.3 V / 5 V  
LVSD  
POR  
GH1  
VCC  
SH1  
GL1  
System State  
Machine  
EN  
OTP  
SL1  
BS2  
WindowWatchdog  
VMCRES  
Diag Control  
SPI Interface  
GH2  
SH2  
GL2  
DIAG  
CSB  
SCLK  
SI  
Registers  
Gate Drive  
SL2  
BS3  
SO  
AOUT  
IH1  
Thermal Monitor  
GH3  
SH3  
IL1  
Motor Control  
Logic  
ShortCircuit  
Monitor  
IH2  
IL2  
Drive 3  
Drive 6  
GL3  
SL3  
IH3  
IL3  
Overcurrent  
Monitor  
Digital Circuit  
ISP  
ISN  
ISO  
Current Sense  
Amplifier  
LV8968BB  
AGND  
Figure 4. Block Diagram  
www.onsemi.com  
11  
LV8968BBUW  
Chip Activation, System States and Shutdown (EN, WAKE)  
Once the supply voltage VS rises above VSLOF(Min.),  
the LV8968BB enters Sleep mode. In Sleep mode system  
states are controlled with pin WAKE.  
Table 4. OPERATION MODES  
Mode  
Sleep  
WAKE  
EN  
NA  
L
V3RO  
Disable  
Enable  
Enable  
Logic  
Reset  
Active  
Active  
VCC  
VG  
SPI  
Drivers  
HighZ  
Low  
L
H
Disable  
Enable  
Enable  
Disable  
Enable  
Enable  
Disable  
Enable  
Enable  
Standby  
Normal  
NA  
H
Active  
A high level on WAKE pin activates the IC from sleep  
mode and enables the internal linear regulator at V3RO.  
Once the voltage on V3RO as sensed on V3RI has passed the  
power on reset (POR) threshold the system oscillator starts,  
and releases the internal digital reset. OTP register contents  
are loaded into the system registers defining the power on  
state of the LV8968BB and the VCC regulator voltage.  
VCC is powering up next, holding the CPU reset line  
VMCRES low until VCC passes its undervoltage level.  
During the entire wakeup sequence, DIAG is masked for  
VG undervoltage. After wakeup is complete, the IC enters  
Standby mode and DIAG is activated to display internal  
errors. During Standby mode full SPI access is possible.  
Note that if the CPU watchdog was enabled via OTP, a  
VMCRES low will be asserted after the watchdog first open  
window (WDFOW) unless the watchdog is being triggered  
properly. See section “Watchdog”.  
A high on EN takes the LV8968BB from Standby to  
Normal mode. Normal mode allows motor control and the  
IC accepts control inputs via the motor control pins IH[13],  
IL[13]. A low on EN disables the motor stage regardless of  
the PWM input and returns the part back to Standby mode.  
The IC is shut down by taking WAKE pin low if EN is low.  
If EN is high, a low on WAKE will be ignored until the  
microcontroller pulls EN low.  
www.onsemi.com  
12  
LV8968BBUW  
WAKE  
V3RO , V3RI  
TWTPOR  
Reset  
Active  
Active  
Reset  
Power On Reset  
Analog &  
Driver Standby  
Standby  
Standby  
Execute MRODL Command  
OTP Download  
VCC Standby  
TDNLD  
TDNLD  
(Protections are masked)  
Standby  
Active  
Standby  
VCC  
TVCSU  
VCC Under  
Voltage Mask  
Mask  
Active  
Mask  
VMCRES  
Standby  
Active  
Standby  
VG Standby  
VG  
TVGSU  
VG Under  
Voltage Mask  
Mask  
Active  
Mask  
EN  
Overcurrent &  
FET Short Mask  
Mask  
Active  
Mask  
Other Protection  
Mask  
Mask  
Active  
Mask  
SMOD[1:0]  
Register  
SMOD[1:0] = 1h  
(Start-Up Time) × 1  
SO Pin = Hi-Z  
(Sleep Mode)  
SMOD[1:0] = 2h  
(Standby Mode)  
SMOD[1:0] = 3h  
(Normal Mode)  
SMOD[1:0] = 2h  
(Standby Mode)  
SO Pin = Hi-Z  
(Sleep Mode)  
OFF  
If EN = H,driver can drive according to input  
Driver Output  
NOTE: Even if EN = H, driver status is not changed to normal mode.  
Figure 5. Powerup and Shutdown Timing  
www.onsemi.com  
13  
LV8968BBUW  
Operating Voltage Range  
The VG regulator for the gate voltages of the inverter  
Normal operation with full functionality is guaranteed  
from 8 V to 25 V. The device will operate from 4.5 V to 40 V  
with limited performance:  
stage  
Internal Regulator (V3RO, V3RI)  
The internal regulator provides 3.3 V at V3RO and takes  
its feedback from V3RI. V3RO and V3RI need to be  
connected externally and decoupled with capacitor to GND  
for stability.  
Shutdown: VS < VSLOF  
The IC will be off. Gate drivers are HiZ.  
(min)  
Undervoltage: VSLOF < VS < VSUVTH  
(min)  
VS undervoltage warning/protection will be active  
according to VSUVPS. VG undervoltage warning may be  
asserted. If VCC is programmed to provide 3.3 V to the  
LDO 3.3 / 5 V (VCC)  
VCC becomes active during StartUp, where after  
Standby mode is entered. The VCC voltage can be  
configured via registers to provide 5 V or 3.3 V. VMCRES  
low is asserted if the output voltage drops below the  
threshold levels. VCC may power external loads and must  
be decoupled to GND with an external capacitor. The  
voltage level is programmed in register VCVSEL with OTP  
backup.  
microcontroller, it will be supplied even if VS < VSLO  
.
(min)  
If motor operation is required during Undervoltage, see  
section below “Motor Operation during Undervoltage”.  
Normal VS Drive Mode: VSUVTH < VS < VSOVTH  
Normal operation.  
VS High Voltage Operation: VSOVTH < VS < VDHOVTH  
Normal operation: VS high voltage warning/protection  
might be active according to VSOVPS.  
Gate Voltage Regulator (VGIN,VG)  
The gate voltage regulator is supplied by VGIN and  
regulates to either VGNO or VGLO at VG. The voltage level  
is programmed in register VGVSEL with OTP backup.  
VG provides the drive voltage for the lowside drivers  
GL[13] directly and for the highside drivers BS[13]  
through the bootstrap circuitry. The output is current limited  
to 40 mA(min). The output at VG should be decoupled with  
VDH High Voltage Operation:  
VDHOVTH < VS < VSLOF  
(max)  
VDH high voltage warning/protection might be active  
according to VDOVPS. The driver stage can be  
programmed to let the motor freewheel to protect the  
bootstrap circuitry at BS[13] from overstress. This works  
if the motor is not operating in field weakening.  
a capacitor C to GND which should be at least 20 times  
VG  
the maximum gate charge of the power FETs.  
In case of active braking, or field weakening operation,  
the microcontroller will have to react to a VDH overvoltage  
warning by either disabling the driver stage or activating all  
lowside FETs to brake the motor. The maximum allowed  
VS level for motor operation depends on the driver FET  
type: VSNO(Max.) or VSLO(Max.). For additional  
protection add zener diodes to the bootstrap pins.  
Motor Control Inputs  
Once the LV8968BB is in standby mode with the supplies  
running, a microcontroller can facilitate motor control via  
the inputs EN, IL[13], IH[13]. All are VS compatible.  
PWM Interface (PWMIN, RXD)  
The PWM interface translates a VS level signal with a  
threshold of 40% and 60% VS to a digital signal appearing  
at RXD. This RXD signal can be used for input PWM signal  
translation to the microcontroller.  
Case of abnormal state such as PWMIN pin is Open or  
Short, RXD signal shows Low DC voltage level.  
Additionally, PWMIN a supply level compatible level  
shifter can bring a high voltage control such as a PWM  
signal or a crash indicator to microcontroller supply level.  
Motor Operation during Undervoltage  
An undervoltage charge pump is not included into the  
LV8968BB to save cost. If undervoltage operation of the  
motor is desired either an external charge pump must be  
inserted between VS and VGIN, or it is possible to use the  
device in logic level mode by setting MRCONF0[1]. In the  
latter case logic level FETs must be used for the inverter  
stage.  
Drive Enable (EN)  
System Power Supplies  
Taking EN high enables the output drivers GH[13] and  
GL[13] for control by the microcontroller, taking EN low  
disables them by switching all of them to the sources of the  
corresponding external FETs. In addition, a high on EN will  
override a low on WAKE allowing the microcontroller to  
keep the motor running even after the WAKE line has gone  
low.  
Three power supplies are integrated into the LV8968BB,  
all are supplied by VS:  
An internal 3.3 V regulator which provides power to  
the digital and interface section  
A linear regulator to provide 5 V or 3.3 V for external  
loads such as a microcontroller  
www.onsemi.com  
14  
LV8968BBUW  
Motor Control (IL[13] IH[13])  
Drive 6 Mode  
The individual motor phases are controlled by inputs  
IL[13] and IH[13]. IH[13] are active high, while IL[13]  
are active low allowing for parallel control with only three  
PWM outputs using internal dead time. To control the driver  
stage with GH [13] and GL[13] EN has to be “high”. The  
LV8968BB will insert an adjustable dead time during output  
transitions to prevent short circuiting the FETs. Two drive  
modes exist:  
In drive 6 mode, each input independently controls its  
corresponding output requiring 6 independent PWM  
channels in the microcontroller. A “high” on IH1 will result  
in a “high” on GH1. A “high” on IL1 will result in a “low”  
on GL1, and so forth. Trying to force a short by driving IH1  
high and IL1 low will be ignored by the logic of the  
LV8968BB.  
Table 5. DRIVE 6 MODE  
Input  
Output  
IH[13]  
IL[13]  
GH[13]  
GL[13]  
L
L
L
H
L
L
L
H
L
L
L
H
H
L
H
H
Drive 3 Mode  
This mode is suitable for small microcontrollers which do  
not have 6 dedicated PWM control lines. IL[13] serve as  
enable signals for the phase drivers GH[13] and GL[13]  
while IH[13] serve as their PWM inputs. Connect the  
microcontroller’s PWM line to IH[13] and the phase select  
lines to the individual IL inputs 13 respectively.  
Table 6. DRIVE 3 MODE  
Input  
Output  
IH[13]  
IL[13]  
GH[13]  
GL[13]  
L
L
L
H
L
L
L
L
H
L
H
H
L
H
H
L
Gate Drive  
implemented that begins counting after one driver has been  
The gate drive circuit of the LV8968BB includes 3  
halfbridge drivers which control six external NChannel  
FETs. The highside gate drivers GH[13] switch their gate  
connection either to corresponding BS[13] pin or the  
respective phase connection SH[13]. The lowside gate  
drivers GL[13] are switched from VG to the corresponding  
source connection SL[13]. Both highand lowside  
switches are hard switching, but saturate around IGOLIM  
for pullup/down currents. Slope control has to be  
implemented with gate resistors.  
turned off, and blocks the turningon of the complementary  
driver for a programmable time t  
.
FDTI  
Dead Time Counter  
The dead time counter uses a fixed minimum dead time  
which can be programmed into 4bit parameter FDTILIM.  
The dead time is never allowed to fall below that value.  
A dynamic dead time register FDTI allows dead time  
variation during motor operation. This register is uploaded  
at the beginning of every dead time measurement. Flag  
FDTIBSY is high when a dead time value has been written  
to register FDTI but was not uploaded to the counter, yet.  
Two consecutive writes to FDTI before a counter upload are  
flagged as an SPI error by setting bit SACF in the SPI status  
register GSDAT.  
“Through Current Prevention Function”  
Current shoot through protection of the bridge drivers is  
implemented by ignoring inputs at IH[n] and IL[n] that  
would result in turning on of both highand lowside FET  
at the same time. In addition a dead time counter is  
www.onsemi.com  
15  
LV8968BBUW  
SPI write  
FDTIBSY  
FDTI  
FDTI = 4 H write is ignored by  
FDTIBSY = H.  
0 h  
5 h  
2 h  
6 h  
FDTI and FDTILIM are compared and  
smaller (longer dead time) one is selected.  
FDTILIM  
Gx_FDTI_LT  
Gx_EDGE  
DEAD TIME  
0 h  
2 h  
5 h  
3.2 us  
2.8 us  
2.2 us  
Figure 6. Dead Time Programming  
Short Protection  
is determined by CSOFEN relative to an internal reference  
which can be either 200 mV(typ) for unidirectional current  
sensing, or 1.5 V(typ) for sensing current in both directions.  
The output of the current sense amplifier appears on the ISO  
pin.  
To protect against FET shorts the drainsource voltage of  
the active external power FETs is monitored. The drain  
source voltage of the highside FETs is monitored between  
VDH and the corresponding source SH[13]. While the  
lowside FETs are monitored between SH[13] and  
SL[13]. After activation of the FET the short detection is  
Overcurrent Shutoff  
A parallel path implements fast overcurrent shutoff of the  
driver stage. Overcurrent shutoff is triggered if the voltage  
across ISP ISN exceeds a programmable level as defined  
by register OCDL. In overcurrent shutoff all gate drivers go  
to HiZ, turning the power FETs high impedance and letting  
the motor freewheel – this reaction is maskable. For more  
information on masking and recovery see section “System  
Errors and Warnings” on page 18.  
masked for time t  
to allow for signal settling. If after the  
FSFT  
masking time t  
continues for t  
the FET voltage exceeding V  
FSFT  
FSDL  
, a FET short error is flagged. For details  
FSDT  
see “System Errors and Warnings” on page 18.  
Four bits register FSDL selects the FET short protection  
shutoff voltage VFSDL. The masking time TFSDT is set  
with bits FSDT[1:0] and a debounce filter time TFSFT is set  
with bits FSFT[1:0]. Both parameters residing in register  
MRCONF6. These registers are dynamic and FSDL can be  
changed during motor operation, though FSFT and FSDT  
can be changed when EN = L.  
To suppress switching transients, an overcurrent masking  
time can be programmed into register OCMASK.  
Temperature Sensing  
The LV8968BB monitors internal junction temperature  
Current Sensing and Overcurrent Shutoff  
T . The voltage representing this temperature (V ) can be  
PTAT  
j
Single shunt current sensing can be implemented with the  
integrated high speed sense amplifier. It amplifies the  
voltage across ISP – ISN with a programmable gain defined  
by register CSGAIN. Access to this register is dynamic,  
allowing gain adjustment during motor operation. The offset  
sampled at AOUT as described below. Thermal warnings  
and errors are issued if T exceeds the levels defined by  
J
THTSEL:  
Table 7. THERMAL THRESHOLDS  
THTSEL  
Thermal Warning  
Thermal Shutoff  
150°C  
0
1
125°C  
150°C  
175°C  
If thermal error shutoff is activated, VG and VCC turn off,  
and the driver stage goes high impedance. As a result  
VMCRES goes low and SPI communication is disabled as  
well. The exact failure modes and masks are described in  
section “System Errors and Warnings”.  
BEMF and other Measurements  
The LV8968BB includes a multiplexer for measuring the  
phase voltages, the motor voltage and the IC temperature.  
Depending on the state of AOUTSEL the following voltages  
appear on AOUT:  
www.onsemi.com  
16  
LV8968BBUW  
Table 8. AOUT SELECTION  
MRAOSEL[2:0]  
Pin  
Formula  
Comment  
Motor Supply Voltage  
0
1
VDH  
SH1  
SH2  
SH3  
V
= 32 V  
VDH  
AOUT  
AOUT  
AOUT  
AOUT  
V
V
V
= 16 V  
= 16 V  
= 16 V  
Phase Voltage 1  
SH1  
SH2  
SH2  
2
Phase Voltage 2  
3
Phase Voltage 3  
4, 5  
6, 7  
T (°C) = 0.53 x V  
(mV) 216  
Internal junction temperature  
J
AOUT  
High Impendance  
Watchdog  
during closed window time or the watchdog time expires.  
Watchdog error effects can be customized. For detailed error  
behavior a masking see section “System Errors and  
Warnings”.  
After a watchdog induced microcontroller reset, the error  
register contents of registers MRDIAG[0] remain conserved  
until an SPI read access. This helps the microcontroller  
identify the fault condition.  
The LV8968BB includes a window watchdog to monitor  
the microcontroller. The size of the watchdog window is  
defined by register WDTWT. For detailed timing  
information see Figure 7: Window Watchdog Timing.  
A write access to register MRRST during open window time  
resets the watchdog timer and it starts counting again. The  
watchdog will issue an error whenever MRRST is written to  
WAKE  
MCRES  
Twt  
Tcw  
Tcw  
Tfow  
Twt  
WDT  
Status  
First Open  
Window  
Closed  
Window  
Reset by  
Open  
Window  
Closed  
Window  
Open  
Window  
Standby  
MRRST= 00h command  
DIAG  
WAKE  
MCRES  
Tmr  
Tcw  
Tcw  
Twt (Not reset)  
Tfow  
WDT  
Status  
Open  
Window  
Closed  
Window  
Open  
Window  
First Open  
Window  
Reset  
microcontroller  
Closed  
Window  
DIAG  
Read MRDIAG0  
DIAGS,  
WDTPO  
Register  
WAKE  
VMCRES  
Tmr  
Tcw  
Tcw  
Tcw  
Twt  
Tfow  
WDT  
Status  
Closed  
Window  
Open  
Window  
Closed  
Window  
First Open  
Window  
Reset  
microcontroller  
Closed  
Window  
Reset timing  
is too first  
DIAG  
Read MRDIAG0  
DIAGS,  
WDTPO  
Register  
Figure 7. Window Watchdog Timing  
www.onsemi.com  
17  
 
LV8968BBUW  
Table 9. WINDOW WATCHDOG TIMING OPTIONS (T = 40 to 150 °C, VS = 4.5 to 40 V)  
J
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
T
FOW  
WDT first open window time  
WDTWT[2:0] = 0h  
WDTWT[2:0] = 1h  
: (1/2 step)  
ms  
390.0  
195.0  
:
409.6  
204.8  
: (1/2 step)  
3.2  
431.2  
215.6  
:
WDTWT[2:0] = 7h  
3.0  
3.4  
T
CW  
WDT closed window time  
WDTWT[2:0] = 0h  
WDTWT[2:0] = 1h  
: (1/2 step)  
ms  
97.4  
48.7  
:
102.4  
51.2  
:(1/2 step)  
0.8  
107.8  
53.9  
:
WDTWT[2:0] = 7h  
0.7  
0.9  
T
WT  
WDT window time  
WDTWT[2:0] = 0h  
WDTWT[2:0] = 1h  
: (1/2 step)  
ms  
195.0  
97.4  
:
204.8  
102.4  
:(1/2 step)  
1.6  
215.6  
107.8  
:
WDTWT[2:0] = 7h  
1.4  
1.7  
T
MR  
WDT microcontroller reset time  
333  
400  
422  
ms  
System Errors and Warnings  
case the LV8968BB will keep the output stage disabled until  
the latch is cleared by one of the following actions:  
Power on reset  
System errors and warnings are always flagged in their  
corresponding register MRDIAG0 and MRDIAG1 and their  
presence is indicated in SPI status register GSDAT. The  
LV8968BB gives great flexibility in modifying the error  
response. Error response definition can be backed up into  
OTP.  
All system errors and warnings can cause a transition on  
DIAG. The polarity of this transition is selected in bit  
DIAGPOL. DIAG should be connected to an interrupt input  
of the microcontroller. Errors that can cause serious damage  
such as shortcircuit and overcurrent may be latched by  
enabling the corresponding latch bit in MRCONF7. In this  
EN low  
SPI write of FFh to MRRST  
Table 10 explains the error behaviour. “Error” names the  
type of error that is covered. “Reaction Settings Option”  
lists which options exists for this error and the  
corresponding register. ”Reaction names what happens if  
the error occurs. Some reactions depend on the “Setting  
Options” and are described in Notes below.  
Table 10. SYSTEM ERROR AND WARNING RESPONSE MATRIX  
Reaction Setting Options  
Reaction  
Setup  
Register  
Mask Report on  
Auto  
Recover  
Latch  
Off  
MC  
RES  
Recovery  
Condition  
Protection  
Enabled  
Error  
DIAG  
VG  
DRV  
VCC  
Error  
VS  
Under  
Voltage  
VSUVPS  
[1:0]  
Yes  
Yes  
Yes  
No  
ON  
(Note 6)  
ON  
H
VS voltage  
recovers  
After OTP  
download  
VS Over  
Voltage  
VSOVPS  
[1:0]  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
ON  
ON  
(Note 6)  
(Note 6)  
ON  
ON  
H
H
VS voltage  
recovers  
After OTP  
download  
VDH  
Over  
Voltage  
VDOVPS  
[1:0]  
VDH voltage  
recovers  
After OTP  
download  
VG  
Under  
Voltage  
VGUVPS  
[1:0]  
Yes  
No  
Yes  
No  
Yes  
Yes  
No  
No  
ON  
ON  
(Note 6)  
OFF  
ON  
ON  
H
L
VG voltage  
recovers  
After VG  
startup  
time  
VCC  
Under  
Voltage  
VCC voltage  
recovers  
After VCC  
startup  
time  
www.onsemi.com  
18  
 
LV8968BBUW  
Table 10. SYSTEM ERROR AND WARNING RESPONSE MATRIX  
Reaction Setting Options  
Reaction  
Setup  
Register  
Mask Report on Auto  
Latch  
Off  
MC  
RES  
Recovery  
Condition  
Protection  
Enabled  
Error  
DIAG  
Recover  
VG  
DRV  
VCC  
Error  
Over  
Current  
OCPS  
[1:0]  
Yes  
Yes  
Yes  
Yes  
ON  
(Note 6)  
ON  
H
[Latch Off]  
EN = H  
(Normal  
mode)  
EN = L or  
execute  
MRRST = Ffh  
command  
[Auto Recover]  
EN = L or after  
ecovery time  
[Report]  
EN = L or motor  
current is down  
FET  
Short  
FSPS  
[1:0]  
Yes  
Yes  
Yes  
Yes  
ON  
(Note 6)  
ON  
H
[Latch Off] EN =  
L or execute  
MRRST = FFh  
command  
EN = H  
(Normal  
mode)  
[Auto Recover]  
EN = L or after  
recovery time  
[Report] EN = L  
or FET short  
current is down  
Thermal  
Warning  
THWPS  
THSPS  
WDTPS  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
ON  
(Note 7)  
ON  
ON  
ON  
(Note 7)  
ON  
H
Temperature is  
down  
After OTP  
download  
Thermal  
Shutdown  
(Note 7)  
(Note 7)  
(Note 8)  
(Note 9)  
Temperature is  
down  
After OTP  
download  
Watchdog  
Timer  
After output  
reset pulse from  
VMCRES pin  
VMCRES  
= H  
6. Report or Ignore = ON, Latch Off or Auto Recover = OFF  
7. Ignore = ON, Auto Recover = OFF  
8. Ignore = H, Auto Recover = L  
9. Ignore = Fixed H, Auto Recover = Output L pulse  
SPI Interface  
In the LV8968BB the SPI Interface is used to perform  
general communications for status reporting, control and  
programming.  
CSB  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
SCLK  
SI  
WEN  
ADDR [6:0]  
GSDAT [6:0]  
WDAT [7:0]  
SO  
Hi-Z  
Hi-Z  
RDAT [7:0]  
(previous data)  
Figure 8. SPI Format in Write Mode  
www.onsemi.com  
19  
 
LV8968BBUW  
CSB  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
SCLK  
WDAT [7:0]  
(ignored)  
SI  
WEN  
ADDR [6:0]  
GSDAT [6:0]  
SO  
Hi-Z  
Hi-Z  
RDAT [7:0]  
Figure 9. SPI Format in Read Mode  
SPI communications with the LV8968BB follows  
established industry standard practices including the use of  
WEN and start and stop bits as shown above. Data is  
transferred MSB first and both clock and data are transferred  
as ’true’ data with the higher level indicating a logical 1 or  
true state.  
It is important the system master have the clock and  
data polarities and phases as shown above. Both the  
clock and data on some systems can be inverted for  
various reasons but must arrive at the LV8968BB per  
the above drawing. Common errors include SCLK  
inversion such that the leading edge arrives as  
There are two items to be especially careful of with the  
general communication scheme:  
a downward transition rather than a rising edge,  
or having the data to clock phase incorrect. Data phase  
must be such that the data only changes during a clock  
falling edge and is completely stable during a clock  
rising edge. This means a good margin of one half a bit  
time exists to eliminate transmission delay hazards.  
Communications must be full duplex and simultaneous.  
It is not allowed to send one transaction and then read  
data on a second transaction as the status register  
information will be updated on the first transaction and  
then be out of date for the second. Some systems break  
transactions into separate read and write operations  
which is not acceptable  
The first byte returned on all transactions is always the  
status register GSDAT, and contains information such as the  
busy flag during programming operations  
Table 11.  
GSDAT[7:0]  
Bit 7  
0
6
ORBEN  
NA  
5
SACF  
NA  
NA  
NA  
NA  
0
4
DIAGS  
NA  
3
LATCH  
NA  
2
OBSY  
NA  
NA  
NA  
NA  
0
1
Bit 0  
SMOD[1:0]  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
0
NA  
1
Sleep mode  
Device startup time  
Standby mode  
NA  
NA  
NA  
NA  
NA  
NA  
1
0
NA  
NA  
NA  
1
1
Normal mode  
0
0
0
NA  
NA  
NA  
NA  
Normal Operation  
NA  
NA  
NA  
NA  
1
OTP download of default  
values  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
1
NA  
NA  
1
NA  
1
1
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Latched shutdown condition  
Failure Condition  
NA  
NA  
NA  
NA  
NA  
Last SPI access failed*  
OTP integrity test mode  
NA  
www.onsemi.com  
20  
LV8968BBUW  
The following SPI failures are detectable and reported  
collectively by a high on SACF in GSDAT[5] as general SPI  
failures:  
Write access to any of the OTP registers after  
OSAENB = 1 (Implies Reg. address 40 h to 43 h are  
locked)  
Any access to an address which is not assigned.  
The number of SCLK edges is not 16 within one  
word transfer  
Any access to MRCONF and ORCONF while  
OBSY = 1, (During write operations)  
Write access to MRODL register while OBSY = 1,  
(during write operations)  
Write access attempt to a read only or locked  
register  
SI signal changed at positive edge of SCLK  
(Incorrect data/sclk phase setup)  
Write access to dead time register FDTI while  
FDTIBSY is still high (last value has not been  
uploaded)  
Write access to any of the main registers after  
setting MSAENB = 1 (Implies Reg. address 04 h to  
07 h are locked)  
www.onsemi.com  
21  
LV8968BBUW  
SPI Timing  
90%  
10%  
90% 90%  
Tcsp  
CSB  
SCLK  
SI  
10%  
Tcss  
1/Tfck  
Tckn Tckp Tcsh  
90%  
Tsih  
90% 90%  
10%  
10%  
Tsis  
10% 10%  
10%  
Tcssod  
90% 90%  
10% 10%  
Tcksod  
Tcssoo  
Tcssoz  
90%  
10%  
SO  
10%  
Figure 10. SPI Timing Diagram  
Table 12. SPI TIMING (T = 40 to 150°C, VS = 4.5 to 40 V, SO load = 50 pF)  
J
Symbol  
Comment  
Min  
Typ  
Max  
Unit  
MHz  
ns  
T
T
SCLK Clock Frequency  
SCLK High Pulse Width  
SCLK Low Pulse Width  
CSB Setup Time  
4.5  
FCK  
CKP  
CKN  
CSS  
CSH  
CSP  
90  
90  
90  
0
T
T
T
T
ns  
ns  
CSB Hold Time  
ns  
CSB High Pulse Width  
SI Setup Time  
90  
45  
45  
ns  
T
SIS  
ns  
T
SIH  
SI Hold Time  
ns  
T
T
T
SCLK Fall Edge to SO Delay Time  
CSB Fall Edge to SO Delay Time  
CSB Fall Edge to SO Data Out Time  
CSB Rise Edge to SO HiZ Out Time  
75  
75  
ns  
CKSOD  
CSSOD  
CSSOO  
ns  
0
ns  
T
75  
ns  
CSSOZ  
NOTE: SPIInterface can be used after the data download of the OTP has been completed. However it can not be used during VMCRES = L.  
OTP Programming  
The OTP register data is typically transferred into the  
main registers at device startup (From sleep to standby  
transition). This operation takes up to 125 ms. A high OBSY  
flag in the first returned byte during a SPI transaction  
indicates this.  
POR Ready  
Download Data  
WAKE  
OBSY  
Figure 11. OTP Data Download Timing at StartUp  
An OTP download can also actively be initiated by  
writing 00h to register MRODL. This command requires  
monitoring the OBSY flag. Don’t perform specific register  
access (MRCONF0 ~ 3, ORCONF0 ~ 3, MRORB,  
MRODL) until the OBSY flag is cleared.  
www.onsemi.com  
22  
LV8968BBUW  
Write MRODL Register  
OBSY  
Download Data  
Figure 12. OTP Data Download Timing after an MRODL Command  
OTP Programming Overall  
Figure 13 shows overall of the OTP memory write and  
verify flow. It consists of preparation, write and three times  
of data integrity verification.  
START  
Set LV8968BB  
standby  
Apply VS> 14V  
Write Data  
Set mode to  
L-side read check  
Verify  
Set mode to  
H-side read check  
Verify  
Set mode to  
Normal  
Verify  
END  
Figure 13. OTP Memory Write and Verify Flow  
OTP Programming  
The OBSY flag will be reset at the end of the write cycle.  
OBSY is in GSDAT register. To get GSDAT, SPI accesses  
to the register MRACK is recommended. MRACK doesn’t  
interfere with the programming operation.  
MRCONF0 ~ 3, ORCONF0 ~ 3, MRORB, MRODL  
registers cannot be accessed during an OTP write cycle.  
The OTP registers can be programmed in Standby mode  
only while the write lock bit OSAENB is set 0. And, the  
supply voltage at pin VS must be more than 14 V. The actual  
write operation to the OTP memory will be done, when the  
state change from 0 to 1 is commanded. Once the bit state is  
changed to 1, it cannot be change back to 0. The number of  
writing is limited to one per bit.  
www.onsemi.com  
23  
 
LV8968BBUW  
Write OTP Data  
OBSY  
Internal Write Time  
Figure 14. OTP Programming Timing  
The programming takes 4 ms maximum. To simplify  
operation, a waiting for 4 ms plus margin can be applicable  
instead of a polling of the flag OBSY. (Figure 15)  
START  
WRITE DATA  
Write data to address 40h  
Wait for 4 ms or more  
Write data to address 41h  
Wait for 4 ms or more  
Write data to address 42h  
Wait for 4 ms or more  
Write data to address 43h  
Wait for 4 ms or more  
END  
Figure 15. OTP Memory Write and Verify Flow  
OTP Data Integrity Verification  
3. Verify that the main register contents are  
consistent with the programmed OTP data  
4. Set OTP readout threshold “high” by setting  
ORBEN = 1 and ORBLV = 1 in register MRORB  
5. Execute OTP download command by writing 00h  
to MRODL  
6. Verify that the main register contents are  
consistent with the programmed OTP data  
7. Return OTP threshold to normal by setting  
ORBEN = 0 and ORBLV = 0  
In order to verify that the OTP programming operation  
was successful. It is strongly recommended to do an OTP  
margin check: To do this, the OTP registers are downloaded  
into the main register bank with minimum and maximum  
readout thresholds. This OTP download is forced by writing  
00h to register MRODL. The readout threshold is set in  
register MRORB.  
OTP Margin read check sequence after programmed:  
1. Set OTP readout threshold “low” by setting  
ORBEN = 1 and ORBLV = 0 in register MRORB  
2. Execute OTP download command by writing 00h  
to MRODL  
8. Execute OTP download command  
9. Verify that the main register contents are  
consistent with the programmed OTP data  
www.onsemi.com  
24  
 
LV8968BBUW  
Locking OTP Register Contents  
CAUTION: Inadvertent writing of these bits will  
permanently lock the corresponding register  
blocks from any further write access.  
Should only be set at end of development  
cycles.  
MSAENB bit and OSAENB bit are used in order to  
prevent writeaccess of mainand OTP registers  
respectively.  
Table 13. REGISTER MAP  
WENB by  
WEN (1bit)  
Write Time  
Condition  
ADDR  
[6:0]  
Data  
Name  
D[7]  
0
D[6]  
D[5]  
SACF  
THTSEL  
0
D[4]  
D[3]  
D[2]  
OBSY  
D[1]  
SMOD[1:0]  
D[0]  
Don’t care  
Don’t care  
EN=L  
GSDAT  
MRCONF0  
MRCONF1  
MRCONF2  
MRCONF3  
MRCONF4  
MRCONF5  
MRCONF6  
MRCONF7  
MRCONF8  
MRAOSEL  
MRCSG  
ORBEN  
DIAGS  
DFCSEL  
WDTPS  
LATCH  
DIAGLTO  
THSPS  
OSAENB  
(Note 10)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
20h  
21h  
22h  
40h  
41h  
42h  
43h  
0
0
0
0
0
DIAGPOL  
THWPS  
VGVSEL  
VCVSEL  
0
VGUVPS[1:0]  
VSUVPS[1:0]  
0
VDOVPS[1:0]  
VSOVPS[1:0]  
Read Only  
Read Only  
EN=L  
0
0
0
0
0
0
0
OSAENB  
D3MDEN  
MSAENB  
(Note 10)  
0
WDTWT[2:0]  
CSOFEN  
AWODLEN  
0
0
0
OCDL[1:0]  
OCMASK[3:0]  
0
0
0
FSFT[1:0]  
FSDT[1:0]  
FSPS[1:0]  
OCPS[1:0]  
FDTILIM[3:0]  
EN=L or H  
EN=L or H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MSAENB  
EN=L or H  
AOUTSEL[2:0] (Default=7h)  
CSGAIN[1:0]  
MRFSDL  
MRFDTI  
FSDL[3:0]  
FDTI[3:0]  
MRFDTIF  
MRRST  
0
0
0
FDTIBSY  
Write 00h: Reset WDT / Write FFh: Reset latch off  
EN=L  
MRORB  
0
0
0
0
0
0
ORBEN  
ORBLV  
MRODL  
Write 00h: Execute OTP data download  
Read Only  
Read Only  
MRDIAG0  
MRDIAG1  
MRACK  
0
0
0
0
0
1
0
WDTPO  
VCUVPO  
1
THSPO  
VGUVPO  
0
THWPO  
VDOVPO  
1
FSPO  
VSOVPO  
0
OCPO  
VSUVPO  
1
0
0
OSAENB  
(Note 10)  
EN=L  
ORCONF0  
ORCONF1  
ORCONF2  
ORCONF3  
ORCONF0[7:6]  
ORCONF1[7:5]  
ORCONF2[7:6]  
THTSEL  
DFCSEL  
WDTPS  
DIAGLTO  
THSPS  
DIAGPOL  
THWPS  
VGVSEL  
VCVSEL  
VGUVPS[1:0]  
VSUVPS[1:0]  
OSAENB  
VDOVPS[1:0]  
ORCONF3[7:1]  
VSOVPS[1:0]  
NOTE: SPI access to addresses not listed here will result in an SPI access failure error (SACF).  
10.At Test mode, ENB = 1 setting is ignored.  
www.onsemi.com  
25  
 
LV8968BBUW  
MRCONF0 (Default: 00h)  
(Write Access Only when EN = Low. OTP Backup Possible)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
00h  
MRCONF0  
0
0
THTSEL  
DFCSEL  
DIAGLTO  
DIAGPOL  
VGVSEL  
VCVSEL  
THTSEL: THermal Thresholds SELection  
Temperature warning threshold and error selection.  
THTSEL = 0: Thermal warning = 125°C, Thermal shutdown = 150°C  
THTSEL = 1: Thermal warning = 150°C, Thermal shutdown = 175°C  
DFCSEL: Diag Flag Clearing SELection  
Defines the condition under which the error registers are reset, by error condition removed only, or by error condition  
removed and subsequent SPI read access of the register in question.  
DFCSEL = 0: If error was cleared, DIAGS flag of GSDAT and MRDIAG0 and MRDIAG1 flags are reset by  
MRDIAG0 read, MRDIAG1 read  
DFCSEL = 1: DIAGS flag of GSDAT and MRDIAG0 and MRDIAG1 flag are reset by recovery condition  
DIAGLTO: DIAG pin Latched errors Transition Only  
If this bit is set, only latched errors result in a transition on DIAG. Otherwise all errors (and warnings) will be flagged.  
DIAGLTO = 0: At the time of detecting auto recover or latch off error, DIAG output is on  
DIAGLTO = 1: At the time of detecting latch off error, DIAG output is on  
DIAGPOL: DIAG pin POLarity  
Decides the polarity of the DIAG output.  
DIAGPOL = 0: At the time of detecting diagnostic error, DIAG output is L  
DIAGPOL = 1: At the time of detecting diagnostic error, DIAG output is H  
VGVSEL: VG pin Voltage SELection  
Selects if the IC is in logic level mode or normal mode which modifies the gate voltage of the drive section.  
VGVSEL = 0: VG normal mode (VG = 11 V)  
VGVSEL = 1: VG logic level mode (VG = 6 V)  
VCVSEL: VCc pin Voltage SELection  
Selects the output voltage of VCC to be either 3.3 V or 5 V. The wrong bit selection has a possibility to damage the  
microcontroller. Please make sure the appropriate selection.  
VCVSEL = 0: VCC = 3.3 V  
VCVSEL = 1: VCC = 5.0 V  
MRCONF1 (Default: 00h)  
(Write Access Only when EN = Low. OTP Backup Possible)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
01h  
MRCONF1  
0
0
0
WDTPS  
THSPS  
THWPS  
VGUVPS[1:0]  
WDTPS: WatchDog Timeout Protection Setting  
Watchdog error results in error response or is ignored.  
WDTPS = 0: Ignore WDT error  
WDTPS = 1: Emergency off and report a WDT error (Auto recover)  
THSPS: THermal Shutdown Protection Setting  
Thermal shutdown error results in error response or is ignored.  
THSPS = 0: Ignore thermal shutdown error  
THSPS = 1: Emergency off and report at thermal shutdown error (Auto recover)  
THWPS: THermal Warning Protection Setting  
THWPS = 0: Ignore thermal warning error  
THWPS = 1: Report thermal warning error  
www.onsemi.com  
26  
LV8968BBUW  
VGUVPS[1:0]: VG pin UnderVoltage Protection Setting  
VGUVPS[1:0] = 0h: Ignore VG undervoltage error  
VGUVPS[1:0] = 1h: Report VG undervoltage error  
VGUVPS[1:0] = 2h, 3h: Emergency off and report at VG under voltage error (Auto recover)  
MRCONF2 (Default: 00h)  
(Write Access Only when EN = Low. OTP Backup Possible)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
02h  
MRCONF2  
0
0
VDOVPS[1:0]  
VSOVPS[1:0]  
VSUVPS[1:0]  
VDOVPS[1:0]: VDh OverVoltage Protection Setting  
VDOVPS[1:0] = 0h: Ignore VDH overvoltage error  
VDOVPS[1:0] = 1h: Report VDH overvoltage error  
VDOVPS[1:0] = 2h, 3h: Emergency off and report at VDH over voltage error (Auto recover)  
VSOVPS[1:0]: VS OverVoltage Protection Setting  
VSOVPS[1:0] = 0h: Ignore VS overvoltage error  
VSOVPS[1:0] = 1h: Report VS overvoltage error  
VSOVPS[1:0] = 2h, 3h: Emergency off and report at VS over voltage error (Auto recover)  
VSUVPS[1:0]: VS UnderVoltage Protection Setting  
VSUVPS[1:0] = 0h: Ignore VS undervoltage error  
VSUVPS[1:0] = 1h: Report VS undervoltage error  
VSUVPS[1:0] = 2h, 3h: Emergency off and report at VS under voltage error (Auto recover)  
MRCONF3 (Default: 00h)  
(Read Only)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
03h  
MRCONF3  
0
0
0
0
0
0
0
OSAENB  
OSAENB: Otp Spi write Access ENable Bar  
Setting this bit disables all write access to the configuration registers MRCONF0, MRCONF1 and MRCONF2 and the OTP  
backup register. Set to prevent system parameters from being modified.  
OSAENB = 0: Enable write access of MRCONF0~2 and ORCONF0~3  
OSAENB = 1: Disable write access of MRCONF0~2 and ORCONF0~3  
www.onsemi.com  
27  
LV8968BBUW  
MRCONF4 (Default: 00h)  
(Write Access Only when EN = Low)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
04h  
MRCONF4  
0
WDTWT[2:0]  
0
CSOFEN  
AWODLEN  
D3MDEN  
WDTWT[2:0]: Watchdog Timeout Window Time  
Defines the watchdog timer window sizes.  
WDTWT[2:0] = 0h: T  
= 409.6 ms, T = 102.4 ms, T = 204.8 ms  
FOW  
CW WT  
WDTWT[2:0]=1h: T  
= 204.8 ms, T = 51.2 ms, T = 102.4 ms  
CW WT  
FOW  
:
: (1/2 step)  
:
WDTWT[2:0] = 7h: T  
= 3.2 ms, T = 0.8 ms, T = 1.6 ms  
CW WT  
FOW  
CSOFEN: Current Sensor OFfset Enable  
Selects the offset of the current sense amplifier.  
CSOFEN = 0: Current sense amp offset = 1.5 V  
CSOFEN = 1: Current sense amp offset = 0.2 V  
AWODLEN: Automatic Window for Otp DownLoad Enable  
Periodical (200 ms) OTP download during EN = H.  
AWODLEN = 0: Not download OTP data in normal mode  
AWODLEN = 1: Download OTP data periodically in normal mode  
D3MDEN: Drive 3 Mode Drivers Enable  
Chooses how the output drivers are addressed, with six PWM channels, or with three PWM channels and three enables.  
D3MDEN = 0: Drive 6 mode  
D3MDEN = 1: Drive 3 mode  
MRCONF5 (Default: 00h)  
(Write Access Only when EN = Low)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
05h  
MRCONF5  
0
0
OCDL[1:0]  
OCMASK[3:0]  
OCDL[1:0]: OverCurrent Detection Level  
Defines the overcurrent detection threshold voltage between ISN and ISP.  
OCDL[1:0] = 0h: Overcurrent detect level = 200 mV  
OCDL[1:0] = 1h: Overcurrent detect level = 150 mV  
OCDL[1:0] = 2h, 3h: Overcurrent detect level = 100 mV  
OCMASK[3:0]: OverCurrent MASKing time  
Masking time for the overcurrent detection after every output transition.  
OCMASK[3:0] = 0h: Overcurrent mask time = 0.2 ms  
OCMASK[3:0] = 1h: Overcurrent mask time = 0.4 ms  
:
: (0.2 ms step)  
:
OCMASK[3:0] = Eh: Overcurrent mask time = 3.0 ms  
OCMASK[3:0] = Fh: Overcurrent mask time = 3.2 ms  
www.onsemi.com  
28  
LV8968BBUW  
MRCONF6 (Default: 00h)  
(Write Access Only when EN = Low)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
FSDT[1:0]  
D[0]  
06h  
MRCONF6  
0
0
0
0
FSFT[1:0]  
FSFT[1:0]: Fet Short detection debounce Filter Time  
External FET short detection debounce time. A short condition has to remain valid during this time.  
FSFT[1:0] = 0h: FET short detect time = 0.8 ms  
FSFT[1:0] = 1h: FET short detect time = 1.6 ms  
FSFT[1:0] = 2h: FET short detect time = 2.4 ms  
FSFT[1:0] = 3h: FET short detect time = 3.2 ms  
FSDT[1:0]: Fet Short Detection masking Time  
External FET shortcircuit detection masking time, starts after turnon of the FET.  
FSDT[1:0] = 0h: FET short masking time = 3.2 ms  
FSDT[1:0] = 1h: FET short masking time = 6.4 ms  
FSDT[1:0] = 2h: FET short masking time = 9.6 ms  
FSDT[1:0] = 3h: FET short masking time = 12.8 ms  
MRCONF7 (Default: 00h)  
(Write Access Only when EN = Low)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
07h  
MRCONF7  
FSPS[1:0]  
OCPS[1:0]  
FDTILIM[3:0]  
FSPS[1:0]: Fet Shortcircuit error Protection Setting  
Shortcircuit error decision mask.  
FSPS[1:0] = 0h: Ignore FET short error  
FSPS[1:0] = 1h: Report FET short error  
FSPS[1:0] = 2h: Emergency off and report at FET short error (Auto recover)  
FSPS[1:0] = 3h: Emergency off and report at FET short error (Latched off)  
OCPS[1:0]: OverCurrent error Protection Setting  
Overcurrent error decision mask.  
OCPS[1:0] = 0h: Ignore overcurrent error  
OCPS[1:0] = 1h: Report overcurrent error  
OCPS[1:0] = 2h: Emergency off and report at overcurrent error (Auto recover)  
OCPS[1:0] = 3h: Emergency off and report at overcurrent error (Latched off)  
FDTILIM[3:0]: Fet Dead TIme LIMit  
Minimum Dead time programming register.  
FDTILIM[3:0] = 0h: FET dead time = 3.2 ms  
FDTILIM[3:0] = 1h: FET dead time = 3.0 ms  
:
: (0.2 ms step)  
:
FDTILIM[3:0] = Eh: FET dead time = 0.4 ms  
FDTILIM[3:0] = Fh: FET dead time = 0.2 ms  
www.onsemi.com  
29  
LV8968BBUW  
MRCONF8 (Default: 00h)  
(Write access only when EN = Low)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
08h  
MRCONF8  
0
0
0
0
0
0
0
MSAENB  
MSAENB: Mrconf Spi write Access ENable Bar  
Setting this bit disables all write access to the configuration registers MRCONF4 to MRCONF7.  
MSAENB = 0: Enable write access of MRCONF4 ~ 7  
MSAENB = 1: Disable write access of MRCONF4 ~ 7  
MRAOSEL (Default: 07h)  
(Full Dynamic Access)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
10h  
MRAOSEL  
0
0
0
0
0
AOUTSEL[2:0]  
AOUTSEL[2:0]: AOUT pin output SELect  
Select the internal nodes brought out on AOUT.  
AOUTSEL[2:0] = 0h: AOUT = Output VDH voltage level  
AOUTSEL[2:0] = 1h: AOUT = Output SH1 voltage level  
AOUTSEL[2:0] = 2h: AOUT = Output SH2 voltage level  
AOUTSEL[2:0] = 3h: AOUT = Output SH3 voltage level  
AOUTSEL[2:0] = 4h, 5h: AOUT = Output thermal monitor voltage level  
AOUTSEL[2:0] = 6h, 7h: AOUT = HiZ  
MRCSG (Default: 00h)  
(Full Dynamic Access)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
11h  
MRCSG  
0
0
0
0
0
0
CSGAIN[1:0]  
CSGAIN[1:0]: Current Sense GAIN  
Programs the gain of the current sense amplifier.  
CSGAIN[1:0] = 0h: Current sense amp gain = 7.5  
CSGAIN[1:0] = 1h: Current sense amp gain = 15  
CSGAIN[1:0] = 2h: Current sense amp gain = 22.5  
CSGAIN[1:0] = 3h: Current sense amp gain = 30  
MRFSDL (Default: 00h)  
(Full Dynamic Access)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
FSDL[3:0]  
D[0]  
12h  
MRFSDL  
0
0
0
0
FSDL[3:0]: Fet Short Detection Level  
Defines the maximum allowable drain source voltage across a power FET.  
FSDL[3:0] = 0h: FET short detect level = 100 mV  
FSDL[3:0] = 1h: FET short detect level = 200 mV  
:
: (100 mV step)  
:
FSDL[3:0] = Eh: FET short detect level = 1500 mV  
FSDL[3:0] = Fh: FET short detect level = 1600 mV  
www.onsemi.com  
30  
LV8968BBUW  
MRFDTI (Default: 00h)  
(Full Dynamic Access)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
FDTI[3:0]  
D[0]  
13h  
MRFDTI  
0
0
0
0
FDTI[3:0]: Fet Dead TIme  
Dead time programming register. This dead time will be applied unless it is smaller than FDTILIM[3:0] in MRCONF7.  
FDTI[3:0] = 0h: FET dead time = 3.2 ms  
FDTI[3:0] = 1h: FET dead time = 3.0 ms  
:
: (0.2 ms step)  
:
FDTI[3:0] = Eh: FET dead time = 0.4 ms  
FDTI[3:0] = Fh: FET dead time = 0.2 ms  
MRFDTIF (Default: 00h)  
(Full Dynamic Access)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
14h  
MRFDTIF  
0
0
0
0
0
0
0
FDTIBSY  
FDTIBSY: Fet Dead TIme BuSY uploading  
FDTIBSY goes high after the dead time register was written to via SPI but not uploaded into the dead time counter. Upload  
happens at the beginning of every dead time measuring period (falling edge of a gate signal) and clears the FDTIBSY flag.  
A write access MRFDTIF = 01h also clears the FDTIBSY flag.  
MRRST  
(Full Dynamic Access)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
15h  
MRRST  
Write 00h: Reset WDT / Write FFh: Reset latch off  
MRRST[7:0]: Master Register ReSeT  
Write access to this register resets the Watchdog or the Error latch.  
Write MRRST[7:0] = 00h: Reset WDT  
Write MRRST[7:0] = FFh: Reset latch off  
MRORB (Default: 00h)  
(Register for OTP Programming Integrity Check. Write During EN = Low Only)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
16h  
MRORB  
0
0
0
0
0
0
ORBEN  
ORBLV  
ORBEN: Otp Read Bias mode Enable  
Setting this bit puts the device into OTP integrity check mode.  
ORBEN = 0: Normal  
ORBEN = 1: OTP bias read mode  
ORBLV: Otp Read Bias mode LeVel  
Changes the OTP readout thresholds to high and low, to verify data integrity.  
ORBLV = 0: OTP low bias read mode at ORBEN = 1  
ORBLV = 1: OTP high bias read mode at ORBEN = 1  
www.onsemi.com  
31  
LV8968BBUW  
MRODL  
(Write Access During EN = Low Only)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
17h  
MRODL  
Write 00h: Execute OTP data download  
MRODL[7:0]: Master Register Otp DownLoad  
A write initiates an OTP data download into the main registers in standby mode. In Normal mode, OTP download can be  
initiated only when AWODLEN is set regardless of MRODL.  
Write MRODL[7:0] = 00h: Execute OTP data download  
MRDIAG0  
(Read Only)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
20h  
MRDIAG0  
0
0
0
WDTPO  
THSPO  
THWPO  
FSPO  
OCPO  
WDTPO: WatchDog Timeout Protection Output  
Watchdog error flag.  
WDTPO = 0: Normal  
WDTPO = 1: Detect WDT error  
THSPO: THermal Shutdown Protection Output  
Over temperature shutoff flag.  
THSPO = 0: Normal  
THSPO = 1: Detect thermal shutdown error  
THWPO: THermal Warning Protection Output  
Thermal warning flag.  
THWPO = 0: Normal  
THWPO = 1: Detect thermal warning error  
FSPO: FET Shortcircuit Protection Output  
FET shortcircuit detection flag.  
FSPO = 0: Normal  
FSPO = 1: Detect FET short error  
OCPO: OverCurrent Protection Output  
Overcurrent error flag.  
OCPO = 0: Normal  
OCPO = 1: Detect overcurrent error  
MRDIAG1  
(Read Only)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
21h  
MRDIAG1  
0
0
0
VCUVPO  
VGUVPO  
VDOVPO  
VSOVPO  
VSUVPO  
VCUVPO: VCc UnderVoltage Protection Output  
VCC undervoltage flag.  
VCUVPO = 0: Normal  
VCUVPO = 1: Detect VCC undervoltage error  
VGUVPO: VG UnderVoltage Protection Output  
VG undervoltage flag.  
VGUVPO = 0: Normal  
VGUVPO = 1: Detect VG undervoltage error  
www.onsemi.com  
32  
LV8968BBUW  
VDOVPO: VDh OverVoltage Protection Output  
VDH overvoltage flag.  
VDOVPO = 0: Normal  
VDOVPO = 1: Detect VDH overvoltage error  
VSOVPO: VS OverVoltage Protection Output  
VS overvoltage flag.  
VSOVPO = 0: Normal  
VSOVPO = 1: Detect VS overvoltage error  
VSUVPO: VS UnderVoltage Protection Output  
VS undervoltage flag.  
VSUVPO = 0: Normal  
VSUVPO = 1: Detect VS undervoltage error  
MRACK  
(Read Only)  
ADDR  
Data Name  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
22h  
MRACK  
0
1
0
1
0
1
0
1
MRACK[7:0]: Master Register ACKnowledge  
For SPI data verification. A read must result in 55h.  
MRACK[7:0] read data is fixed 55h  
ORCONF0 ~ 3 (Default: 00h)  
(OTP Backup for Critical System Registers. Programmable During EN = L Only)  
ADDR  
40h  
Data Name  
ORCONF0  
ORCONF1  
ORCONF2  
ORCONF3  
D[7]  
ORCONF0[7:6]  
ORCONF1[7:5]  
ORCONF2[7:6]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
THTSEL  
DFCSEL  
WDTPS  
DIAGLTO  
THSPS  
DIAGPOL  
THWPS  
VGVSEL  
VCVSEL  
41h  
VGUVPS[1:0]  
VSUVPS[1:0]  
OSAENB  
42h  
VDOVPS[1:0]  
ORCONF3[7:1]  
VSOVPS[1:0]  
43h  
ORCONF0 ~ 3  
ORCONF0 ~ 3 data is transferred to MRCONF0 ~ 3 at OTP data download  
ORCONF0[7:6], ORCONF1[7:5], ORCONF2[7:6], ORCONF3[7:1] data is not transferred to MRCONF  
www.onsemi.com  
33  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPQFP48 7x7 / SQFP48K  
CASE 131AN  
ISSUE A  
DATE 08 NOV 2013  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON78439F  
SPQFP48 7X7 / SQFP48K  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

LV9001

TLV900x Low-Power, Rail-to-Rail In and Out, 1-MHz Operational Amplifier
ETC

LV9004

TLV900x Low-Power, Rail-to-Rail In and Out, 1-MHz Operational Amplifier
ETC

LV9005

Optical Sensor Switch IC
SANYO

LV9005M

Optical Sensor Switch IC
SANYO
PLETRONICS
PLETRONICS

LV9120DEV-10.9M

Oscillator, 10.9MHz Min, 670MHz Max, 10.9MHz Nom,
PLETRONICS

LV9120DEV-10.9M-T1K

LVDS Output Clock Oscillator, 10.9MHz Min, 670MHz Max, 10.9MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 6 PIN
PLETRONICS

LV9120DEV-10.9M-T250

LVDS Output Clock Oscillator, 10.9MHz Min, 670MHz Max, 10.9MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 6 PIN
PLETRONICS

LV9120DEV-10.9M-T500

LVDS Output Clock Oscillator, 10.9MHz Min, 670MHz Max, 10.9MHz Nom, ROHS COMPLIANT, CERAMIC, SMD, 6 PIN
PLETRONICS

LV9120DEV-125.0M

LVDS Clock Oscillators
PLETRONICS

LV9120DEV-125.0M-1K

LVDS Clock Oscillators
PLETRONICS