MC100E221FN [ONSEMI]

100E SERIES, LOW SKEW CLOCK DRIVER, 6 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28;
MC100E221FN
型号: MC100E221FN
厂家: ONSEMI    ONSEMI
描述:

100E SERIES, LOW SKEW CLOCK DRIVER, 6 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28

驱动 输出元件
文件: 总10页 (文件大小:106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC10E211, MC100E211  
5VꢀECL 1:6 Differential  
Clock Distribution Chip  
The MC10E/100E211 is a low skew 1:6 fanout device designed  
explicitly for low skew clock distribution applications.  
The E211 features a multiplexed clock input to allow for the  
distribution of a lower speed scan or test clock along with the high speed  
system clock. When LOW (or left open in which case it will be pulled  
LOW by the input pulldown resistor) the SEL pin will select the  
differential clock input.  
http://onsemi.com  
MARKING  
DIAGRAMS  
Both a common enable and individual output enables are provided.  
When asserted the positive output will go LOW on the next negative  
transition of the CLK (or SCLK) input. The enabling function is  
synchronous so that the outputs will only be enabled/disabled when the  
outputs are already in the LOW state. In this way the problem of runt  
pulse generation during the disable operation is avoided. Note that the  
internal flip flop is clocked on the falling edge of the input clock edge,  
therefore all associated specifications are referenced to the negative  
edge of the CLK input.  
128  
MC10E211FN  
AWLYYWW  
PLCC−28  
FN SUFFIX  
CASE 776  
128  
The output transitions of the E211 are faster than the standard  
ECLinPS edge rates. This feature provides a means of distributing  
higher frequency signals than capable with the E111 device. Because of  
these edge rates and the tight skew limits guaranteed in the  
specification, there are certain termination guidelines which must be  
followed. For more details on the recommended termination schemes  
please refer to the applications information section of this data sheet.  
MC100E211FN  
AWLYYWW  
A
= Assembly Location  
The V  
pin, an internally generated voltage supply, is available to  
BB  
WL  
YY  
WW  
= Wafer Lot  
= Year  
= Work Week  
this device only. For single−ended input conditions, the unused  
differential input is connected to V as a switching reference voltage.  
BB  
V
V
may also rebias AC coupled inputs. When used, decouple V and  
BB  
CC  
BB  
via a 0.01 mF capacitor and limit current sourcing or sinking to  
should be left open.  
0.5 mA. When not used, V  
BB  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
The 100 Series contains temperature compensation.  
dimensions section on page 511 of this data sheet.  
Guaranteed Low Skew Specification  
Synchronous Enabling/Disabling  
Multiplexed Clock Inputs  
V Output for Single−Ended Use  
BB  
Common and Individual Enable/Disable Control  
High Bandwidth Output Transistors  
PECL Mode Operating Range: V  
= 4.2 V to 5.7 V with V = 0 V  
CC  
EE  
NECL Mode Operating Range: V = 0 V with V = −4.2 V to −5.7 V  
CC  
EE  
Internal Input 75 kW Pulldown Resistors  
ESD Protection: Human Body Model; > 2 kV,  
Machine Model; > 100 V  
Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
Moisture Sensitivity Level 1  
For Additional Information, see Application Note AND8003/D  
Flammability Rating: UL 94 V−0 @ 0.125 in,  
Oxygen Index: 28 to 34  
Transistor Count = 457 devices  
Semiconductor Components Industries, LLC, 2004  
503  
Publication Order Number:  
March, 2004 − Rev. 8  
MC10E211/D  
MC10E211, MC100E211  
EN4 EN5 V  
Q5 Q5 Q4 Q4  
CC0  
Table 1. PIN DESCRIPTION  
PIN  
24  
25  
22  
23  
21  
19  
20  
FUNCTION  
18  
17  
16  
15  
14  
13  
12  
EN3  
SEL  
Q3  
Q3  
V
26  
27  
EN0−EN5  
SEL  
SCLK  
CLK, CLK  
CEN  
Q0−Q5, Q0−Q5  
ECL Enable  
ECL Select (Clock)  
ECL Single Clock  
ECL Differential Clock  
ECL Common Enable  
ECL Differential Outputs  
Reference Voltage Output  
Positive Supply  
SCLK  
28  
1
CC  
V
V
V
BB  
CC CCO  
EE  
V
EE  
Q2  
, V  
Negative Supply  
CLK  
CLK  
2
3
4
Q2  
Q1  
Q1  
NC  
No Connect  
V
BB  
5
6
7
8
9
10  
11  
CEN EN2 EN1 EN0 V  
Q0 Q0  
CC0  
*All V  
CC  
and V  
pins are tied together on the die.  
CCO  
Warning: All V , V  
CC CCO  
, and V pins must be externally con-  
EE  
nected to Power Supply to guarantee proper operation.  
Figure 10. Pinout: PLCC−28 (Top View)  
Q0  
Q0  
Table 2. FUNCTION TABLE  
CLK  
SCLK  
SEL  
ENx  
Q
EN0  
H/L  
X
Z*  
X
H/L  
Z*  
L
H
X
L
L
H
CLK  
SCLK  
L
DQ  
*Z = Negative transition of CLK or SCLK  
BITS 1−4  
CLK  
CLK  
0
1
Q1−4  
Q1−4  
SCLK  
SEL  
DQ  
EN1−4  
CEN  
Q5  
Q5  
EN5  
DQ  
V
BB  
Figure 11. Logic Diagram  
http://onsemi.com  
504  
MC10E211, MC100E211  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition 1  
Condition 2  
Rating  
Unit  
V
V
CC  
V
EE  
V
I
PECL Mode Power Supply  
NECL Mode Power Supply  
V
V
= 0 V  
= 0 V  
8
EE  
−8  
V
CC  
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V V  
6
V
V
EE  
CC  
I
CC  
EE  
V V  
−6  
I
I
Output Current  
Continuous  
Surge  
50  
mA  
mA  
out  
100  
I
V
Sink/Source  
± 0.5  
mA  
°C  
BB  
BB  
T
Operating Temperature Range  
Storage Temperature Range  
0 to +85  
A
T
−65 to +150  
°C  
stg  
q
Thermal Resistance (Junction−to−Ambient) 0 lfpm  
500 lfpm  
PLCC−28  
PLCC−28  
63.5  
43.5  
°C/W  
°C/W  
JA  
q
Thermal Resistance (Junction−to−Case)  
Standard Board  
PLCC−28  
22 to 26  
°C/W  
JC  
V
EE  
PECL Operating Range  
NECL Operating Range  
4.2 to 5.7  
V
V
−5.7 to −4.2  
T
sol  
Wave Solder  
<2 to 3 sec @ 248°C  
265  
°C  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
http://onsemi.com  
505  
MC10E211, MC100E211  
Table 4. 10E SERIES PECL DC CHARACTERISTICS V  
= 5.0 V; V  
= 0.0 V (Note 2)  
CCx  
EE  
0°C  
25°C  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
Typ  
119  
Max  
160  
Min  
Typ  
119  
Max  
160  
Min  
Max  
160  
Unit  
mA  
mV  
mV  
mV  
mV  
V
I
119  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 3)  
Output LOW Voltage (Note 3)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
3980  
3050  
3830  
3050  
3.62  
2.4  
4070  
3210  
3995  
3285  
4160  
3370  
4160  
3520  
3.74  
4.6  
4020  
3050  
3870  
3050  
3.65  
2.4  
4105  
3210  
4030  
3285  
4190  
3370  
4190  
3520  
3.75  
4.6  
4090  
3050  
3940  
3050  
3.69  
2.4  
4185  
3227  
4110  
3302  
4280  
3405  
4280  
3555  
3.81  
4.6  
OH  
OL  
IH  
IL  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 4)  
V
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.3  
0.5  
0.25  
0.3  
0.2  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
2. Input and output parameters vary 1:1 with V . V  
CC EE  
can vary −0.46 V / +0.06 V.  
− 2.0 V.  
3. Outputs are terminated through a 50 W resistor to V  
CC  
4. V  
min varies 1:1 with V , max varies 1:1 with V .  
IHCMR  
EE CC  
Table 5. 10E SERIES NECL DC CHARACTERISTICS V  
= 0.0 V; V = −5.0 V (Note 5)  
E E  
CCx  
0°C  
25°C  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
Typ  
Max  
160  
Min  
Typ  
119  
Max  
Min  
Max  
160  
Unit  
mA  
mV  
mV  
mV  
mV  
V
I
119  
160  
119  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 6)  
Output LOW Voltage (Note 6)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
−1020 −930  
−840  
−980  
−895  
−810  
−910  
−815  
−720  
OH  
−1950 −1790 −1630 −1950 −1790 −1630 −1950 −1773 −1595  
−1170 −1005 −840 −1130 −970 −810 −1060 −890 −720  
−1950 −1715 −1480 −1950 −1715 −1480 −1950 −1698 −1445  
OL  
IH  
IL  
−1.38  
−2.6  
−1.27 −1.35  
−1.25 −1.31  
−1.19  
−0.4  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 7)  
−0.4  
150  
−2.6  
−0.4  
150  
−2.6  
V
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
mA  
mA  
IH  
0.5  
0.3  
0.5  
0.065  
0.3  
0.2  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
5. Input and output parameters vary 1:1 with V . V  
6. Outputs are terminated through a 50 W resistor to V  
can vary −0.46 V / +0.06 V.  
− 2.0 V.  
CC EE  
CC  
7. V  
min varies 1:1 with V , max varies 1:1 with V .  
IHCMR  
EE CC  
http://onsemi.com  
506  
 
MC10E211, MC100E211  
Table 6. 100E SERIES PECL DC CHARACTERISTICS V  
CCx  
= 5.0 V; V = 0.0 V (Note 8)  
EE  
0°C  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
Typ  
119  
Max  
160  
Min  
Max  
160  
Min  
Max  
164  
Unit  
mA  
mV  
mV  
mV  
mV  
V
I
119  
137  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 9)  
Output LOW Voltage (Note 9)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
3975  
3190  
3835  
3190  
3.62  
2.4  
4050  
3295  
3975  
3355  
4120  
3380  
4120  
3525  
3.74  
4.6  
3975  
3190  
3835  
3190  
3.62  
2.4  
4050  
3255  
3975  
3355  
4120  
3380  
4120  
3525  
3.74  
4.6  
3975  
3190  
3835  
3190  
3.62  
2.4  
4050  
3260  
3975  
3355  
4120  
3380  
4120  
3525  
3.74  
4.6  
OH  
OL  
IH  
IL  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 10)  
V
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.3  
0.5  
0.25  
0.5  
0.2  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
8. Input and output parameters vary 1:1 with V . V  
CC EE  
can vary −0.46 V / +0.8 V.  
− 2.0 V.  
9. Outputs are terminated through a 50 W resistor to V  
CC  
10.V  
min varies 1:1 with V , max varies 1:1 with V .  
IHCMR  
EE CC  
Table 7. 100E SERIES NECL DC CHARACTERISTICS V  
CCx  
= 0.0 V; V = −5.0 V (Note 11)  
EE  
0°C  
25°C  
85°C  
Typ  
137  
Symbol  
Characteristic  
Power Supply Current  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
164  
Unit  
mA  
mV  
mV  
mV  
mV  
V
I
119  
160  
119  
160  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 12)  
Output LOW Voltage (Note 12)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
−1025 −950  
−880 −1025 −950  
−880 −1025 −950  
−880  
OH  
−1810 −1705 −1620 −1810 −1745 −1620 −1810 −1740 −1620  
−1165 −1025 −880 −1165 −1025 −880 −1165 −1025 −880  
−1810 −1645 −1475 −1810 −1645 −1475 −1810 −1645 −1475  
OL  
IH  
IL  
−1.38  
−2.6  
−1.26 −1.38  
−1.26 −1.38  
−1.26  
−0.4  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 13)  
−0.4  
150  
−2.6  
−0.4  
150  
−2.6  
V
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
mA  
mA  
IH  
0.5  
0.3  
0.5  
0.25  
0.5  
0.2  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
11. Input and output parameters vary 1:1 with V . V  
12.Outputs are terminated through a 50 W resistor to V  
can vary −0.46 V / +0.8 V.  
− 2.0 V.  
CC EE  
CC  
13.V  
min varies 1:1 with V , max varies 1:1 with V .  
IHCMR  
EE CC  
http://onsemi.com  
507  
 
MC10E211, MC100E211  
Table 8. AC CHARACTERISTICS V  
CCx  
= 5.0 V; V = 0.0 V or V  
EE  
= 0.0 V; V = −5.0 V (Note 14)  
EE  
CCx  
0°C  
25°C  
85°C  
Typ  
700  
Symbol  
Characteristic  
Maximum Toggle Frequency  
Propagation Delay to Output  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
Unit  
MHz  
ps  
f
700  
700  
MAX  
t
t
PLH  
PHL  
795  
745  
650  
745  
930  
930  
900  
970  
1065  
1115  
1085  
1195  
805  
755  
650  
755  
940  
940  
910  
980  
1075  
1125  
1095  
1205  
825  
775  
650  
775  
960  
960  
930  
1095  
1145  
1115  
1225  
CLK to Q (Diff)  
CLK to Q (SE)  
SCLK to Q  
1000  
SEL to Q  
t
t
Disable Time  
CLK or SCLK to Q (Note 16)  
ps  
ps  
PHL  
600  
800  
600  
800  
600  
< 1  
800  
Part−to−Part Skew  
skew  
270  
370  
75  
270  
370  
75  
270  
370  
75  
CLK (Diff) to Q  
CLK (SE), SCLK to Q  
Within−Device Skew (Note 15)  
50  
50  
t
t
Random Clock Jitter (RMS)  
< 1  
< 1  
ps  
ps  
JITTER  
Setup Time  
s
200  
200  
−100  
0
200  
200  
−100  
0
200  
200  
−100  
0
ENx to CLK  
CEN to CLK (Note 16)  
t
h
Hold Time  
ps  
900  
600  
900  
160  
900  
600  
CLK to ENx, CEN (Note 16)  
V
PP  
Minimum Input Swing (CLK) (Note 17)  
0.25  
1.0  
0.25  
1.0  
0.25  
1.0  
V
t
r
t
f
Rise/Fall Times  
(20 − 80%)  
ps  
150  
400  
150  
400  
150  
400  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
14.10 Series: V  
can vary −0.46 V / +0.06 V.  
EE  
100 Series: V  
can vary −0.46 V / +0.8 V.  
EE  
15.Within−Device skew is defined for identical transitions on similar paths through a device.  
16.Setup, Hold and Disable times are all relative to a falling edge on CLK or SCLK.  
17.Minimum input swing for which AC parameters are guaranteed. Full DC ECL output swings will be generated with only 50 mV input swings.  
http://onsemi.com  
508  
 
MC10E211, MC100E211  
APPLICATIONS INFORMATION  
General Description  
situations between cards there will be no AC performance or  
noise margin loss for the differential CLK inputs.  
The MC10E/100E211 is a 1:6 fanout tree designed  
explicitly for low skew high speed clock distribution. The  
device was targeted to work in conjunction with the E111  
device to provide another level of flexibility in the design  
and implementation of clock distribution trees. The  
individual synchronous enable controls and multiplexed  
clock inputs make the device ideal as the first level  
distribution unit in a distribution tree. The device provides  
the ability to distribute a lower speed scan or test clock along  
with the high speed system clock to ease the design of system  
diagnostics and self test procedures. The individual enables  
could be used to allow for the disabling of individual cards  
on a backplane in fault tolerant designs.  
For situations where TTL clocks are required the E211 can  
be interfaced with the H641 or H643 ECL to TTL Clock  
Distribution Chips. The H641 is a single supply 1:9 PECL  
to TTL device while the H643 is a 1:8 dual supply standard  
ECL to TTL device. By combining the superior skew  
performance of the E211, or E111, with the low skew  
translating capabilities of the H641 and H643 very low skew  
TTL clock distribution networks can be realized.  
Handling Open Inputs and Outputs  
All of the input pins of the E211 have a 50 kW to 75 kW  
pulldown resistor to pull the input to V when left open.  
EE  
This feature can cause a problem if the differential clock  
inputs are left open as the input gate current source transistor  
will become saturated. Under these conditions the outputs of  
the CLK input buffer will go to an undefined state. It is  
recommended, if possible,that the SCLK input should be  
selected any time the differential CLK inputs are allowed to  
float. The SCLK buffer, under open input conditions, will  
maintain a defined output state and thus the Q outputs of the  
device will be in a defined state (Q = LOW). Note that if all  
of the inputs are left open the differential CLK input will be  
selected and the state of the Q outputs will be undefined.  
With the simultaneous switching characteristics and the  
tight skew specifications of the E211 the handling of the  
unused outputs becomes critical. To minimize the noise  
generated on the die all outputs should be terminated in  
pairs, i.e. both the true and compliment outputs should be  
terminated even if only one of the outputs will be used in the  
system. With both complimentary pairs terminated the  
Because of lower fanout and larger skews the E211 will  
not likely be used as an alternative to the E111 for the bulk  
of the clock fanout generation. Figure 12 shows a typical  
application combining the two devices to take advantage of  
the strengths of each.  
E111  
Q0  
E211  
Q0  
Q8  
E111  
Q0  
Q5  
current in the V  
thus inductance induced voltage glitches on V  
CC  
occur. V  
CC  
pins will remain essentially constant and  
will not  
glitches will result in distorted output  
CC  
Q8  
waveforms and degradations in the skew performance of the  
device.  
Figure 12. Standard E211 Application  
The package parasitics of the PLCC−28 cause the signals  
on a given pin to be influenced by signals on adjacent pins.  
The E211 is characterized and tested with all of the outputs  
switching, therefore the numbers in the data book are  
guaranteed only for this situation. If all of the outputs of the  
E211 are not needed and there is a desire to save power the  
unused output pairs can be left unterminated. Unterminated  
outputs can influence the propagation delay on adjacent pins  
by 15 ps − 20 ps. Therefore under these conditions this 15 ps  
− 20 ps needs to be added to the overall skew of the device.  
Pins which are separated by a package corner are not  
considered adjacent pins in the context of propagation delay  
influence. Therefore as long as all of the outputs on a single  
side of the package are terminated the specification limits in  
the data sheet will apply.  
Using the E211 in PECL Designs  
The E211 device can be utilized very effectively in  
designs utilizing only a +5 V power supply. Since the  
internal switching reference levels are biased off of the V  
supply the input thresholds for the single−ended inputs will  
CC  
vary with V . As a result the single−ended inputs should be  
CC  
driven by a device on the same board as the E211. Driving  
these inputs across  
a backplane where significant  
differences between the V ’s of the transmitter and  
CC  
receiver can occur can lead to AC performance and/or  
significant noise margin degradations. Because the  
differential I/O does not use a switching reference, and due  
to the CMR range of the E211, even under worst case V  
CC  
http://onsemi.com  
509  
 
MC10E211, MC100E211  
APPLICATIONS INFORMATION  
Differential versus Single−Ended Use  
IN  
As can be seen from the data sheet, to minimize the skew  
of the E211 the device must be used in the differential mode.  
In the single−ended mode the propagation delays are  
0.001mF  
50 W  
IN  
dependent on the relative position of the V  
switching  
BB  
reference. Any V offset from the center of the input swing  
BB  
will add delay to either the T  
or T  
and subtract delay  
PLH  
PHL  
from the other. This increase and decrease in delay will lead  
to an increase in the duty cycle skew and thus part−to−part  
skew. The within−device skew will be independent of the  
0.01mF  
V
and therefore will be the same regardless of whether the  
BB  
device is driven differentially or single−ended.  
For applications where part−to−part skew or duty cycle  
skew are not important the advantages of single−ended  
clock distribution may lead to its use. Using single−ended  
interconnect will reduce the number of signal traces to be  
routed, but remember that all of the complimentary outputs  
still need to be terminated therefore there will be no  
reduction in the termination components required. To use  
the E211 with a single−ended input the arrangement pictured  
in Figure 14 should be used. If the input to the differential  
CLK inputs are AC coupled as pictured in Figure 13 the  
V
BB  
Figure 13. AC Coupled Input  
IN  
dependence on a centered V  
reference is removed. The  
situation pictured will ensure that the input is centered  
BB  
IN  
around the bias set by the V . As a result when AC coupled  
BB  
the AC specification limits for a differential input can be  
used. For more information on AC coupling please refer to  
the interfacing section of the design guide in the ECLinPS  
data book.  
0.01 mF  
Using the Enable Pins  
Both the common enable (CEN) and the individual  
enables (ENx) are synchronous to the CLK or SCLK input  
depending on which is selected. The active low signals are  
clocked into the enable flip flops on the negative edges of the  
E211 clock inputs. In this way the devices will only be  
disabled when the outputs are already in the LOW state. The  
internal propagation delays are such that the delay to the  
output through the distribution buffers is less than that  
through the enable flip flops. This will ensure that the  
disabling of the device will not slice any time off the clock  
pulse. On initial power up the enable flip flops will randomly  
attain a stable state, therefore precautions should be taken on  
initial power up to ensure the E211 is in the desired state.  
V
BB  
Figure 14. Single−Ended Input  
http://onsemi.com  
510  
 
MC10E211, MC100E211  
Z
= 50 W  
= 50 W  
Q
Q
D
D
o
o
Receiver  
Device  
Driver  
Device  
Z
50 W  
50 W  
V
TT  
V
TT  
= V  
CC  
− 2.0 V  
Figure 15. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D − Termination of ECL Logic Devices.)  
ORDERING INFORMATION  
Shipping  
Device  
MC10E221FN  
Package  
PLCC−28  
PLCC−28  
PLCC−28  
PLCC−28  
37 Units / Rail  
500 / Tape & Reel  
37 Units / Rail  
MC10E221FNR2  
MC100E221FN  
MC100E221FNR2  
500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
511  
MC10E211, MC100E211  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1642/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSG I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
512  

相关型号:

MC100E241

8-BIT SCANNABLE REGISTER
ONSEMI

MC100E241FN

8-BIT SCANNABLE REGISTER
MOTOROLA

MC100E241FN

5V ECL 8-Bit Scannable Register
ONSEMI

MC100E241FNG

5V ECL 8-Bit Scannable Register
ONSEMI

MC100E241FNR2

5V ECL 8-Bit Scannable Register
ONSEMI

MC100E241FNR2G

5V ECL 8-Bit Scannable Register
ONSEMI

MC100E241_06

5V ECL 8-Bit Scannable Register
ONSEMI

MC100E256

3-BIT 4:1 MUX-LATCH
ONSEMI

MC100E256FN

3-BIT 4:1 MUX-LATCH
MOTOROLA

MC100E256FNR2

100E SERIES, LOW LEVEL TRIGGERED D LATCH, COMPLEMENTARY OUTPUT, PQCC28, PLASTIC, LCC-28
MOTOROLA

MC100E256FNR2

100E SERIES, LOW LEVEL TRIGGERED D LATCH, COMPLEMENTARY OUTPUT, PQCC28, PLASTIC, LCC-28
ONSEMI

MC100E310

5V ECL Low Voltage 2:8 Differential Fanout Buffer
ONSEMI