MC10EP445 [ONSEMI]

3.3V/5V ECL 8−Bit Serial/Parallel Converter; 3.3V / 5V ECL 8位串行/并行转换器
MC10EP445
型号: MC10EP445
厂家: ONSEMI    ONSEMI
描述:

3.3V/5V ECL 8−Bit Serial/Parallel Converter
3.3V / 5V ECL 8位串行/并行转换器

转换器
文件: 总18页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC10EP445, MC100EP445  
3.3V/5VꢀECL 8−Bit  
Serial/Parallel Converter  
Description  
The MC10/100EP445 is an integrated 8–bit differential serial to  
parallel data converter with asynchronous data synchronization. The  
device has two modes of operation. CKSEL HIGH mode is designed  
to operate NRZ data rates of up to 3.3 Gb/s, while CKSEL LOW mode  
is designed to operate at twice the internal clock data rate of up to  
5.0 Gb/s. The conversion sequence was chosen to convert the first  
serial bit to Q0, the second bit to Q1, etc. Two selectable differential  
serial inputs, which are selected by SINSEL, provide this device with  
loop−back testing capability. The MC10/100EP445 has a SYNC pin  
which, when held high for at least two consecutive clock cycles, will  
swallow one bit of data shifting the start of the conversion data from  
http://onsemi.com  
MARKING  
DIAGRAM*  
MCxxx  
EP445  
AWLYYWWG  
LQFP−32  
FA SUFFIX  
CASE 873A  
D to D . Each additional shift requires an additional pulse to be  
n
n+1  
applied to the SYNC pin.  
Control pins are provided to reset and disable internal clock  
xxx  
A
= 10 or 100  
= Assembly Location  
circuitry. Additionally, V pin is provided for single−ended input  
BB  
WL  
YY  
WW  
G
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
condition.  
The 100 Series contains temperature compensation.  
Features  
1530 ps Propagation Delay  
*For additional marking information, refer to  
Application Note AND8002/D.  
5.0 Gb/s Typical Data Rate for CLKSEL LOW Mode  
Differential Clock and Serial Inputs  
V Output for Single-Ended Input Applications  
BB  
Asynchronous Data Synchronization (SYNC)  
Asynchronous Master Reset (RESET)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 16 of this data sheet.  
PECL Mode Operating Range: V = 3.0 V to 5.5 V  
CC  
with V = 0 V  
EE  
NECL Mode Operating Range: V = 0 V  
CC  
with V = −3.0 V to −5.5 V  
EE  
Open Input Default State  
CLK ENABLE Immune to Runt Pulse Generation  
Pb−Free Packages are Available*  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
July, 2006 − Rev. 11  
MC10EP445/D  
MC10EP445, MC100EP445  
Table 1. PIN DESCRIPTION  
Pin  
Function  
24 23 22 21 20 19 18 17  
SINA*, SINA*  
ECL Differential Serial Data Input A  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
SINSEL  
V
EE  
SINB*, SINB*  
SINSEL*  
ECL Differential Serial Data Input B  
ECL Serial Input Selector Pin  
Q3  
Q4  
SINB  
SINB  
Q0−Q7  
ECL Parallel Data Outputs  
ECL Differential Clock Inputs  
MC10EP445  
MC100EP445  
V
EE  
V
CC  
CC  
CLK*, CLK*  
V
BB0  
V
PCLK, PCLK  
SYNC*  
ECL Differential Parallel Clock Output  
ECL Conversion Synchronizing Input  
ECL Clock Input Selector Pin  
SINA  
SINA  
Q5  
Q6  
Q7  
CKSEL*  
CKEN*  
ECL Clock Enable Pin  
ECL Reset Pin  
V
CC  
RESET*  
1
2
3
4
5
6
7
8
V
V
, V  
Output Reference Voltage  
Positive Supply  
BB0 BB1  
CC  
EE  
V
Negative Supply  
*
Pins will default logic LOW or differential logic LOW  
when left open.  
Warning: All V and V pins must be externally con-  
CC  
EE  
nected to Power Supply to guarantee proper operation.  
Figure 1. 32−Lead LQFP Pinout (Top View)  
Table 2. TRUTH TABLE  
FUNCTION  
High  
Low  
Select SINA Input  
PIN  
SINSEL  
CKSEL  
Select SINB Input  
Q: PCLK = 8:1  
CLK: Q = 1:2  
Q: PCLK = 8:1  
CLK: Q = 1:1  
CLK  
Q
CLK  
Q
CKEN  
Synchronously Disable Internal Clock Circuitry  
Synchronously Enable Internal  
Clock Circuitry  
RESET  
SYNC  
Asynchronous Master Reset  
Synchronous Enable  
Asynchronously Applied to Swallow a Data Bit  
Normal Conversion Process  
http://onsemi.com  
2
MC10EP445, MC100EP445  
SINA  
V
EE  
SINA  
SINB  
Q0  
Q4  
1:2  
DEMUX  
1:2  
DEMUX  
1:2  
DEMUX  
SINB  
SINSEL  
Q2  
Q6  
Q1  
1:2  
DEMUX  
CKEN  
T
Q
Q
C
1:2  
1:2  
R
R
DEMUX  
DEMUX  
Q5  
Q3  
T
1:2  
DEMUX  
C
SYNC  
Q7  
Control  
Logic  
PCLK  
PCLK  
DIV2  
DIV2  
CLK  
CLK  
CKSEL  
RESET  
Figure 2. Logic Diagram  
Table 3. ATTRIBUTES  
Characteristics  
Value  
75 kꢀ  
N/A  
Internal Input Pulldown Resistor  
Internal Input Pull−up Resistor  
ESD Protection  
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 200 V  
> 2 kV  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
LQFP−32  
Oxygen Index: 28 to 34  
Pb Pkg  
Level 2  
Pb−Free Pkg  
Level 2  
Flammability Rating  
Transistor Count  
UL 94 V−0 @ 0.125 in  
993 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
http://onsemi.com  
3
 
MC10EP445, MC100EP445  
Table 4. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition 1  
= 0 V  
Condition 2  
Rating  
Unit  
V
V
CC  
V
EE  
V
I
PECL Mode Power Supply  
NECL Mode Power Supply  
V
V
6
EE  
= 0 V  
−6  
V
CC  
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V V  
6
V
V
EE  
I
CC  
V V  
−6  
CC  
I
EE  
I
I
Output Current  
Continuous  
Surge  
50  
mA  
mA  
out  
100  
V
BB  
Sink/Source  
0.5  
mA  
°C  
BB  
T
Operating Temperature Range  
−40 to +85  
−65 to +150  
A
T
Storage Temperature Range  
°C  
stg  
Thermal Resistance (Junction−to−Ambient)  
0 lfpm  
32 LQFP  
32 LQFP  
80  
55  
°C/W  
°C/W  
JA  
500 lfpm  
Thermal Resistance (Junction−to−Case)  
Wave Solder  
Standard Board  
32 LQFP  
12 to 17  
°C/W  
°C  
JC  
T
sol  
Pb <2 to 3 sec @ 248°C  
265  
265  
Pb−Free <2 to 3 sec @ 260°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
Table 5. 10EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 2)  
CC  
EE  
−40°C  
25°C  
Typ  
85°C  
Typ  
Min  
95  
Typ  
119  
Max  
143  
Min  
98  
Max  
146  
Min  
100  
Max  
150  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
122  
125  
V
V
V
V
V
V
Output HIGH Voltage (Note 3)  
Output LOW Voltage (Note 3)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
2165  
1365  
2090  
1365  
1790  
2.0  
2290  
1490  
2415  
1615  
2415  
1690  
1990  
3.3  
2230  
1430  
2155  
1460  
1855  
2.0  
2355  
1555  
2480  
1680  
2480  
1755  
2055  
3.3  
2290  
1490  
2215  
1490  
1915  
2.0  
2415  
1615  
2540  
1740  
2540  
1815  
2115  
3.3  
OH  
OL  
IH  
IL  
1890  
1955  
2015  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 4)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
A  
A  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
2. Input and output parameters vary 1:1 with V . V can vary +0.3 V to −2.2 V.  
CC  
EE  
3. All loading with 50 to V − 2.0 V.  
CC  
4. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
4
 
MC10EP445, MC100EP445  
Table 6. 10EP DC CHARACTERISTICS, PECL V = 5.0 V, V = 0 V (Note 5)  
CC  
EE  
−40°C  
25°C  
Typ  
85°C  
Typ  
Min  
95  
Typ  
119  
Max  
143  
Min  
98  
Max  
146  
Min  
100  
Max  
150  
Symbol  
Characteristic  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
Power Supply Current (Note 6)  
Output HIGH Voltage (Note 7)  
Output LOW Voltage (Note 7)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
122  
125  
V
V
V
V
V
V
3865  
3065  
3790  
3065  
3490  
2.0  
3990  
3190  
4115  
3315  
4115  
3390  
3690  
5.0  
3930  
3130  
3855  
3130  
3555  
2.0  
4055  
3255  
4180  
3380  
4180  
3455  
3755  
5.0  
3990  
3190  
3915  
3190  
3615  
2.0  
4115  
3315  
4240  
3440  
4240  
3515  
3815  
5.0  
OH  
OL  
IH  
IL  
3590  
3655  
3715  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 8)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
A  
A  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
5. Input and output parameters vary 1:1 with V . V can vary +2.0 V to −0.5 V.  
CC  
EE  
6. Required 500 lfpm air flow when using +5 V power supply. For (V − V ) >3.3 V, 5 to 10 in line with V required for maximum thermal  
CC  
EE  
EE  
protection at elevated temperatures. Recommend V −V operation at 3.3 V.  
CC  
EE  
7. All loading with 50 to V − 2.0 V.  
CC  
8. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V range is referenced to the most positive side of the differential  
IHCMR  
IHCMR  
EE IHCMR  
CC  
input signal.  
Table 7. 10EP DC CHARACTERISTICS, NECL V = 0 V, V = −5.5 V to −3.0 V (Note 9)  
CC  
EE  
−40°C  
Typ  
25°C  
Typ  
122  
85°C  
Typ  
125  
Min  
95  
Max  
Min  
Max  
Min  
Max  
150  
Symbol  
Characteristic  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
Power Supply Current (Note 10)  
Output HIGH Voltage (Note 11)  
Output LOW Voltage (Note 11)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
119  
143  
98  
146  
100  
V
V
V
V
V
V
1135 −1010 −885 −1070 −945  
−820 −1010 −885  
−760  
OH  
−1935 −1810 −1685 −1870 −1745 −1620 −1810 −1685 −1560  
OL  
−1210  
−1935  
−885 −1145  
−1610 −1870  
−820 −1085  
−1545 −1810  
−760  
IH  
−1485  
IL  
−1510 −1410 −1310 −1445 −1345 −1245 −1385 −1285 −1185  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 12)  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
A  
A  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
9. Input and output parameters vary 1:1 with V  
.
CC  
10.Required 500 lfpm air flow when using −5 V power supply. For (V − V ) >3.3 V, 5 to 10 in line with V required for maximum thermal  
CC  
EE  
EE  
protection at elevated temperatures. Recommend V −V operation at 3.3 V.  
CC  
EE  
11. All loading with 50 to V − 2.0 V.  
CC  
12.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V range is referenced to the most positive side of the differential  
IHCMR  
IHCMR  
EE IHCMR  
CC  
input signal.  
http://onsemi.com  
5
 
MC10EP445, MC100EP445  
Table 8. 100EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 13)  
CC  
EE  
−40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Min  
95  
Max  
Min  
98  
Max  
146  
Min  
100  
Max  
150  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
119  
143  
2405  
1605  
2420  
1675  
1975  
3.3  
122  
125  
V
V
V
V
V
V
Output HIGH Voltage (Note 14)  
Output LOW Voltage (Note 14)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
2155  
1355  
2075  
1355  
1775  
2.0  
2280  
1480  
2155  
1355  
2075  
1355  
1775  
2.0  
2280  
1480  
2405  
1605  
2420  
1675  
1975  
3.3  
2155  
1355  
2075  
1355  
1775  
2.0  
2280  
1480  
2405  
1605  
2420  
1675  
1975  
3.3  
OH  
OL  
IH  
IL  
1875  
1875  
1875  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 15)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
A  
A  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
13.Input and output parameters vary 1:1 with V . V can vary +0.3 V to −2.2 V.  
CC  
EE  
14.All loading with 50 to V − 2.0 V.  
CC  
15.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 9. 100EP DC CHARACTERISTICS, PECL V = 5.0 V, V = 0 V (Note 16)  
CC  
EE  
−40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Min  
95  
Max  
Min  
98  
Max  
146  
Min  
100  
Max  
150  
Symbol  
Characteristic  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
Power Supply Current (Note 17)  
Output HIGH Voltage (Note 18)  
Output LOW Voltage (Note 18)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
119  
143  
4105  
3305  
4120  
3375  
3675  
5.0  
122  
125  
V
V
V
V
V
V
3855  
3055  
3775  
3055  
3475  
2.0  
3980  
3180  
3855  
3055  
3775  
3055  
3475  
2.0  
3980  
3180  
4105  
3305  
4120  
3375  
3675  
5.0  
3855  
3055  
3775  
3055  
3475  
2.0  
3980  
3180  
4105  
3305  
4120  
3375  
3675  
5.0  
OH  
OL  
IH  
IL  
3575  
3575  
3575  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 19)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
A  
A  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
16.Input and output parameters vary 1:1 with V . V can vary +2.0 V to −0.5 V.  
CC  
EE  
17.Required 500 lfpm air flow when using +5 V power supply. For (V − V ) >3.3 V, 5 to 10 in line with V required for maximum thermal  
CC  
EE  
EE  
protection at elevated temperatures. Recommend V −V operation at 3.3 V.  
CC  
EE  
18.All loading with 50 to V − 2.0 V.  
CC  
19.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V range is referenced to the most positive side of the differential  
IHCMR  
IHCMR  
EE IHCMR  
CC  
input signal.  
http://onsemi.com  
6
 
MC10EP445, MC100EP445  
Table 10. 100EP DC CHARACTERISTICS, NECL V = 0 V, V = −5.5 V to −3.0 V (Note 20)  
CC  
EE  
−40°C  
25°C  
Typ  
122  
85°C  
Typ  
125  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
V
I
EE  
Power Supply Current (Note 21)  
Output HIGH Voltage (Note 22)  
Output LOW Voltage (Note 22)  
Input HIGH Voltage (Single−Ended)  
Input LOW Voltage (Single−Ended)  
Output Voltage Reference  
95  
119  
143  
98  
146  
100  
150  
V
V
V
V
V
V
1145 −1020 −895 −1145 −1020 −895 −1145 −1020 −895  
−1945 −1820 −1695 −1945 −1820 −1695 −1945 −1820 −1695  
OH  
OL  
−1225  
−1945  
−880 −1225  
−1625 −1945  
−880 −1225  
−1625 −1945  
−880  
IH  
−1625  
IL  
−1525 −1425 −1325 −1525 −1425 −1325 −1525 −1425 −1325  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 23)  
V
EE  
+ 2.0  
0.0  
V
EE  
+ 2.0  
0.0  
V + 2.0  
EE  
0.0  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
A  
A  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
20.Input and output parameters vary 1:1 with V  
.
CC  
21.Required 500 lfpm air flow when using −5.0 V power supply. For (V − V ) > 3.3 V, 5 to 10 in line with V required for maximum  
CC  
EE  
EE  
thermal protection at elevated temperatures. Recommend V − V operation at v 3.3 V.  
CC  
EE  
22.All loading with 50 to V − 2.0 V.  
CC  
23.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V range is referenced to the most positive side of the differential  
IHCMR  
IHCMR  
EE IHCMR  
CC  
input signal.  
Table 11. AC CHARACTERISTICS V = 0 V; V = −3.0 V to −5.5 V or V = 3.0 V to 5.5 V; V = 0 V (Note 24)  
CC  
EE  
CC  
EE  
−40°C  
25°C  
85°C  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Symbol  
Characteristic  
Maximum Input CLK Frequency CKSEL = LOW  
Unit  
f
2.0  
2.8  
2.5  
3.3  
2.0  
2.8  
2.5  
3.3  
1.7  
2.8  
2.2  
3.3  
GHz  
max  
(See Figure 12. F /JITTER) CKSEL = HIGH  
max  
t
t
,
Propagation Delay to  
Output Differential  
CLK to Q 1280 1475 1710 1335 1557 1795 1450 1663 1950  
CLK TO PCLK 1000 1240 1490 1050 1310 1580 1140 1420 1710  
ps  
ps  
ps  
PLH  
PHL  
ts  
Setup Time  
SINA, B+ TO CLK+ (Figure 4) −400 −459  
−420 −479  
−440 −492  
CKEN+ TO CLK− (Figure 5) 100  
50  
100  
50  
100  
50  
t
h
Hold Time  
CLK+ TO SINA, B− (Figure 4) 533  
474  
−35  
550  
45  
490  
−35  
560  
45  
508  
−35  
CLK− TO CKEN (Figure 5)  
45  
350  
t
t
t
/t  
Reset Recovery (Figure 3)  
Minimum Pulse Width  
180  
350  
400  
180  
350  
400  
180  
ps  
ps  
ps  
RR RR2  
RESET 400  
PW  
RMS Random Clock Jitter  
JITTER  
@ 2.0 GHz CLK_SEL LOW  
@ 2.5 GHz CLK_SELF HIGH  
@ 3.0 GHz CLK_SEL HIGH  
1.5  
1.0  
1.5  
1.5  
1.0  
2.0  
1.5  
1.5  
2.5  
V
PP  
Input Voltage Swing (Differential Configuration)  
(Note 25)  
150  
800 1200 150  
800 1200 150  
800 1200 mV  
t
r
t
f
Output Rise/Fall Times  
(20% − 80%)  
Q/Q 100  
PCLK/PCLK 100  
180  
180  
400  
250  
100  
100  
200  
200  
400  
300  
125  
125  
230  
230  
425  
325  
ps  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
24.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to V − 2.0 V.  
CC  
25.V (min) is the minimum input swing for which AC parameters are guaranteed.  
PP  
http://onsemi.com  
7
 
MC10EP445, MC100EP445  
t
RR  
Reset  
CLK  
CLK  
Figure 3. Reset Recovery  
CLK  
Data Setup Time  
Data Hold Time  
+
t
s
+
t
h
Figure 4. Data Setup and Hold Time  
CLK  
+
+
CKEN Setup Time  
CKEN Hold Time  
t
s
t
h
Figure 5. CKEN Setup and Hold Time  
http://onsemi.com  
8
MC10EP445, MC100EP445  
APPLICATION INFORMATION  
The MC10/100EP445 is an integrated 1:8 serial to parallel  
The two selectable serial data paths can be used for  
loop−back testing as well as the bit error testing.  
Upon power−up, the internal flip−flops will attain a  
random state. To synchronize multiple flip–flops in the  
device, the Reset (pin 1) must be asserted. The reset pin will  
disable the internal clock signal irrespective of the CKEN  
state (CKEN disables the internal clock circuitry). The  
device will grab the first stream of data after the falling edge  
of RESETÀ, followed by the falling edge of CLKÁ, on  
second rising edge of CLKÂ in either CKSEL modes. (See  
Figure 6)  
converter with two modes of operation selected by  
CKSEL (Pin 7). CKSEL HIGH mode only latches data on  
the rising edge of the input CLK and CKSEL LOW mode  
latches data on both the rising and falling edge of the input  
CLK. CKSEL LOW is the open default state. Either of the  
two differential input serial data path provided for this  
device, SINA and SINB, can be chosen with the SINSEL pin  
(pin 25). SINA is the default input path when SINSEL pin  
is left floating. Because of internal pull−downs on the input  
pins, all input pins will default to logic low when left open.  
RESET  
(Asynchronous Reset)  
RESET  
(Synchronous ENABLE)  
Â
Á
CLK  
RESET  
PCLK  
À
Figure 6. Reset Timing Diagram  
http://onsemi.com  
9
MC10EP445, MC100EP445  
For CKSEL LOW operation, the data is latched on both the rising edge and the falling edge of the clock and the time from  
when the serial data is latchedÀ to when the data is seen on the parallel outputÁ is 6 clock cycles (see Figure 7).  
Number of Clock Cycles from Data Latch to Q  
1
2
3
4
5
6
À
CLK  
SINA  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24  
RESET  
CKEN  
CKSEL  
PCLK  
Á
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
D0  
D8  
D9  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D10  
D11  
D12  
D13  
D14  
D15  
Figure 7. Timing Diagram A. 1:8 Serial to Parallel Conversion with CKSEL LOW  
http://onsemi.com  
10  
 
MC10EP445, MC100EP445  
Similarly, for CKSEL HIGH operation, the data is latched only on the rising edge of the clock and the time from when the  
serial data is latchedÀ to when the data is seen on the parallel outputÁ is 12 clock cycles (see Figure 8).  
Number of Clock Cycles from Data Latch to Q  
1
2
3
4
5
6
7
8
9
10  
11  
12  
À
CLK  
SINA  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
RESET  
CKEN  
CKSEL  
PCLK  
Á
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Figure 8. Timing Diagram A. 1:8 Serial to Parallel Conversion with CKSEL HIGH  
http://onsemi.com  
11  
 
MC10EP445, MC100EP445  
To allow the user to synchronize the output byte data  
correctly, the start bit for conversion can be moved using the  
SYNC input pin (pin 2). Asynchronously asserting the  
SYNC pin will force the internal clock to swallow a clock  
pulse, effectively shifting a bit from the Q to the Q output  
clock cycles shifts the start bit for conversion from Q to  
n
Q
n−1  
. The bit is swallowed following the two clock cycle  
pulse width of SYNCÀ on the next triggering edge of  
clockÁ (either on the rising or the falling edge of the clock).  
Each additional shift requires an additional pulse to be  
applied to the SYNC pin. (See Figure 9)  
n
n−1  
as shown in Figure 9 and Figure 10. For CKSEL LOW, a  
single pulse applied asynchronously for two consecutive  
2 Clock Cycles for SYNC  
Next Triggering Edge of Clock  
Bit D8 is Swallowed  
1
2
Á
CLK  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24  
SINA  
CKSEL  
PCLK  
À
SYNC  
Q0  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D9  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
Q1  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Figure 9. Timing Diagram A. 1:8 Serial to Parallel Conversion with SYNC Pulse at CKSEL LOW  
http://onsemi.com  
12  
 
MC10EP445, MC100EP445  
For CKSEL HIGH, a single pulse applied asynchronously  
for three consecutive clock cycles shifts the start bit for  
conversion from Q to Q . The bit is swallowed following  
triggering edge of clockÁ (on the rising edge of the clock  
only). Each additional shift requires an additional pulse to be  
applied to the SYNC pin. (See Figure 10)  
n
n−1  
the three clock cycle pulse width of SYNCÀ on the next  
3 Clock Cycles for Sync  
Next Triggering Edge of Clock  
Bit D8 is Swallowed  
1
2
3
Á
CLK  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
SINA  
À
SYNC  
PCLK  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Figure 10. Timing Diagram A. 1:8 Serial to Parallel Conversion with SYNC Pulse at CKSEL HIGH  
http://onsemi.com  
13  
 
MC10EP445, MC100EP445  
The synchronous CKEN (pin 3) applied with at least one  
edge of CLK will suspend all activities. The first data bit will  
clock on the rising edge, since the falling edge of CKEN  
followed by the falling edge of the incoming clock triggers  
the enabling of the internal process. (See Figure 11)  
clock cycle pulse length will disable the internal clock  
signal. The synchronous CKEN will suspend all of the  
device activities and prevent runt pulses from being  
generated. The rising edge of CKEN followed by the falling  
Internal Clock  
Disabled  
Internal Clock  
Enabled  
CLK  
CKEN  
PCLK  
CKSEL  
Figure 11. Timing Diagram with CKEN with CKSEL HIGH  
The differential PCLK output (pins 22 and 23) is a word  
framer and can help the user to synchronize the parallel data  
outputs. During CKSEL LOW operation, the PCLK will  
provide a divide by 4−clock frequency, which frames the  
serial data in period of PCLK output. Likewise during  
CKSEL HIGH operation, the PCLK will provide a divide by  
8−clock frequency.  
conditions, the unused differential input is connected to V  
BB  
as a switching reference voltage. V may also rebias AC  
BB  
coupled inputs. When used, decouple V and V via a  
BB  
CC  
0.01 F capacitor, which will limit the current sourcing or  
sinking to 0.5mA. When not used, V should be left open.  
BB  
Also, both outputs of the differential pair must be terminated  
(50 to V = V – 2 V) even if only one output is used.  
TT  
CC  
The V pin, an internally generated voltage supply, is  
BB  
available to this device only. For single–ended input  
http://onsemi.com  
14  
 
MC10EP445, MC100EP445  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
9
CKSEL HIGH  
8
7
6
CKSEL LOW  
5
4
3
2
1
(JITTER)  
1500  
0
500  
1000  
2000  
2500  
3000  
3500  
INPUT CLK FREQUENCY (MHz)  
Figure 12. Fmax/Jitter  
Z = 50 ꢀ  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 ꢀ  
o
50 ꢀ  
50 ꢀ  
V
TT  
V
TT  
= V − 3.0 V  
CC  
Figure 13. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D − Termination of ECL Logic Devices.)  
http://onsemi.com  
15  
MC10EP445, MC100EP445  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC10EP445FA  
LQFP−32  
250 Units / Tray  
250 Units / Tray  
MC10EP445FAG  
LQFP−32  
(Pb−Free)  
MC10EP445FAR2  
MC10EP445FAR2G  
LQFP−32  
2000 / Tape & Reel  
2000 / Tape & Reel  
LQFP−32  
(Pb−Free)  
MC100EP445FA  
LQFP−32  
250 Units / Tray  
250 Units / Tray  
MC100EP445FAG  
LQFP−32  
(Pb−Free)  
MC100EP445FAR2  
MC100EP445FAR2G  
LQFP−32  
2000 / Tape & Reel  
2000 / Tape & Reel  
LQFP−32  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1642/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
16  
MC10EP445, MC100EP445  
PACKAGE DIMENSIONS  
32 LEAD LQFP  
CASE 873A−02  
ISSUE B  
4X  
A
A1  
0.20 (0.008) AB T−U  
Z
32  
25  
1
AE  
AE  
−U−  
V
−T−  
P
B
B1  
DETAIL Y  
−Z−  
BASE  
METAL  
DETAIL Y  
V1  
17  
8
N
9
4X  
0.20 (0.008) AC T−U  
Z
9
F
D
S1  
S
_
8X M  
J
R
DETAIL AD  
G
SECTION AE−AE  
−AB−  
−AC−  
E
C
SEATING  
PLANE  
0.10 (0.004) AC  
W
_
Q
H
K
X
DETAIL AD  
NOTES:  
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
3.500 BSC  
INCHES  
MIN MAX  
0.276 BSC  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION:  
A
A1  
B
0.138 BSC  
0.276 BSC  
0.138 BSC  
MILLIMETER.  
7.000 BSC  
3.500 BSC  
3. DATUM PLANE −AB− IS LOCATED AT  
BOTTOM OF LEAD AND IS COINCIDENT  
WITH THE LEAD WHERE THE LEAD  
EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS −T−, −U−, AND −Z− TO BE  
DETERMINED AT DATUM PLANE −AB−.  
5. DIMENSIONS S AND V TO BE  
DETERMINED AT SEATING PLANE −AC−.  
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.250 (0.010) PER SIDE.  
DIMENSIONS A AND B DO INCLUDE  
MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE −AB−.  
7. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. DAMBAR  
PROTRUSION SHALL NOT CAUSE THE  
D DIMENSION TO EXCEED 0.520 (0.020).  
8. MINIMUM SOLDER PLATE THICKNESS  
SHALL BE 0.0076 (0.0003).  
B1  
C
1.400  
1.600  
0.450  
1.450  
0.400  
0.055  
0.063  
0.018  
0.057  
0.016  
D
0.300  
1.350  
0.300  
0.012  
0.053  
0.012  
E
F
G
H
0.800 BSC  
0.031 BSC  
0.050  
0.090  
0.500  
0.150  
0.200  
0.700  
0.002  
0.004  
0.020  
0.006  
0.008  
0.028  
J
K
_
12 REF  
_
12 REF  
M
N
0.090  
0.160  
0.004  
0.006  
P
0.400 BSC  
1_  
0.016 BSC  
1_  
Q
R
5_  
5 _  
0.150  
0.250  
0.006  
0.010  
S
9.000 BSC  
0.354 BSC  
S1  
V
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
V1  
W
X
9. EXACT SHAPE OF EACH CORNER MAY  
VARY FROM DEPICTION.  
http://onsemi.com  
17  
MC10EP445, MC100EP445  
ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC10EP445/D  

相关型号:

MC10EP445FA

3.3V/5VECL 8-Bit Serial/Parallel Converter
ONSEMI

MC10EP445FAG

3.3V/5V ECL 8−Bit Serial/Parallel Converter
ONSEMI

MC10EP445FAR2

3.3V/5VECL 8-Bit Serial/Parallel Converter
ONSEMI

MC10EP445FAR2G

3.3V/5V ECL 8−Bit Serial/Parallel Converter
ONSEMI

MC10EP445MNG

暂无描述
ONSEMI

MC10EP445MNR4G

10E SERIES, 8-BIT RIGHT SERIAL IN PARALLEL OUT SHIFT REGISTER, TRUE OUTPUT, PQCC32, LEAD FREE, LQFN-32
ONSEMI

MC10EP445_06

3.3V/5V ECL 8−Bit Serial/Parallel Converter
ONSEMI

MC10EP446

3.3V/5V 8々Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
ONSEMI

MC10EP446FA

3.3V/5V 8々Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
ONSEMI

MC10EP446FAG

3.3 V/5 V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
ONSEMI

MC10EP446FAR2

3.3V/5V 8々Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
ONSEMI

MC10EP446FAR2G

3.3 V/5 V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
ONSEMI