MC10H640FNG [ONSEMI]

68030/040 PECL to TTL Clock Driver; 68030/040 PECL到TTL时钟驱动器
MC10H640FNG
型号: MC10H640FNG
厂家: ONSEMI    ONSEMI
描述:

68030/040 PECL to TTL Clock Driver
68030/040 PECL到TTL时钟驱动器

时钟驱动器
文件: 总9页 (文件大小:140K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC10H640, MC100H640  
68030/040 PECL to TTL  
Clock Driver  
Description  
The MC10H/100H640 generates the necessary clocks for the  
68030, 68040 and similar microprocessors. It is guaranteed to meet the  
clock specifications required by the 68030 and 68040 in terms of  
parttopartskew, withinpart skew and also duty cycle skew.  
The user has a choice of using either TTL or PECL (ECL referenced  
to +5.0 V) for the input clock. TTL clocks are typically used in present  
MPU systems. However, as clock speeds increase to 50 MHz and  
beyond, the inherent superiority of ECL (particularly differential  
ECL) as a means of clock signal distribution becomes increasingly  
evident. The H640 also uses differential PECL internally to achieve its  
superior skew characteristic.  
The H640 includes dividebytwo and dividebyfour stages, both  
to achieve the necessary duty cycle skew and to generate MPU clocks  
as required. A typical 50 MHz processor application would use an  
input clock running at 100 MHz, thus obtaining output clocks at  
50 MHz and 25 MHz (see Logic Diagram).  
http://onsemi.com  
PLCC28  
FN SUFFIX  
CASE 776  
MARKING DIAGRAM*  
Features  
1
Generates Clocks for 68030/040  
Meets 030/040 Skew Requirements  
TTL or PECL Input Clock  
Extra TTL and PECL Power/Ground Pins  
Asynchronous Reset  
MCxxxH640G  
AWLYYWW  
Single +5.0 V Supply  
PbFree Packages are Available*  
xxx  
A
WL  
YY  
WW  
G
= 10 or 100  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
Function  
Reset (R): LOW on RESET forces all Q outputs LOW and all Q  
outputs HIGH.  
PowerUp:The device is designed to have the POS edges of the ÷ 2  
and ÷ 4 outputs synchronized at power up.  
Select (SEL): LOW selects the ECL input source (DE/DE). HIGH  
selects the TTL input source (DT).  
*For additional marking information, refer to  
Application Note AND8002/D.  
The H640 also contains circuitry to force a stable state of the ECL  
input differential pair, should both sides be left open. In this case, the  
DE side of the input is pulled LOW, and DE goes HIGH.  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 7 of this data sheet.  
*For additional information on our PbFree strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
November, 2006 Rev. 8  
MC10H640/D  
MC10H640, MC100H640  
TTL Outputs  
VT VT Q1  
GT GT  
22 21  
Q0  
20  
VT  
19  
Q0  
25  
24  
23  
Q1  
Q2  
Q3  
Q0  
18  
Q2 26  
GT 27  
GT 28  
V
BB  
TTL/ECL Clock Inputs  
17  
16  
15  
14  
13  
12  
DE  
DE  
VE  
R
V
BB  
DE  
DE  
÷ 2  
MUX  
Q3  
1
DT  
VT  
VT  
2
3
4
SEL  
Q1  
GE  
DT  
Q0  
÷ 4  
Q4  
Q5  
5
6
7
8
9
10  
11  
TTL Control Inputs  
Q1  
GT GT  
Q4 Q5  
VT  
SEL  
R
Figure 1. Pinout: PLCC28  
Figure 2. Logic Diagram  
(Top View)  
Table 1. PIN DESCRIPTION  
PIN  
FUNCTION  
GT  
TTL Ground (0 V)  
VT  
TTL V (+5.0 V)  
CC  
VE  
GE  
DE, DE  
ECL V (+5.0 V)  
CC  
ECL Ground (0 V)  
ECL Signal Input (positive ECL)  
V
V
Reference Output  
BB  
BB  
DT  
TTL Signal Input  
Signal Outputs (TTL)  
Input Select (TTL)  
Reset (TTL)  
Qn, Qn  
SEL  
R
Table 2. DC CHARACTERISTICS (V = V = 5.0 V ± 5%)  
T
E
0°C  
Min Max  
25°C  
Min Max  
85°C  
Min  
Max Unit  
Symbol  
Characteristic  
Condition  
VE Pin  
I
Power Supply Current  
ECL  
TTL  
57  
30  
30  
57  
30  
30  
57  
30  
30  
mA  
mA  
mA  
EE  
I
I
Total all VT pins  
CCH  
CCL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
http://onsemi.com  
2
MC10H640, MC100H640  
Table 3. 10H PECL DC CHARACTERISTICS (V = V = 5.0 V ± 5%)  
T
E
0°C  
25°C  
85°C  
Min  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Condition  
Unit  
I
I
Input HIGH Current  
Input LOW Current  
255  
175  
175  
mA  
INH  
INL  
0.5  
0.5  
0.5  
V
1
Input HIGH Voltage  
Input LOW Voltage  
V
= 5.0 V  
E
3.83  
3.05  
4.16  
3.52  
3.87  
3.05  
4.19  
3.52  
3.94  
3.05  
4.28  
3.555  
V
IH  
IL  
V 1  
V
1
BB  
Output Reference Voltage  
3.62  
3.73  
3.65  
3.75  
3.69  
3.81  
V
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
1. PECL levels are referenced to V and will vary 1:1 with the power supply. The values shown are for V = 5.0V.  
CC  
CC  
Table 4. 100H PECL DC CHARACTERISTICS (V = V = 5.0 V ± 5%)  
T
E
0°C  
25°C  
85°C  
Min  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Condition  
Unit  
I
I
Input HIGH Current  
Input LOW Current  
255  
175  
175  
mA  
INH  
INL  
0.5  
0.5  
0.5  
V
2
Input HIGH Voltage  
Input LOW Voltage  
V
= 5.0 V  
E
3.835  
3.19  
4.12  
3.525  
3.835  
3.19  
4.12  
3.525  
3.835  
3.19  
4.12  
3.525  
V
IH  
IL  
V 2  
V
2
BB  
Output Reference Voltage  
3.62  
3.74  
3.62  
3.74  
3.62  
3.74  
V
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
2. PECL levels are referenced to V and will vary 1:1 with the power supply. The values shown are for V = 5.0V.  
CC  
CC  
Table 5. TTL DC CHARACTERISTICS (V = V = 5.0 V ± 5%)  
T
E
0°C  
Max  
25°C  
85°C  
Min  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Input HIGH Voltage  
Input LOW Voltage  
Condition  
Unit  
V
V
2.0  
2.0  
2.0  
V
IH  
IL  
0.8  
0.8  
0.8  
I
Input HIGH Current  
V
V
= 2.7 V  
= 7.0 V  
20  
100  
20  
100  
20  
100  
mA  
IH  
IN  
IN  
I
Input LOW Current  
V
= 0.5 V  
0.6  
0.6  
0.6  
mA  
V
IL  
IN  
V
Output HIGH Voltage  
I
= 3.0 mA  
= 15 mA  
2.5  
2.0  
2.5  
2.0  
2.5  
2.0  
OH  
OH  
OH  
I
V
V
Output LOW Voltage  
I
= 24 mA  
OL  
0.5  
0.5  
0.5  
V
V
OL  
IK  
Input Clamp Voltage  
I
= 18 mA  
1.2  
1.2  
1.2  
IN  
I
Output Short Circuit Current  
V
= 0 V  
OUT  
100 225 100 225 100 225 mA  
OS  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
http://onsemi.com  
3
 
MC10H640, MC100H640  
Table 6. AC CHARACTERISTICS (V = V = 5.0 V ± 5%)  
T
E
0°C  
Min Max  
25°C  
85°C  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Condition  
Unit  
t
Propagation Delay ECL  
Q0 Q3  
CL = 25 pF  
4.0  
6.0  
4.0  
6.0  
4.2  
6.2  
ns  
PLH  
D to Output  
t
Propagation Delay TTL  
D to Output  
CL = 25 pF  
4.0  
6.0  
4.0  
6.0  
4.3  
6.3  
ns  
PLH  
tskwd*  
WithinDevice Skew  
CL = 25 pF  
CL = 25 pF  
0.5  
6.0  
0.5  
6.0  
0.5  
6.2  
ns  
ns  
t
t
t
t
t
Propagation Delay ECL  
D to Output  
Q0, Q1  
Q4, Q5  
4.0  
4.0  
4.0  
4.0  
4.3  
4.0  
4.0  
4.0  
4.0  
4.3  
4.2  
4.3  
4.2  
4.3  
5.0  
PLH  
PLH  
PLH  
PLH  
PD  
Propagation Delay TTL  
D to Output  
CL = 25 pF  
CL = 25 pF  
CL = 25 pF  
CL = 25 pF  
CL = 25 pF  
CL = 25 pF  
6.0  
6.0  
6.0  
6.3  
6.0  
6.0  
6.0  
6.3  
6.3  
6.2  
6.3  
7.0  
ns  
ns  
ns  
ns  
ns  
Propagation Delay ECL  
D to Output  
Propagation Delay TTL  
D to Output  
Propagation Delay  
R to Output  
All Outputs  
All Outputs  
t
t
Output Rise/Fall Time  
0.8 V to 2.0 V  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
R
F
f
t
t
Maximum Input Frequency  
Minimum Pulse Width  
Reset Recovery Time  
135  
1.50  
1.25  
135  
1.50  
1.25  
135  
1.50  
1.25  
MHz  
ns  
max  
pw  
rr  
ns  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
3. WithinDevice Skew defined as identical transitions on similar paths through a device.  
Table 7. VCC and CL RANGES TO MEET DUTY CYCLE REQUIREMENTS  
(0°C T 85°C Output Duty Cycle Measured Relative to 1.5 V)  
A
Symbol  
Characteristic  
Condition  
Min  
Nom  
Max  
Unit  
Range of V and CL to meet mini-  
V
Q0 Q3  
Q0 Q1  
4.75  
10  
5.0  
5.25  
50  
V
pF  
CC  
CC  
mum pulse width  
(HIGH or LOW)  
CL  
= 11.5 ns at f 40 MHz  
out  
Range of V and CL to meet mini-  
V
Q0 Q3  
4.875  
15  
5.0  
5.125  
27  
V
pF  
CC  
CC  
mum pulse width  
(HIGH or LOW)  
CL  
= 9.5 ns at 40 < f 50 MHz  
out  
http://onsemi.com  
4
MC10H640, MC100H640  
10/100H640  
DUTY CYCLE CONTROL  
To maintain a duty cycle of ± 5% at 50MHz, limit the load capacitance and/or power supply variation as shown in Figures 3  
and 4. For a ± 2.5% duty cycle limit, see Figures 5 and 6. Figures 7 and 8 show duty cycle variation with temperature. Figure 9  
shows typical TPD versus load. Figure 10 shows reset recovery time. Figure 11 shows output states after power up.  
Best duty cycle control is obtained with a single mP load and minimum line length.  
11  
10  
9
11  
10  
9
5.25 V  
CC  
5 V  
CC  
4.75 V  
CC  
4.75 V  
CC  
5 V  
CC  
5.25 V  
CC  
0
25  
50  
75  
85  
0
25  
50  
LOAD (pF)  
75  
85  
LOAD (pF)  
Figure 3. Positive Pulse Width at  
Figure 4. Negative Pulse Width at  
25°C Ambient and 50 MHz Out  
25°C Ambient and 50 MHz Out  
11  
10  
9
11  
10  
9
5.125 V  
CC  
5 V  
CC  
4.875 V  
CC  
4.875 V  
CC  
5 V  
CC  
5.125 V  
CC  
0
25  
50  
LOAD (pF)  
75  
85  
0
25  
50  
LOAD (pF)  
75  
85  
Figure 5. Positive Pulse Width at  
Figure 6. Negative Pulse Width at  
25°C Ambient at 50 MHz Out  
25°C Ambient at 50 MHz Out  
11  
10  
9
11  
10 pF  
50 pF  
25 pF  
10  
25 pF  
10 pF  
9
0°  
25°  
50°  
75°  
85°  
50°  
75°  
85°  
25°  
0°  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Temperature versus Positive Pulse Width  
for 100H640 at 50 MHz and VCC = +5.0 V  
Figure 8. Temperature versus Negative Pulse Width  
for MC100H640 @ 50 MHz and VCC = +5.0 V  
http://onsemi.com  
5
 
MC10H640, MC100H640  
6.2  
6.0  
4.75 V  
5 V  
5.25 V  
5.8  
5.6  
5.4  
5.2  
25  
0
50  
(pF)  
75  
85  
C
LOAD  
Figure 9. tPD versus Load Typical at TA = 25°C  
DT  
RESET, R  
R
trec  
R
tpw  
Q0, Q1, Q2, Q3  
Q0, Q1  
Q4, Q5  
Figure 10. MC10H/100H640 Clock Phase and  
Reset Recovery Time After Reset Pulse  
D
in  
Q Q  
0
3
Q Q  
1
2
Q & Q  
4
5
AFTER POWER UP  
OUTPUTS Q & Q WILL SYNC WITH POSITIVE EDGES OF D & Q Q & NEGATIVE EDGES OF Q & Q  
1
4
5
in  
0
3
0
Figure 11. Output Timing Diagram  
http://onsemi.com  
6
MC10H640, MC100H640  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC10H640FN  
PLCC28  
37 Units / Rail  
37 Units / Rail  
MC10H640FNG  
PLCC28  
(PbFree)  
MC10H640FNR2  
PLCC28  
500 / Tape & Reel  
500 / Tape & Reel  
MC10H640FNR2G  
PLCC28  
(PbFree)  
MC100H640FN  
PLCC28  
37 Units / Rail  
37 Units / Rail  
MC100H640FNG  
PLCC28  
(PbFree)  
MC100H640FNR2  
MC100H640FNR2G  
PLCC28  
500 / Tape & Reel  
500 / Tape & Reel  
PLCC28  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1672/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
7
MC10H640, MC100H640  
PACKAGE DIMENSIONS  
PLCC28  
FN SUFFIX  
PLASTIC PLCC PACKAGE  
CASE 77602  
ISSUE E  
M
S
S
0.007 (0.180)  
T
L−M  
N
B
Y BRK  
D
N−  
M
S
S
N
0.007 (0.180)  
T
L−M  
U
Z
M−  
L−  
W
D
S
S
S
N
0.010 (0.250)  
T
L−M  
X
G1  
V
28  
1
VIEW DD  
M
S
S
S
A
0.007 (0.180)  
0.007 (0.180)  
T
L−M  
L−M  
N
M
S
S
N
0.007 (0.180)  
T
L−M  
H
Z
M
S
T
N
R
K1  
C
E
0.004 (0.100)  
G
K
SEATING  
PLANE  
T−  
J
M
S
S
N
0.007 (0.180)  
T
L−M  
F
VIEW S  
G1  
S
S
S
N
0.010 (0.250)  
T
L−M  
VIEW S  
NOTES:  
INCHES  
MILLIMETERS  
1. DATUMS −L−, −M−, AND −N− DETERMINED  
WHERE TOP OF LEAD SHOULDER EXITS  
PLASTIC BODY AT MOLD PARTING LINE.  
2. DIMENSION G1, TRUE POSITION TO BE  
MEASURED AT DATUM −T−, SEATING PLANE.  
3. DIMENSIONS R AND U DO NOT INCLUDE  
MOLD FLASH. ALLOWABLE MOLD FLASH IS  
0.010 (0.250) PER SIDE.  
4. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
5. CONTROLLING DIMENSION: INCH.  
6. THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKAGE BOTTOM BY UP TO 0.012  
(0.300). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR  
BURRS, GATE BURRS AND INTERLEAD  
FLASH, BUT INCLUDING ANY MISMATCH  
BETWEEN THE TOP AND BOTTOM OF THE  
PLASTIC BODY.  
DIM MIN  
MAX  
0.495  
0.495  
0.180  
0.110  
0.019  
MIN  
12.32  
12.32  
4.20  
MAX  
12.57  
12.57  
4.57  
A
B
C
E
F
0.485  
0.485  
0.165  
0.090  
0.013  
2.29  
0.33  
2.79  
0.48  
G
H
J
0.050 BSC  
1.27 BSC  
0.026  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
0.032  
−−−  
−−−  
0.66  
0.51  
0.64  
11.43  
11.43  
1.07  
1.07  
1.07  
−−−  
0.81  
−−−  
K
R
U
V
W
X
Y
Z
−−−  
0.456  
0.456  
0.048  
0.048  
0.056  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
10  
−−− 0.020  
10  
2
2
_
_
_
_
G1 0.410  
K1 0.040  
0.430  
−−−  
10.42  
1.02  
10.92  
−−−  
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037  
(0.940). THE DAMBAR INTRUSION(S) SHALL  
NOT CAUSE THE H DIMENSION TO BE  
SMALLER THAN 0.025 (0.635).  
http://onsemi.com  
8
MC10H640, MC100H640  
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).  
MECL 10H is a trademark of Motorola, Inc.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC10H640/D  

相关型号:

MC10H640FNR2

68030/040 PECL to TTL Clock Driver
ONSEMI

MC10H640FNR2G

68030/040 PECL to TTL Clock Driver
ONSEMI

MC10H640_06

68030/040 PECL to TTL Clock Driver
ONSEMI

MC10H641

SINGLE SUPPLY PECL-TTL 1:9 CLOCK DISTRIBUTION CHIP
ONSEMI

MC10H641FN

SINGLE SUPPLY PECL-TTL 1:9 CLOCK DISTRIBUTION CHIP
MOTOROLA

MC10H641FN

Single Supply PECL to TTL 1:9 Clock Distribution Chip
ONSEMI

MC10H641FN

10H SERIES, LOW SKEW CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28
ROCHESTER

MC10H641FNG

Single Supply PECL to TTL 1:9 Clock Distribution Chip
ONSEMI

MC10H641FNG

10H SERIES, LOW SKEW CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, LEAD FREE, PLASTIC, LCC-28
ROCHESTER

MC10H641FNR2

Single Supply PECL to TTL 1:9 Clock Distribution Chip
ONSEMI

MC10H641FNR2

10H SERIES, LOW SKEW CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28
MOTOROLA

MC10H641FNR2

10H SERIES, LOW SKEW CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLASTIC, LCC-28
ROCHESTER