MC10EP16VCDTR2 [ONSEMI]

LINE TRANSCEIVER, PDSO8, PLASTIC, TSSOP-8;
MC10EP16VCDTR2
型号: MC10EP16VCDTR2
厂家: ONSEMI    ONSEMI
描述:

LINE TRANSCEIVER, PDSO8, PLASTIC, TSSOP-8

驱动 光电二极管 接口集成电路 驱动器
文件: 总8页 (文件大小:81K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC10EP16VC, MC100EP16VC  
Product Preview  
3.3V / 5VĄECL Differential  
Receiver/Driver with High  
Gain and Enable Output  
http://onsemi.com  
The EP16VC is a world–class differential receiver/driver. The  
device is functionally equivalent to the EP16 and LVEP16 devices but  
with high gain and enable output.  
The EP16VC provides an EN input which is synchronized with the  
data input (D) signal in a way that provides glitchless gating of the  
QHG and QHG outputs.  
MARKING DIAGRAMS*  
8
1
8
8
When the EN signal is LOW, the input is passed to the outputs and  
the data output equals the data input. When the data input is HIGH and  
HEP66  
ALYW  
KEP66  
ALYW  
1
SO–8  
EN goes HIGH, it will force the Q LOW and the Q HIGH on the  
HG  
HG  
D SUFFIX  
CASE 751  
next negative transition of the data input. If the data input is LOW  
when the EN goes HIGH, the next data transition to a HIGH is ignored  
1
and Q remains LOW and Q remains HIGH. The next positive  
HG  
HG  
8
1
8
1
transition of the data input is not passed on to the data outputs under  
these conditions. The Q and Q outputs remain in their disabled  
8
HG  
HG  
HP66  
ALYW  
KP66  
ALYW  
1
state as long as the EN input is held HIGH. The EN input has no  
influence on the Q output and the data input is passed on (inverted) to  
this output whether EN is HIGH or LOW. This configuration is ideal  
for crystal oscillator applications where the oscillator can be free  
running and gated on and off synchronously without adding extra  
counts to the output.  
TSSOP–8  
DT SUFFIX  
CASE 948R  
L = Wafer Lot  
Y = Year  
W = Work Week  
H = MC10  
K = MC100  
The V pin, an internally generated voltage supply, is available to  
BB  
A = Assembly Location  
this device only. For single-ended input conditions, the unused  
differential input is connected to V as a switching reference voltage.  
BB  
*For additional information, see Application Note  
AND8002/D  
V
BB  
may also rebias AC coupled inputs. When used, decouple V  
BB  
and V via a 0.01 mF capacitor and limit current sourcing or sinking  
CC  
to 0.5 mA. When not used, V should be left open.  
BB  
Under open input conditions (pulled to V ) internal input clamps  
EE  
will force the Q output LOW.  
The 100 Series contains temperature compensation.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
300 ps Typical Prop Delay Q, 419 ps Typical Prop Delay QHG, QHG  
Gain > 200X  
Maximum Frequency > 3 GHz Typical  
MC10EP16VCD  
SO–8  
98 Units/Rail  
MC10EP16VCDR2  
MC100EP16VCD  
MC100EP16VCDR2  
MC10EP16VCDT  
SO–8  
SO–8  
2500 Tape & Reel  
98 Units/Rail  
PECL Mode Operating Range: V = 3.0 V to 5.5 V  
CC  
with V = 0 V  
EE  
SO–8  
2500 Tape & Reel  
100 Units/Rail  
NECL Mode Operating Range: V = 0 V  
CC  
TSSOP–8  
with V = –3.0 V to –5.5 V  
EE  
MC10EP16VCDTR2 TSSOP–8 2500 Tape & Reel  
MC100EP16VCDT TSSOP–8 100 Units/Rail  
Open Input Default State  
Q Output Will Default LOW with Inputs Open or at V  
HG  
EE  
MC100EP16VCDTR2 TSSOP–8 2500 Tape & Reel  
V Output  
BB  
This document contains information on a product under development. ON Semiconductor  
reserves the right to change or discontinue this product without notice.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
April, 2001 – Rev. 1  
MC10EP16VC/D  
MC10EP16VC, MC100EP16VC  
Q
D
1
2
8
7
V
CC  
PIN DESCRIPTION  
FUNCTION  
PIN  
D*  
Q
ECL Data Input  
Q
Q
HG  
HG  
ECL Data Output  
Q
, Q  
ECL High Gain Data Outputs  
ECL Enable Input  
HG  
HG  
EN*  
3
4
6
5
V
BB  
V
BB  
V
CC  
V
EE  
Reference Voltage Output  
Positive Supply  
OE  
Q
LEN  
V
BB  
Negative Supply  
LATCH  
V
EE  
EN  
D
*
Pins will default LOW when left open.  
Figure 1. 8–Lead Pinout (Top View) and Logic Diagram  
ATTRIBUTES  
Characteristics  
Value  
75 kW  
N/A  
Internal Input Pulldown Resistor  
Internal Input Pullup Resistor  
ESD Protection  
Human Body Model  
Machine Model  
Charged Device Model  
> 4 kV  
> 200 V  
> 2 kV  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1.)  
Level 1  
Flammability Rating  
Oxygen Index  
UL–94 code V–0 A 1/8”  
28 to 34  
Transistor Count  
167 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
MAXIMUM RATINGS (Note 2.)  
Symbol  
Parameter  
PECL Mode Power Supply  
NECL Mode Power Supply  
Condition 1  
= 0 V  
Condition 2  
Rating  
Units  
V
V
V
6
V
V
CC  
EE  
I
EE  
V
V
= 0 V  
–6  
CC  
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V V  
6
–6  
V
V
EE  
I
CC  
V V  
CC  
I
EE  
I
I
Output Current  
Continuous  
Surge  
50  
100  
mA  
mA  
out  
V
BB  
Sink/Source  
± 0.5  
mA  
°C  
BB  
TA  
Operating Temperature Range  
–40 to +85  
–65 to +150  
T
Storage Temperature Range  
°C  
stg  
θ
Thermal Resistance (Junction to Ambient)  
0 LFPM  
500 LFPM  
8 SOIC  
8 SOIC  
190  
130  
°C/W  
°C/W  
JA  
θ
θ
Thermal Resistance (Junction to Case)  
Thermal Resistance (Junction to Ambient)  
std bd  
8 SOIC  
41 to 44  
°C/W  
JC  
JA  
0 LFPM  
500 LFPM  
8 TSSOP  
8 TSSOP  
185  
140  
°C/W  
°C/W  
θ
Thermal Resistance (Junction to Case)  
Wave Solder  
std bd  
8 TSSOP  
41 to 44  
265  
°C/W  
°C  
JC  
T
<2 to 3 sec @ 248°C  
sol  
2. Maximum Ratings are those values beyond which device damage may occur.  
http://onsemi.com  
2
MC10EP16VC, MC100EP16VC  
10EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 3.)  
CC  
EE  
–40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
20  
Max  
31  
Min  
20  
Max  
31  
Min  
20  
Max  
32  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
24  
24  
24  
V
V
V
V
V
V
Output HIGH Voltage (Note 4.)  
Output LOW Voltage (Note 4.)  
Input HIGH Voltage (Single Ended)  
Input LOW Voltage (Single Ended)  
Output Voltage Reference  
2165  
1365  
2090  
1365  
1790  
2.0  
2240  
1490  
2415  
1615  
2415  
1690  
1990  
3.3  
2230  
1430  
2155  
1460  
1855  
2.0  
2355  
1555  
2480  
1680  
2480  
1755  
2055  
3.3  
2290  
1490  
2215  
1490  
1915  
2.0  
2415  
1615  
2540  
1740  
2540  
1815  
2115  
3.3  
OH  
OL  
IH  
IL  
1890  
1955  
2015  
BB  
Input HIGH Voltage Common Mode  
Range (Differential) (Note 5.)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
µA  
µA  
IH  
D
D
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
3. Input and output parameters vary 1:1 with V . V can vary +0.3 V to –2.2 V.  
CC  
EE  
4. All loading with 50 ohms to V –2.0 volts.  
CC  
5. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
10EP DC CHARACTERISTICS, PECL V = 5.0 V, V = 0 V (Note 6.)  
CC  
EE  
–40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
Max  
31  
Min  
20  
Max  
31  
Min  
20  
Max  
32  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
20  
24  
24  
24  
V
V
V
V
V
V
Output HIGH Voltage (Note 7.)  
Output LOW Voltage (Note 7.)  
3865  
3065  
3790  
3065  
3490  
2.0  
3940  
3190  
4115  
3315  
4115  
3390  
3690  
5.0  
3930  
3130  
3855  
3130  
3555  
2.0  
4055  
3255  
4180  
3380  
4180  
3455  
3755  
5.0  
3990  
3190  
3915  
3190  
3615  
2.0  
4115  
3315  
4240  
3440  
4240  
3515  
3815  
5.0  
OH  
OL  
Input HIGH Voltage (Single Ended)  
Input LOW Voltage (Single Ended)  
Output Voltage Reference  
IH  
IL  
3590  
3655  
3715  
BB  
Input HIGH Voltage Common Mode  
Range (Differential) (Note 8.)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
µA  
µA  
IH  
D
D
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
6. Input and output parameters vary 1:1 with V . V can vary +2.0 V to –0.5 V.  
CC  
EE  
7. All loading with 50 ohms to V –2.0 volts.  
CC  
8. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
10EP DC CHARACTERISTICS, NECL V = 0 V; V = –5.5 V to –3.0 V (Note 9.)  
CC  
EE  
–40°C  
Typ  
24  
25°C  
Typ  
24  
85°C  
Typ  
24  
Symbol  
Characteristic  
Power Supply Current  
Min  
20  
Max  
Min  
Max  
Min  
Max  
32  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
31  
20  
31  
20  
V
V
V
V
V
V
Output HIGH Voltage (Note 10.)  
Output LOW Voltage (Note 10.)  
–1135 –1060 –885 –1070 –945  
–820 –1010 –885  
–760  
OH  
OL  
–1935 –1810 –1685 –1870 –1745 –1620 –1810 –1685 –1560  
Input HIGH Voltage (Single Ended)  
Input LOW Voltage (Single Ended)  
Output Voltage Reference  
–1210  
–1935  
–885 –1145  
–1610 –1870  
–820 –1085  
–1545 –1810  
–760  
IH  
–1485  
IL  
–1510 –1410 –1310 –1445 –1345 –1245 –1385 –1285 –1185  
BB  
Input HIGH Voltage Common Mode  
Range (Differential) (Note 11.)  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
µA  
µA  
IH  
D
D
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
9. Input and output parameters vary 1:1 with V  
.
CC  
10.All loading with 50 ohms to V –2.0 volts.  
CC  
11. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
3
MC10EP16VC, MC100EP16VC  
100EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 12.)  
CC  
EE  
–40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
17  
Max  
36  
Min  
17  
Max  
36  
Min  
22  
Max  
38  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
25  
25  
26  
V
V
V
V
V
V
Output HIGH Voltage (Note 13.)  
Output LOW Voltage (Note 13.)  
Input HIGH Voltage (Single Ended)  
Input LOW Voltage (Single Ended)  
Output Voltage Reference  
2155  
1355  
2075  
1355  
1775  
2.0  
2280  
1480  
2405  
1605  
2420  
1675  
1975  
3.3  
2155  
1355  
2075  
1355  
1775  
2.0  
2280  
1480  
2405  
1605  
2420  
1675  
1975  
3.3  
2155  
1355  
2075  
1355  
1775  
2.0  
2280  
1480  
2405  
1605  
2420  
1675  
1975  
3.3  
OH  
OL  
IH  
IL  
1875  
1875  
1875  
BB  
Input HIGH Voltage Common Mode  
Range (Differential) (Note 14.)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
µA  
µA  
IH  
D
D
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
12.Input and output parameters vary 1:1 with V . V can vary +0.3 V to –2.2 V.  
CC  
EE  
13.All loading with 50 ohms to V –2.0 volts.  
CC  
14.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
100EP DC CHARACTERISTICS, PECL V = 5.0 V, V = 0 V (Note 15.)  
CC  
EE  
–40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol  
Characteristic  
Power Supply Current  
Min  
Max  
36  
Min  
17  
Max  
36  
Min  
22  
Max  
38  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
17  
25  
25  
26  
V
V
V
V
V
V
Output HIGH Voltage (Note 16.)  
Output LOW Voltage (Note 16.)  
3855  
3055  
3775  
3055  
3475  
2.0  
3980  
3180  
4105  
3305  
4120  
3375  
3675  
5.0  
3855  
3055  
3775  
3055  
3475  
2.0  
3980  
3180  
4105  
3305  
4120  
3375  
3675  
5.0  
3855  
3055  
3775  
3055  
3475  
2.0  
3980  
3180  
4105  
3305  
4120  
3375  
3675  
5.0  
OH  
OL  
Input HIGH Voltage (Single Ended)  
Input LOW Voltage (Single Ended)  
Output Voltage Reference  
IH  
IL  
3575  
3575  
3575  
BB  
Input HIGH Voltage Common Mode  
Range (Differential) (Note 17.)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
µA  
µA  
IH  
D
D
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
15.Input and output parameters vary 1:1 with V . V can vary +2.0 V to –0.5 V.  
CC  
EE  
16.All loading with 50 ohms to V –2.0 volts.  
CC  
17.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
100EP DC CHARACTERISTICS, NECL V = 0 V; V = –5.5 V to –3.0 V (Note 18.)  
CC  
EE  
–40°C  
Typ  
25  
25°C  
Typ  
25  
85°C  
Typ  
26  
Symbol  
Characteristic  
Power Supply Current  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
17  
36  
17  
36  
22  
38  
V
V
V
V
V
V
Output HIGH Voltage (Note 19.)  
Output LOW Voltage (Note 19.)  
–1145 –1020 –895 –1145 –1020 –895 –1145 –1020 –895  
–1945 –1820 –1695 –1945 –1820 –1695 –1945 –1820 –1695  
OH  
OL  
Input HIGH Voltage (Single Ended)  
Input LOW Voltage (Single Ended)  
Output Voltage Reference  
–1225  
–1945  
–880 –1225  
–1625 –1945  
–880 –1225  
–1625 –1945  
–880  
IH  
–1625  
IL  
–1525 –1425 –1325 –1525 –1425 –1325 –1525 –1425 –1325  
BB  
Input HIGH Voltage Common Mode  
Range (Differential) (Note 20.)  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
µA  
µA  
IH  
D
D
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.  
18.Input and output parameters vary 1:1 with V  
.
CC  
19.All loading with 50 ohms to V –2.0 volts.  
CC  
20.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
4
MC10EP16VC, MC100EP16VC  
AC CHARACTERISTICS V = 0 V; V = –3.0 V to –5.5 V or  
V = 3.0 V to 5.5 V; V = 0 V (Note 21.)  
CC EE  
CC  
EE  
–40°C  
25°C  
85°C  
Typ  
> 3  
Symbol  
Characteristic  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
Unit  
f
Maximum Frequency  
(See Figure 2. F /JITTER)  
> 3  
> 3  
GHz  
max  
max  
t
t
,
Propagation Delay  
Q
300  
419  
ps  
PLH  
PHL  
QHG, QHG  
t
t
Duty Cycle Skew (Note 22.)  
Cycle–to–Cycle Jitter  
5.0  
0.2  
20  
5.0  
0.2  
20  
5.0  
0.2  
20  
ps  
ps  
SKEW  
< 1  
< 1  
< 1  
JITTER  
(See Figure 2. F  
/JITTER)  
max  
V
Input Voltage Swing (Differential)  
150  
800  
1200  
150  
800  
100  
1200  
150  
800  
1200  
mV  
ps  
PP  
t
r
t
f
Output Rise/Fall Times  
(20% – 80%)  
Q, Q  
21.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V –2.0 V.  
CC  
22.Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays  
are measured from the cross point of the inputs to the cross point of the outputs.  
800  
700  
600  
500  
400  
300  
200  
100  
0
8
7
6
5
4
3
2
1
TBD  
0
1000  
2000  
3000  
4000  
5000  
6000  
FREQUENCY (MHz)  
Figure 2. Fmax/Jitter  
http://onsemi.com  
5
MC10EP16VC, MC100EP16VC  
Q
D
Receiver  
Device  
Driver  
Device  
Qb  
Db  
50  
TT  
50  
W
W
V
TT  
V
V
=
– 2.0 V  
CC  
Figure 3. Typical Termination for Output Driver and Device Evaluation  
(Refer to Application Note AND8020 – Termination of ECL Logic Devices.)  
Resource Reference of Application Notes  
AN1404  
AN1405  
AN1406  
AN1504  
AN1568  
AN1650  
AN1672  
AND8001  
AND8002  
AND8009  
AND8020  
ECLinPS Circuit Performance at Non–Standard VIH Levels  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
Using Wire–OR Ties in ECLinPS Designs  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
ECLinPS Plus Spice I/O Model Kit  
Termination of ECL Logic Devices  
For an updated list of Application Notes, please see our website at http://onsemi.com.  
http://onsemi.com  
6
MC10EP16VC, MC100EP16VC  
PACKAGE DIMENSIONS  
SO–8  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751–07  
ISSUE W  
–X–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
–Y–  
G
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
5.00  
4.00  
1.75  
0.51  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
4.80  
3.80  
1.35  
0.33  
0.189  
0.150  
0.053  
0.013  
C
N X 45  
_
SEATING  
PLANE  
–Z–  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25  
0.25  
1.27  
8
0.004  
0.010  
0.010  
0.050  
8
0.007  
0.016  
0
M
J
H
D
K
M
N
S
_
_
_
_
0.25  
5.80  
0.50  
6.20  
0.010  
0.228  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
TSSOP–8  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948R–02  
ISSUE A  
8x K REF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
2X L/2  
8
5
4
0.25 (0.010)  
B
–U–  
L
1
M
PIN 1  
IDENT  
5. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
6. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE -W-.  
S
0.15 (0.006) T U  
A
–V–  
F
DETAIL E  
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
3.10  
3.10  
MAX  
0.122  
0.122  
0.043  
0.006  
0.028  
A
B
C
D
F
2.90  
2.90  
0.80  
0.05  
0.40  
0.114  
0.114  
C
1.10 0.031  
0.15 0.002  
0.70 0.016  
0.10 (0.004)  
–W–  
SEATING  
PLANE  
D
–T–  
G
G
K
L
0.65 BSC  
0.026 BSC  
0.25  
0.40 0.010  
0.016  
4.90 BSC  
0.193 BSC  
0
DETAIL E  
M
0
6
6
_
_
_
_
http://onsemi.com  
7
MC10EP16VC, MC100EP16VC  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
MC10EP16VC/D  

相关型号:

MC10EP16_06

3.3V / 5V ECL Differential Receiver/Driver
ONSEMI

MC10EP17

3.3V / 5VECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17DT

3.3V / 5VECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17DTG

3.3V / 5V ECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17DTR2

3.3V / 5VECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17DTR2G

3.3V / 5V ECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17DW

3.3V / 5VECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17DWG

3.3V / 5V ECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17DWR2

3.3V / 5VECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17DWR2G

3.3V / 5V ECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17MNG

3.3V / 5V ECL Quad Differential Driver/Receiver
ONSEMI

MC10EP17MNTXG

3.3V / 5V ECL Quad Differential Driver/Receiver
ONSEMI