MC100EP16VSMPR2 [ONSEMI]

LINE TRANSCEIVER, DSO10, QFN-10;
MC100EP16VSMPR2
型号: MC100EP16VSMPR2
厂家: ONSEMI    ONSEMI
描述:

LINE TRANSCEIVER, DSO10, QFN-10

驱动 接口集成电路 驱动器
文件: 总12页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC100EP16VS  
3.3V / 5VĄECL Differential  
Receiver/Driver with  
Variable Output Swing  
The MC100EP16VS is a differential receiver with variable output  
amplitude. The device is functionally equivalent to the 100EP16 with  
an input pin that controls the amplitude of the outputs.  
http://onsemi.com  
The V  
input pin controls the output amplitude of the EP16VS  
and is referenced to V . (See Figure 5.) The operational range of the  
CTRL  
CC  
input is from V  
MARKING  
DIAGRAMS*  
V
(max output amplitude) to V (min  
CTRL  
BB  
CC  
8
output amplitude). (See Figure 4.) A variable resistor between the V  
CC  
and V  
BB  
pins, with the wiper driving V  
, can control the output  
CTRL  
amplitude. Typical application circuits and a V  
SO–8  
D SUFFIX  
CASE 751  
KEP62  
ALYW  
Voltage vs.  
CTRL  
Output Amplitude graph are described in this data sheet. When left  
open, the V pin will be internally pulled down to V and operate  
8
1
CTRL EE  
1
as a standard EP16, with 100% output amplitude.  
The V pin, an internally generated voltage supply, is available to  
8
1
BB  
this device only. For single–ended input conditions, the unused  
differential input is connected to V as a switching reference voltage.  
TSSOP–8  
DT SUFFIX  
CASE 948R  
KP62  
ALYW  
8
1
BB  
may also rebias AC coupled inputs. When used, decouple V  
V
BB  
and V  
BB  
via a 0.01 mF capacitor and limit current sourcing or sinking  
CC  
to 0.5 mA. When not used, V  
should be left open.  
BB  
10  
1
10  
QFN–10  
MP SUFFIX  
CASE 485C  
220 ps Propagation Delay  
Maximum Frequency > 4 GHz Typical (See Graph)  
The 100 Series Contains Temperature Compensation  
KP62  
ALYW  
1
PECL Mode Operating Range: V  
= 3.0 V to 5.5 V  
CC  
with V = 0 V  
EE  
K = MC100  
A = Assembly Location  
L = Wafer Lot  
Y = Year  
W = Work Week  
NECL Mode Operating Range: V = 0 V  
CC  
with V = –3.0 V to –5.5 V  
EE  
Open Input Default State  
Q Output Will Default LOW with Inputs Open or at V  
EE  
*For additional information, see Application Note  
AND8002/D  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC100EP16VSD  
SO–8  
98 Units/Rail  
MC100EP16VSDR2  
MC100EP16VSDT  
SO–8  
2500 Tape & Reel  
100 Units/Rail  
TSSOP  
MC100EP16VSDTR2  
MC100EP16VSMP  
MC100EP16VSMPR2  
TSSOP 2500 Tape & Reel  
QFN  
QFN  
124 Units/Rail  
3000 Tape & Reel  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
January, 2002 – Rev. 2  
MC100EP16VS/D  
MC100EP16VS  
V
CTRL  
1
2
8
7
V
CC  
V
1
2
10  
9
CTRL  
V
CC  
D
D
Q
D
Q
Q
8
7
3
4
Q
V
V
BB  
D
3
4
6
5
EE  
5
6
NC  
NC  
V
BB  
V
EE  
Figure 1. 8–Lead Pinout (Top View) and Logic Diagram  
Figure 2. 10–Lead QFN Pinout (Top View)  
PIN DESCRIPTION  
PIN  
FUNCTION  
8 LD 10 LD  
D*, D**  
Q, Q  
ECL Data Inputs  
2, 3  
6, 7  
1
2, 3  
8, 9  
1
ECL Data Outputs  
V
CTRL  
*
Output Swing Control  
V
Reference Voltage Output  
Positive Supply  
4
4
BB  
V
CC  
8
10  
7
V
EE  
Negative Supply  
No Connect  
5
NC  
5, 6  
*
Pins will default LOW when left open.  
** Pins will default to V /2 when left open.  
CC  
ATTRIBUTES  
Characteristics  
Value  
75 kW  
Internal Input Pulldown Resistor  
Internal Input Pullup Resistor  
ESD Protection  
37.5 kW  
Human Body Model  
Machine Model  
Charged Device Model  
> 4 kV  
> 200 V  
> 2 kV  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
Level 1  
Flammability Rating  
Oxygen Index  
UL–94 code V–0 A 1/8  
28 to 34  
Transistor Count  
140 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
http://onsemi.com  
2
MC100EP16VS  
MAXIMUM RATINGS (Note 2)  
Symbol Parameter  
Condition 1  
Condition 2  
Rating  
Units  
V
PECL Mode Power Supply  
NECL Mode Power Supply  
V
V
= 0 V  
= 0 V  
6
V
V
CC  
EE  
I
EE  
V
V
–6  
CC  
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
EE  
V
CC  
= 0 V  
= 0 V  
V V  
V V  
I
6
–6  
V
V
I
CC  
EE  
I
Output Current  
Continuous  
Surge  
50  
100  
mA  
mA  
out  
I
V
Sink/Source  
± 0.5  
mA  
°C  
BB  
BB  
TA  
Operating Temperature Range  
Storage Temperature Range  
–40 to +85  
–65 to +150  
T
°C  
stg  
θ
Thermal Resistance (Junction–to–Ambient) 0 LFPM  
500 LFPM  
8 SOIC  
8 SOIC  
190  
130  
°C/W  
°C/W  
JA  
θ
θ
Thermal Resistance (Junction–to–Case)  
std bd  
8 SOIC  
41 to 44  
°C/W  
JC  
JA  
Thermal Resistance (Junction–to–Ambient) 0 LFPM  
500 LFPM  
8 TSSOP  
8 TSSOP  
185  
140  
°C/W  
°C/W  
θ
Thermal Resistance (Junction–to–Case)  
Wave Solder  
std bd  
8 TSSOP  
41 to 44 ± 5%  
°C/W  
°C  
JC  
T
< 2 to 3 sec @ 248°C  
265  
sol  
θ
Thermal Resistance (Junction–to–Ambient) 0 LFPM  
500 LFPM  
10 QFN  
10 QFN  
40  
20  
°C/W  
°C/W  
JA  
θ
Thermal Resistance (Junction–to–Case)  
std bd  
10 QFN  
3.3  
°C/W  
JC  
2. Maximum Ratings are those values beyond which device damage may occur.  
DC CHARACTERISTICS, PECL V  
CC  
= 3.3 V, V  
EE  
= 0 V (Note 3)  
–40°C  
25°C  
85°C  
Symbol  
Characteristic  
Power Supply Current  
Output HIGH Voltage (Max Swing)  
Min  
30  
Typ  
Max  
Min  
Typ  
Max  
Min  
32  
Typ  
Max  
48  
Unit  
mA  
mV  
I
36  
42  
31  
38  
44  
40  
EE  
V
OH  
2155  
2405 2155  
2405 2155  
2405  
(Note 4) V  
V
V  
EE  
CC  
CTRL  
Output LOW Voltage (Max Swing)  
V
OL  
mV  
(Note 4)  
V
V  
> V  
1355  
1490 1605 1355  
1520 1605 1355  
1520 1605  
CTRL  
BB  
VCC V  
See  
Fig.3  
See  
Fig.3  
See  
Fig.3  
CTRL  
BB  
V
= V  
CC  
(Min Swing) 2105  
2230 2355 2095  
2420 2075  
2220 2345 2065  
2420 2075  
2190 2315  
2420  
CTRL  
V
V
V
V
D, D Input HIGH Voltage (Single–Ended)  
D, D Input LOW Voltage (Single–Ended)  
Output Voltage Reference  
2075  
1490  
1805  
mV  
mV  
mV  
mV  
V
IH  
1675 1490  
1675 1490  
1675  
IL  
1905 2005 1805  
1905 2005 1805  
1905 2005  
BB  
CTRL  
Input Voltage (V  
)
V
V
V
V
V
V
CC  
CTRL  
EE  
CC  
EE  
CC  
EE  
V
Input HIGH Voltage Common Mode  
Range (Differential) (Note 5)  
2.0  
2.9  
2.0  
2.9  
2.0  
2.9  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
µA  
µA  
IH  
D
D
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
3. Input and output parameters vary 1:1 with V . V  
can vary +0.3 V to –2.2 V.  
does not change with V . V  
CC EE  
4. All loading with 50 to V –2.0 volts. V  
CC OH  
changes with V  
. V  
is referenced to V  
.
CC  
CTRL OL  
max varies 1:1 with V . The V range is referenced to the most positive side of the differential  
CTRL CTRL  
5. V  
IHCMR  
min varies 1:1 with V , V  
EE IHCMR  
CC IHCMR  
input signal.  
http://onsemi.com  
3
MC100EP16VS  
DC CHARACTERISTICS, PECL V  
CC  
= 5.0 V, V  
EE  
= 0 V (Note 6)  
–40°C  
25°C  
Typ  
38  
85°C  
Typ  
40  
Symbol  
Characteristic  
Power Supply Current  
Output HIGH Voltage (Note 7)  
Min  
30  
Typ  
Max  
Min  
Max  
Min  
Max  
Unit  
mA  
mV  
I
36  
42  
31  
44  
32  
48  
EE  
V
OH  
3855  
3980 4105 3855  
3980 4105 3855  
3980 4105  
V
CC  
> V  
> V  
CTRL  
EE  
Output LOW Voltage (Max Swing)  
V
OL  
mV  
(Note 7)  
V
V  
> V  
3055  
3190 3305 3055  
3220 3305 3055  
3220 3305  
CTRL  
BB  
VCC V  
See  
Fig.3  
See  
Fig.3  
See  
Fig.3  
CTRL  
BB  
V
= V  
CC  
(Min Swing) 3805  
3930 4055 3795  
4120 3775  
3920 4045 3765  
4120 3775  
3890 4015  
4120  
CTRL  
V
V
V
V
D, D Input HIGH Voltage (Single–Ended)  
D, D Input LOW Voltage (Single–Ended)  
3775  
3190  
mV  
mV  
mV  
mV  
V
IH  
3375 3190  
3375 3190  
3375  
IL  
Input Voltage (V  
)
V
V
V
V
V
V
CC  
CTRL  
BB  
CTRL  
EE  
CC  
EE  
CC  
EE  
Output Voltage Reference  
3505  
2.0  
3605 3705 3505  
3605 3705 3505  
3605 3705  
4.6  
V
Input HIGH Voltage Common Mode  
Range (Differential) (Note 8)  
4.6  
2.0  
4.6  
2.0  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
µA  
µA  
IH  
D
D
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
6. Input and output parameters vary 1:1 with V . V  
can vary +2.0 V to –0.5 V.  
does not change with V . V  
CC EE  
7. All loading with 50 to V –2.0 volts. V  
CC OH  
changes with V  
. V  
is referenced to V  
.
CC  
CTRL OL  
CTRL CTRL  
8. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
input signal.  
EE IHCMR CC IHCMR  
DC CHARACTERISTICS, NECL V  
= 0 V; V  
EE  
= –5.5 V to –3.0 V (Note 9)  
CC  
–40°C  
25°C  
Typ  
38  
85°C  
Typ  
40  
Symbol  
Characteristic  
Power Supply Current  
Output HIGH Voltage (Note 10)  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Unit  
mA  
mV  
I
30  
36  
42  
31  
44  
32  
48  
EE  
V
OH  
–1145 –1020 –895 –1145 –1020 –895 –1145 –1020 –895  
V
> V  
CTRL  
> V  
EE  
CC  
Output LOW Voltage (Max Swing)  
V
OL  
mV  
(Note 10)  
V
V  
–1945 –1810 –1695 –1945 –1780 –1695 –1945 –1780 –1695  
CTRL  
CTRL  
BB  
VCC V  
> V  
See  
See  
See  
BB  
Fig.3  
Fig.3  
Fig.3  
V
CTRL  
= V (Min Swing) –1195 –1070 –945 –1205 –1080 –955 –1235 –1110 –985  
CC  
V
V
V
V
D, D Input HIGH Voltage (Single–Ended) –1225  
–880 –1225  
–1625 –1810  
–880 –1225  
–1625 –1810  
–880  
mV  
IH  
D, D Input LOW Voltage (Single–Ended)  
Output Voltage Reference  
–1810  
–1625 mV  
IL  
–1525 –1425 –1325 –1525 –1425 –1325 –1525 –1425 –1325 mV  
BB  
CTRL  
Input Voltage (V  
)
V
EE  
V
CC  
V
EE  
V
CC  
V
EE  
V
CC  
mV  
V
CTRL  
V
Input HIGH Voltage Common Mode  
Range (Differential) (Note 11)  
V
EE  
+2.0  
–0.4  
V
EE  
+2.0  
–0.4  
V
EE  
+2.0  
–0.4  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
µA  
µA  
IH  
D
D
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
9. Input and output parameters vary 1:1 with V  
.
CC  
does not change with V  
10.All loading with 50 to V –2.0 volts. V  
. V  
changes with V  
range is referenced to the most positive side of the differential  
. V  
is referenced to V  
.
CC  
CC OH  
CTRL OL  
CTRL CTRL  
11. V  
IHCMR  
min varies 1:1 with V , V  
input signal.  
max varies 1:1 with V . The V  
EE IHCMR CC IHCMR  
http://onsemi.com  
4
MC100EP16VS  
AC CHARACTERISTICS V  
CC  
= 0 V; V  
EE  
= –3.0 V to –5.5 V or  
V
CC  
= 3.0 V to 5.5 V; V = 0 V (Note 12)  
EE  
–40°C  
Typ  
25°C  
Typ  
> 4  
85°C  
Typ  
> 4  
Symbol  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
f
Maximum Toggle Frequency  
> 4  
GHz  
max  
(See Figure 7. F  
max  
/JITTER)  
t
t
,
Propagation Delay to Output Differential  
Max Swing 150  
ps  
PLH  
PHL  
220  
150  
280  
210  
150  
90  
220  
150  
280  
210  
160  
100  
240  
160  
300  
220  
Min Swing  
90  
t
t
Duty Cycle Skew (Note 13)  
Cycle–to–Cycle Jitter  
5.0  
0.2  
20  
5.0  
0.2  
20  
5.0  
0.2  
20  
ps  
ps  
SKEW  
< 1  
< 1  
< 1  
JITTER  
(See Figure 7. F  
/JITTER)  
max  
V
Input Voltage Swing (Differential) (Note 14)  
150  
800  
1200  
150  
800  
1200  
150  
800  
1200  
mV  
ps  
PP  
t
r
t
f
Output Rise/Fall Times  
(20% – 80%)  
Max Swing Q  
Min Swing  
70  
30  
120  
80  
170  
130  
80  
20  
130  
70  
180  
120  
100  
20  
150  
70  
200  
120  
12.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to V –2.0 V.  
CC  
13.Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays  
are measured from the cross point of the inputs to the cross point of the outputs.  
14.V (min) is minimum input swing for which AC parameters are guaranteed.  
PP  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.0  
0.5  
1.0  
1.5  
2.0  
VOLTS (V)  
Figure 3. V  
– V  
(pin #1)  
CTRL  
CC  
http://onsemi.com  
5
MC100EP16VS  
V
V
OH  
OL  
Min Swing  
Max Swing  
0.0  
0.5  
1.0  
1.5  
2.0  
1.3  
VOLTS (V)  
Figure 4. V  
– V  
CTRL  
CC  
V
CTRL  
+
1
8
7
V
V
CC  
CTRL  
(10)  
V
SWING  
(pk–pk)  
D
2
3
Q
(9)  
D
6
5
Q
(8)  
50 W  
50 W  
V
BB  
4
V
EE  
(7)  
V
CC  
–2 V  
Figure 5. Voltage Source Implementation for 8 Ld Package  
10 Ld Package Pins in ( )  
http://onsemi.com  
6
MC100EP16VS  
+5 V  
1
2
8
V
(10)  
CC  
V
CTRL  
V
SWING  
D
7
6
(pk–pk)  
Q
(9)  
D
3
4
Q
(8)  
470 W  
470 W  
5
V
BB  
V
EE  
(7)  
Figure 6. Alternative Implementation for 8 Ld Package  
10 Ld Package Pins in ( )  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
9
2.00 V Below V  
CC  
8
7
1.25 V Below V  
1.00 V Below V  
CC  
6
5
4
3
CC  
0.75 V Below V  
CC  
2
1
0.25 V Below V  
500  
CC  
(JITTER)  
2500 3000  
FREQUENCY (MHz)  
0
1000  
1500  
2000  
3500  
4000  
Figure 7. F  
/Jitter  
max  
http://onsemi.com  
7
MC100EP16VS  
Q
Q
D
Driver  
Device  
Receiver  
Device  
D
50 Ω  
50 Ω  
V
TT  
V
TT  
= V  
– 2.0 V  
CC  
Figure 8. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020 – Termination of ECL Logic Devices.)  
Resource Reference of Application Notes  
AN1404  
AN1405  
AN1406  
AN1504  
AN1568  
AN1650  
AN1672  
AND8001  
AND8002  
AND8009  
AND8020  
ECLinPS Circuit Performance at Non–Standard V Levels  
IH  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
Using Wire–OR Ties in ECLinPS Designs  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
ECLinPS Plus Spice I/O Model Kit  
Termination of ECL Logic Devices  
For an updated list of Application Notes, please see our website at http://onsemi.com.  
http://onsemi.com  
8
MC100EP16VS  
PACKAGE DIMENSIONS  
SO–8  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751–07  
ISSUE W  
–X–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
–Y–  
G
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
5.00  
4.00  
1.75  
0.51  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
4.80  
3.80  
1.35  
0.33  
0.189  
0.150  
0.053  
0.013  
C
N X 45  
_
SEATING  
PLANE  
–Z–  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25  
0.25  
1.27  
8
0.004  
0.010  
0.010  
0.050  
8
0.007  
0.016  
0
M
J
H
D
K
M
N
S
_
_
_
_
0.25  
5.80  
0.50  
6.20  
0.010  
0.228  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
http://onsemi.com  
9
MC100EP16VS  
PACKAGE DIMENSIONS  
TSSOP–8  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948R–02  
ISSUE A  
8x K REF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
2X L/2  
8
5
4
0.25 (0.010)  
B
–U–  
L
1
M
PIN 1  
IDENT  
5. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
6. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE -W-.  
S
0.15 (0.006) T U  
A
–V–  
F
DETAIL E  
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
3.10  
3.10  
MAX  
0.122  
0.122  
0.043  
0.006  
0.028  
A
B
C
D
F
2.90  
2.90  
0.80  
0.05  
0.40  
0.114  
0.114  
C
1.10 0.031  
0.15 0.002  
0.70 0.016  
0.10 (0.004)  
–W–  
SEATING  
PLANE  
D
–T–  
G
G
K
L
0.65 BSC  
0.026 BSC  
0.25  
0.40 0.010  
0.016  
4.90 BSC  
0.193 BSC  
0
DETAIL E  
M
0
6
6
_
_
_
_
http://onsemi.com  
10  
MC100EP16VS  
PACKAGE DIMENSIONS  
10 QFN  
MP SUFFIX  
CASE 485C–01  
ISSUE O  
–X–  
A
M
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION D APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM  
FROM TERMINAL.  
–Y–  
N
B
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
2 PL  
MILLIMETERS  
DIM MIN MAX  
3.00 BSC  
3.00 BSC  
INCHES  
MIN MAX  
0.25 (0.010) T  
2 PL  
A
B
C
D
E
F
0.118 BSC  
0.118 BSC  
0.80  
1.00  
0.30  
2.55  
1.85  
0.031  
0.039  
0.012  
0.100  
0.073  
0.20  
2.45  
1.75  
0.008  
0.096  
0.069  
0.25 (0.010) T  
G
H
J
0.50 BSC  
0.020 BSC  
J
R
1.23  
1.28  
0.048  
0.050  
0.20 REF  
0.008 REF  
K
L
0.00  
0.35  
0.05  
0.45  
0.000  
0.014  
0.002  
0.018  
C
SEATING  
PLANE  
–T–  
M
N
P
R
1.50 BSC  
1.50 BSC  
0.059 BSC  
0.059 BSC  
K
0.88  
0.60  
0.93  
0.80  
0.035  
0.024  
0.037  
0.031  
E
H
L
G
10  
F
P
1
10 PL D NOTE 3  
M
0.10 (0.004)  
T X Y  
http://onsemi.com  
11  
MC100EP16VS  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
MC100EP16VS/D  

相关型号:

MC100EP16VT

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTD

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTDG

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTDR2

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTDR2G

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTDT

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTDTG

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTDTR2

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTDTR2G

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTMNR4

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP16VTMNR4G

3.3V / 5V ECL Differential Receiver/Driver with Variable Output Swing and Internal Input Termination
ONSEMI

MC100EP17

3.3V / 5V ECL Quad Differential Driver/Receiver
ONSEMI