MC10EP139DTR2 [ONSEMI]

3.3V / 5V ECL /2/4, /4/5/6 Clock Generation Chip; 3.3V / 5V ECL / 2/ 4 /4 /5/6时钟发生器芯片
MC10EP139DTR2
型号: MC10EP139DTR2
厂家: ONSEMI    ONSEMI
描述:

3.3V / 5V ECL /2/4, /4/5/6 Clock Generation Chip
3.3V / 5V ECL / 2/ 4 /4 /5/6时钟发生器芯片

时钟发生器
文件: 总14页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC10EP139, MC100EP139  
3.3V / 5VꢀECL ÷2/4, ÷4/5/6  
Clock Generation Chip  
The MC10/100EP139 is a low skew ÷2/4, ÷4/5/6 clock generation chip  
designed explicitly for low skew clock generation applications. The  
internal dividers are synchronous to each other, therefore, the common  
output edges are all precisely aligned. The device can be driven by either  
a differential or single−ended ECL or, if positive power supplies are used,  
http://onsemi.com  
MARKING  
LVPECL input signals. In addition, by using the V output, a sinusoidal  
BB  
DIAGRAMS*  
source can be AC coupled into the device. If a single−ended input is to be  
used, the V output should be connected to the CLK input and bypassed  
20  
BB  
to ground via a 0.01 mF capacitor.  
20  
The common enable (EN) is synchronous so that the internal dividers  
will only be enabled/disabled when the internal clock is already in the  
LOW state. This avoids any chance of generating a runt clock pulse on  
the internal clock when the device is enabled/disabled as can happen with  
an asynchronous control. The internal enable flip−flop is clocked on the  
falling edge of the input clock, therefore, all associated specification  
limits are referenced to the negative edge of the clock input.  
HEP or KEP  
139  
1
ALYW  
TSSOP−20  
DT SUFFIX  
CASE 948E  
1
20  
Upon start−up, the internal flip−flops will attain a random state;  
therefore, for systems which utilize multiple EP139s, the master reset  
(MR) input must be asserted to ensure synchronization. For systems  
which only use one EP139, the MR pin need not be exercised as the  
internal divider design ensures synchronization between the ÷2/4 and the  
20  
MCXXXEP139  
AWLYYWW  
1
SOIC−20  
DW SUFFIX  
CASE 751D  
1
÷4/5/6 outputs of a single device. All V and V pins must be  
CC  
EE  
externally connected to power supply to guarantee proper operation.  
The 100 Series contains temperature compensation.  
HEP  
KEP  
XXX  
A
L,WL  
Y, YY  
= MC10EP  
= MC100EP  
= 10 or 100  
= Assembly Location  
= Wafer Lot  
= Year  
Maximum Frequency > 1.0 GHz Typical  
50 ps Output−to−Output Skew  
PECL Mode Operating Range: V = 3.0 V to 5.5 V  
CC  
W, WW = Work Week  
with V = 0 V  
EE  
NECL Mode Operating Range: V = 0 V  
CC  
*For additional marking information, refer to  
Application Note AND8002/D.  
with V = −3.0 V to −5.5 V  
EE  
Open Input Default State  
Safety Clamp on Inputs  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 11 of this data sheet.  
Synchronous Enable/Disable  
Master Reset for Synchronization of Multiple Chips  
V Output  
BB  
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
February, 2005 − Rev. 6  
MC10EP139/D  
MC10EP139, MC100EP139  
V
Q0 Q0 Q1 Q1  
19 18 17 16  
Q2 Q2 Q3 Q3  
15 14 13 12  
V
EE  
CC  
Table 1. PIN DESCRIPTION  
PIN  
20  
11  
FUNCTION  
CLK*, CLK*  
EN*  
ECL Differential Clock Inputs  
ECL Sync Enable  
MR*  
ECL Master Reset  
1
2
3
4
5
6
7
8
9
10  
V
BB  
ECL Reference Output  
Q0, Q1, Q0, Q1  
Q2, Q3, Q2, Q3  
DIVSELa*  
ECL Differential B2/4 Outputs  
ECL Differential B4/5/6 Outputs  
ECL Frequency Select Input B2/4  
ECL Frequency Select Input B4/5/6  
ECL Frequency Select Input B4/5/6  
ECL Positive Supply  
Warning: All V and V pins must be externally connected to  
Power Supply to guarantee proper operation.  
CC  
EE  
DIVSELb0*  
DIVSELb1  
Figure 1. 20−Lead Pinout (Top View)  
V
CC  
V
EE  
ECL Negative Supply  
*Pins will default low when left open.  
DIVSELa  
Q0  
CLK  
CLK  
÷2/4  
Q0  
Q1  
R
Q1  
Q2  
EN  
÷4/5/6  
Q2  
Q3  
R
MR  
DIVSELb0  
DIVSELb1  
Q3  
V
EE  
Figure 2. Logic Diagram  
Table 2. FUNCTION TABLES  
CLK  
EN  
MR  
Function  
Z
ZZ  
X
L
H
X
L
L
H
Divide  
Hold Q0:3  
Reset Q0:3  
Z = Low−to−High Transition  
ZZ = High−to−Low Transition  
DIVSELa  
Q0:1 Outputs  
L
H
Divide by 2  
Divide by 4  
DIVSELb0 DIVSELb1  
Q2:3 Outputs  
L
H
L
L
L
H
H
Divide by 4  
Divide by 6  
Divide by 5  
Divide by 5  
H
http://onsemi.com  
2
MC10EP139, MC100EP139  
CLK  
Q (÷2)  
Q (÷4)  
Q (÷5)  
Q (÷6)  
Figure 3. CLK and OUTPUT Timing Diagram  
CLK  
RESET  
Q (÷n)  
t
RR  
Figure 4. Timing Diagram  
http://onsemi.com  
3
MC10EP139, MC100EP139  
Table 3. ATTRIBUTES  
Characteristics  
Internal Input Pulldown Resistor  
Value  
75 kW  
N/A  
Internal Input Pullup Resistor  
ESD Protection  
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 100 V  
> 2 kV  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
Level 1  
Flammability Rating  
Transistor Count  
Oxygen Index: 28 to 34  
UL 94 V−0 @ 0.125 in  
758 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
Table 4. MAXIMUM RATINGS  
Symbol  
Parameter  
PECL Mode Power Supply  
NECL Mode Power Supply  
Condition 1  
= 0 V  
Condition 2  
Rating  
Unit  
V
V
CC  
V
EE  
V
I
V
V
6
EE  
= 0 V  
−6  
V
CC  
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V v V  
6
V
V
EE  
I
CC  
V w V  
−6  
CC  
I
EE  
I
I
Output Current  
Continuous  
Surge  
50  
mA  
mA  
out  
100  
V
BB  
Sink/Source  
± 0.5  
mA  
°C  
BB  
T
A
Operating Temperature Range  
Storage Temperature Range  
−40 to +85  
−65 to +150  
T
stg  
°C  
q
Thermal Resistance (Junction−to−Ambient) 0 lfpm  
500 lfpm  
TSSOP−20  
TSSOP−20  
140  
100  
°C/W  
°C/W  
JA  
q
q
Thermal Resistance (Junction−to−Case)  
Standard Board  
Thermal Resistance (Junction−to−Ambient) 0 lfpm  
500 lfpm  
TSSOP−20  
23 to 41  
°C/W  
JC  
JA  
SOIC−20  
SOIC−20  
90  
60  
°C/W  
°C/W  
q
Thermal Resistance (Junction−to−Case)  
Wave Solder  
Standard Board  
SOIC−20  
33 to 35  
265  
°C/W  
°C  
JC  
T
sol  
<2 to 3 sec @ 248°C  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
http://onsemi.com  
4
 
MC10EP139, MC100EP139  
Table 5. 10EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 2)  
CC  
EE  
−40°C  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
65  
Typ  
82  
Max  
105  
Min  
65  
Max  
105  
Min  
65  
Max  
105  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
83  
84  
V
V
V
V
V
V
Output HIGH Voltage (Note 3)  
Output LOW Voltage (Note 3)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
2165  
1365  
2090  
1365  
1790  
2.0  
2290  
1490  
2415  
1615  
2415  
1690  
1990  
3.3  
2230  
1430  
2155  
1460  
1855  
2.0  
2355  
1555  
2480  
1680  
2480  
1755  
2055  
3.3  
2290  
1490  
2215  
1490  
1915  
2.0  
2415  
1615  
2540  
1740  
2540  
1815  
2115  
3.3  
OH  
OL  
IH  
IL  
1890  
1955  
2015  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 4)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
2. Input and output parameters vary 1:1 with V . V can vary +0.3 V to −2.2 V.  
CC  
EE  
3. All loading with 50 W to V − 2.0 V.  
CC  
4. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 6. 10EP DC CHARACTERISTICS, PECL V = 5.0 V, V = 0 V (Note 5)  
CC  
EE  
−40°C  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
65  
Typ  
82  
Max  
105  
Min  
65  
Max  
105  
Min  
65  
Max  
105  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
83  
84  
V
V
V
V
V
V
Output HIGH Voltage (Note 6)  
Output LOW Voltage (Note 6)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
3865  
3065  
3790  
3065  
3490  
2.0  
3990  
3190  
4115  
3315  
4115  
3390  
3690  
5.0  
3930  
3130  
3855  
3130  
3555  
2.0  
4055  
3255  
4180  
3380  
4180  
3455  
3755  
5.0  
3990  
3190  
3915  
3190  
3615  
2.0  
4115  
3315  
4240  
3440  
4240  
3515  
3815  
5.0  
OH  
OL  
IH  
IL  
3590  
3655  
3715  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 7)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
5. Input and output parameters vary 1:1 with V . V can vary +2.0 V to −0.5 V.  
CC  
EE  
6. All loading with 50 W to V − 2.0 V.  
CC  
7. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
5
 
MC10EP139, MC100EP139  
Table 7. 10EP DC CHARACTERISTICS, NECL V = 0 V, V = −5.5 V to −3.0 V (Note 8)  
CC  
EE  
−40°C  
Typ  
82  
25°C  
Typ  
83  
85°C  
Typ  
84  
Symbol  
Characteristic  
Power Supply Current  
Min  
65  
Max  
Min  
Max  
Min  
Max  
105  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
105  
65  
105  
65  
VOH  
Output HIGH Voltage (Note 9)  
Output LOW Voltage (Note 9)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
1135 −1010 −885 −1070 −945  
−820 −1010 −885  
−760  
V
V
V
V
V
−1935 −1810 −1685 −1870 −1745 −1620 −1810 −1685 −1560  
OL  
−1210  
−1935  
−885 −1145  
−1610 −1870  
−820 −1085  
−1545 −1810  
−760  
IH  
−1485  
IL  
−1510 −1410 −1310 −1445 −1345 −1245 −1385 −1285 −1185  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 10)  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
8. Input and output parameters vary 1:1 with V  
.
CC  
9. All loading with 50 W to V − 2.0 V.  
CC  
10.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 8. 100EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 11)  
CC  
EE  
−40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
70  
Max  
Min  
70  
Max  
105  
Min  
75  
Max  
110  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
83  
100  
2405  
1605  
2420  
1675  
1975  
3.3  
87  
90  
V
V
V
V
V
V
Output HIGH Voltage (Note 12)  
Output LOW Voltage (Note 12)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
2155  
1355  
2075  
1355  
1775  
2.0  
2280  
1480  
2155  
1355  
2075  
1355  
1775  
2.0  
2280  
1480  
2405  
1605  
2420  
1675  
1975  
3.3  
2155  
1355  
2075  
1355  
1775  
2.0  
2280  
1480  
2405  
1605  
2420  
1675  
1975  
3.3  
OH  
OL  
IH  
IL  
1875  
1875  
1875  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 13)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
11. Input and output parameters vary 1:1 with V . V can vary +0.3 V to −2.2 V.  
CC  
EE  
12.All loading with 50 W to V − 2.0 V.  
CC  
13.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
6
 
MC10EP139, MC100EP139  
Table 9. 100EP DC CHARACTERISTICS, PECL V = 5.0 V, V = 0 V (Note 14)  
CC  
EE  
−40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
70  
Max  
Min  
70  
Max  
105  
Min  
75  
Max  
110  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
85  
100  
4105  
3305  
4120  
3375  
3675  
5.0  
90  
95  
V
V
V
V
V
V
Output HIGH Voltage (Note 15)  
Output LOW Voltage (Note 15)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
3855  
3055  
3775  
3055  
3475  
2.0  
3980  
3180  
3855  
3055  
3775  
3055  
3475  
2.0  
3980  
3180  
4105  
3305  
4120  
3375  
3675  
5.0  
3855  
3055  
3775  
3055  
3475  
2.0  
3980  
3180  
4105  
3305  
4120  
3375  
3675  
5.0  
OH  
OL  
IH  
IL  
3575  
3575  
3575  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 16)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
14.Input and output parameters vary 1:1 with V . V can vary +2.0 V to −0.5 V.  
CC  
EE  
15.All loading with 50 W to V − 2.0 V.  
CC  
16.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 10. 100EP DC CHARACTERISTICS, NECL V = 0 V, V = −5.5 V to −3.0 V (Note 17)  
CC  
EE  
−40°C  
25°C  
Typ  
90  
85°C  
Typ  
95  
Symbol  
Characteristic  
Power Supply Current  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
70  
85  
100  
70  
105  
75  
110  
V
V
V
V
V
V
Output HIGH Voltage (Note 18)  
Output LOW Voltage (Note 18)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
1145 −1020 −895 −1145 −1020 −895 −1145 −1020 −895  
−1945 −1820 −1695 −1945 −1820 −1695 −1945 −1820 −1695  
OH  
OL  
−1225  
−1945  
−880 −1225  
−1625 −1945  
−880 −1225  
−1625 −1945  
−880  
IH  
−1625  
IL  
−1525 −1425 −1325 −1525 −1425 −1325 −1525 −1425 −1325  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 19)  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
17.Input and output parameters vary 1:1 with V  
.
CC  
18.All loading with 50 W to V − 2.0 V.  
CC  
19.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
7
 
MC10EP139, MC100EP139  
Table 11. AC CHARACTERISTICS V = 0 V; V = −3.0 V to −5.5 V or  
V = 3.0 V to 5.5 V; V = 0 V (Note 20)  
CC EE  
CC  
EE  
−40°C  
Typ  
25°C  
Typ  
> 1  
85°C  
Typ  
> 1  
Symbol  
Characteristic  
Maximum Frequency  
(See Figure 5 F /JITTER)  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
f
> 1  
GHz  
max  
max  
t
t
,
Propagation Delay  
CLK, Q (Diff)  
MR, Q  
550  
700  
700  
800  
800  
900  
600  
700  
750  
850  
900  
1000  
675  
800  
825  
950  
975  
1100  
ps  
PLH  
PHL  
t
t
Reset Recovery  
Setup Time  
200  
100  
200  
100  
165  
100  
ps  
ps  
RR  
EN, CLK  
DIVSEL, CLK  
200  
400  
120  
180  
200  
400  
120  
180  
200  
400  
120  
180  
s
t
h
Hold Time  
CLK, EN  
CLK, DIVSEL  
100  
200  
50  
140  
100  
200  
50  
140  
100  
200  
50  
140  
ps  
t
t
Minimum Pulse Width  
Within Device Skew  
MR  
550  
450  
550  
450  
550  
450  
ps  
ps  
PW  
Q, Q  
50  
200  
100  
300  
50  
200  
100  
300  
50  
200  
100  
300  
SKEW  
Device−to−Device Skew (Note 21)  
t
Random Clock Jitter (RMS)  
0.2  
800  
180  
< 1.0  
1200  
250  
0.2  
800  
190  
< 1.0  
1200  
275  
0.2  
800  
215  
< 1.5  
1200  
300  
ps  
mV  
ps  
JITTER  
(See Figure 5 F  
/JITTER)  
max  
V
Input Voltage Swing (Differential Con-  
figuration)  
150  
110  
150  
125  
150  
150  
PP  
t
r
t
f
Output Rise/Fall Times  
(20% − 80%)  
Q, Q  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
20.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to V − 2.0 V.  
CC  
21.Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays  
are measured from the cross point of the inputs to the cross point of the outputs.  
http://onsemi.com  
8
 
MC10EP139, MC100EP139  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
8
7
6
5
4
3
2
1
(JITTER)  
0
200  
400  
600  
800  
1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 5. B2, Fmax/Jitter  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
8
7
6
5
4
3
2
1
(JITTER)  
0
200  
400  
600  
800  
1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 6. B5, Fmax/Jitter  
http://onsemi.com  
9
MC10EP139, MC100EP139  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
8
7
6
5
4
3
2
1
(JITTER)  
0
200  
400  
600  
800  
1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 7. B4, Fmax/Jitter  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
8
7
6
5
4
3
2
1
(JITTER)  
0
200  
400  
600  
800  
1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 8. B6, Fmax/Jitter  
http://onsemi.com  
10  
MC10EP139, MC100EP139  
Z = 50 W  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 W  
o
50 W  
50 W  
V
TT  
V
TT  
= V − 2.0 V  
CC  
Figure 9. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D − Termination of ECL Logic Devices.)  
ORDERING INFORMATION  
Device  
MC10EP139DT  
Package  
TSSOP−20  
TSSOP−20  
SOIC−20  
Shipping  
75 Units / Rail  
2500 / Tape & Reel  
38 Units / Rail  
MC10EP139DTR2  
MC10EP139DW  
MC10EP139DWR2  
MC100EP139DT  
MC100EP139DTR2  
MC100EP139DW  
MC100EP139DWR2  
SOIC−20  
1000 / Tape & Reel  
75 Units / Rail  
TSSOP−20  
TSSOP−20  
SOIC−20  
2500 / Tape & Reel  
38 Units / Rail  
SOIC−20  
1000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
11  
MC10EP139, MC100EP139  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1642/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
12  
MC10EP139, MC100EP139  
PACKAGE DIMENSIONS  
SOIC−20  
DW SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751D−05  
ISSUE G  
D
A
q
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
20  
11  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
E
B
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION SHALL  
BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
1
10  
MILLIMETERS  
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
12.95  
7.60  
20X B  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
12.65  
7.40  
M
S
S
B
T
0.25  
A
e
1.27 BSC  
A
H
h
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
L
SEATING  
PLANE  
q
_
_
18X e  
A1  
C
T
http://onsemi.com  
13  
MC10EP139, MC100EP139  
PACKAGE DIMENSIONS  
TSSOP−20  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948E−02  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. ICONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
20X K REF  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
K
K1  
20  
11  
2X L/2  
J J1  
B
L
−U−  
PIN 1  
IDENT  
SECTION N−N  
1
10  
0.25 (0.010)  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
N
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE −W−.  
S
0.15 (0.006) T U  
M
A
−V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.260  
0.177  
0.047  
0.006  
0.030  
A
B
6.40  
4.30  
−−−  
6.60 0.252  
4.50 0.169  
N
C
1.20  
−−−  
D
0.05  
0.50  
0.15 0.002  
0.75 0.020  
F
F
G
H
0.65 BSC  
0.026 BSC  
DETAIL E  
0.27  
0.09  
0.09  
0.19  
0.19  
0.37  
0.011  
0.015  
0.008  
0.006  
0.012  
0.010  
J
0.20 0.004  
0.16 0.004  
0.30 0.007  
0.25 0.007  
−W−  
J1  
K
C
K1  
L
6.40 BSC  
0 8 0 8  
0.252 BSC  
G
D
M
_
_
_
_
H
DETAIL E  
0.100 (0.004)  
−T− SEATING  
PLANE  
ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC10EP139/D  

相关型号:

MC10EP139DTR2G

3.3V / 5V ECL ±2/4, ±4/5/6 Clock Generation Chip
ONSEMI

MC10EP139DW

3.3V / 5V ECL /2/4, /4/5/6 Clock Generation Chip
ONSEMI

MC10EP139DWG

3.3V / 5V ECL ±2/4, ±4/5/6 Clock Generation Chip
ONSEMI

MC10EP139DWR2

3.3V / 5V ECL /2/4, /4/5/6 Clock Generation Chip
ONSEMI

MC10EP139DWR2G

3.3V / 5V ECL ±2/4, ±4/5/6 Clock Generation Chip
ONSEMI

MC10EP139MNG

3.3V / 5V ECL ±2/4, ±4/5/6 Clock Generation Chip
ONSEMI

MC10EP139MNTXG

3.3V / 5V ECL ±2/4, ±4/5/6 Clock Generation Chip
ONSEMI

MC10EP139_06

3.3V / 5V ECL ±2/4, ±4/5/6 Clock Generation Chip
ONSEMI

MC10EP142

3.3 V / 5 V ECL 9-Bit Shift Register
ONSEMI

MC10EP142FA

3.3 V / 5 V ECL 9-Bit Shift Register
ONSEMI

MC10EP142FA

MC10EP142FA
MICROCHIP

MC10EP142FAG

3.3 V / 5 V ECL 9-Bit Shift Register
ONSEMI