MC14538BFEL [ONSEMI]

Dual Precision Retiggerable/Resettable Monostable Multivibrator; 双精度Retiggerable /复式单稳多谐振荡器
MC14538BFEL
型号: MC14538BFEL
厂家: ONSEMI    ONSEMI
描述:

Dual Precision Retiggerable/Resettable Monostable Multivibrator
双精度Retiggerable /复式单稳多谐振荡器

振荡器 逻辑集成电路 光电二极管 时钟
文件: 总12页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The MC14538B is a dual, retriggerable, resettable monostable  
multivibrator. It may be triggered from either edge of an input pulse,  
and produces an accurate output pulse over a wide range of widths, the  
duration and accuracy of which are determined by the external timing  
http://onsemi.com  
MARKING  
DIAGRAMS  
components, C and R .  
X
X
16  
PDIP–16  
P SUFFIX  
CASE 648  
Output Pulse Width = (Cx) (Rx) where:  
Rx is in k  
Cx is in F  
MC14538BCP  
AWLYYWW  
1
16  
Unlimited Rise and Fall Time Allowed on the A Trigger Input  
Pulse Width Range = 10 µs to 10 s  
Latched Trigger Inputs  
SOIC–16  
D SUFFIX  
CASE 751B  
14538B  
AWLYWW  
1
16  
Separate Latched Reset Inputs  
3.0 Vdc to 18 Vdc Operational Limits  
Triggerable from Positive (A Input) or Negative–Going Edge  
(B–Input)  
TSSOP–16  
DT SUFFIX  
CASE 948F  
14  
538B  
ALYW  
1
16  
Capable of Driving Two Low–power TTL Loads or One Low–power  
Schottky TTL Load Over the Rated Temperature Range  
Pin–for–pin Compatible with MC14528B and CD4528B (CD4098)  
14538B  
SOIC–16  
DW SUFFIX  
CASE 751G  
AWLYYWW  
Use the MC54/74HC4538A for Pulse Widths Less Than 10 µs with  
1
Supplies Up to 6 V.  
16  
SOEIAJ–16  
F SUFFIX  
CASE 966  
MC14538B  
AWLYWW  
MAXIMUM RATINGS (Voltages Referenced to V ) (Note 2.)  
SS  
Symbol  
Parameter  
Value  
Unit  
V
1
A
= Assembly Location  
V
DD  
DC Supply Voltage Range  
0.5 to +18.0  
WL or L = Wafer Lot  
YY or Y = Year  
WW or W = Work Week  
V , V  
in out  
Input or Output Voltage Range  
(DC or Transient)  
0.5 to V + 0.5  
V
DD  
I , I  
in out  
Input or Output Current  
(DC or Transient) per Pin  
±10  
mA  
ORDERING INFORMATION  
Device  
Package  
PDIP–16  
SOIC–16  
Shipping  
P
Power Dissipation,  
per Package (Note 3.)  
500  
mW  
D
MC14538BCP  
MC14538BD  
2000/Box  
48/Rail  
T
A
Operating Temperature Range  
Storage Temperature Range  
55 to +125  
65 to +150  
260  
°C  
°C  
°C  
T
stg  
MC14538BDR2  
MC14538BDT  
SOIC–16 2500/Tape & Reel  
TSSOP–16 96/Rail  
T
Lead Temperature  
(8–Second Soldering)  
L
2. Maximum Ratings are those values beyond which damage to the device  
may occur.  
MC14538BDTR2 TSSOP–16 2500/Tape & Reel  
3. Temperature Derating:  
MC14538BDW  
SOIC–16  
47/Rail  
Plastic “P and D/DW” Packages: – 7.0 mW/ C From 65 C To 125 C  
MC14538BDWR2  
MC14538BF  
SOIC–16 1000/Tape & Reel  
This device contains protection circuitry to guard against damage due to high  
static voltages or electric fields. However, precautions must be taken to avoid  
applications of any voltage higher than maximum rated voltages to this  
SOEIAJ–16  
SOEIAJ–16  
See Note 1.  
See Note 1.  
MC14538BFEL  
high–impedancecircuit. For proper operation, V and V should be constrained  
in  
out  
to the range V  
(V or V  
)
V
.
SS  
in  
out  
DD  
1. For ordering information on the EIAJ version of  
the SOIC packages, please contact your local  
ON Semiconductor representative.  
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,  
either V or V ). Unused outputs must be left open.  
SS  
DD  
Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
March, 2000 – Rev. 3  
MC14538B/D  
MC14538B  
PIN ASSIGNMENT  
V
1
2
3
4
5
6
7
8
16  
15  
V
DD  
SS  
C /R A  
V
SS  
X
X
RESET A  
14 C /R B  
X X  
A
13 RESET B  
A
B
12  
11  
10  
9
A
B
A
Q
B
B
A
Q
Q
B
A
V
SS  
Q
B
BLOCK DIAGRAM  
C
X
R
X
V
DD  
1
2
A
B
4
5
Q1  
Q1  
RESET  
6
7
3
C
X
R
X
V
DD  
15  
14  
A
B
12  
11  
Q2  
Q2  
10  
9
RESET  
13  
R AND C ARE EXTERNAL COMPONENTS.  
X
X
V
DD  
= PIN 16  
V
SS  
= PIN 8, PIN 1, PIN 15  
ONE–SHOT SELECTION GUIDE  
100 ns 1 µs 10 µs 100 µs 1 ms 10 ms 100 ms 1 s  
MC14528B  
10 s  
MC14536B  
MC14538B  
MC14541B  
MC4538A*  
23 HR  
5 MIN.  
*LIMITED OPERATING VOLTAGE (2 – 6 V)  
TOTAL OUTPUT PULSE WIDTH RANGE  
RECOMMENDED PULSE WIDTH RANGE  
http://onsemi.com  
2
MC14538B  
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V  
)
SS  
– 55 C  
25 C  
125 C  
V
DD  
(4.)  
Vdc  
Characteristic  
Output Voltage  
Symbol  
Unit  
Min  
Max  
Min  
Typ  
Max  
Min  
Max  
“0” Level  
“1” Level  
“0” Level  
V
OL  
5.0  
10  
15  
0.05  
0.05  
0.05  
0
0
0
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
Vdc  
V
in  
= V or 0  
DD  
V
OH  
5.0  
10  
15  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
5.0  
10  
15  
4.95  
9.95  
14.95  
Vdc  
Vdc  
V
in  
= 0 or V  
DD  
Input Voltage  
(V = 4.5 or 0.5 Vdc)  
V
IL  
5.0  
10  
15  
1.5  
3.0  
4.0  
2.25  
4.50  
6.75  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
O
(V = 9.0 or 1.0 Vdc)  
O
(V = 13.5 or 1.5 Vdc)  
O
“1” Level  
V
IH  
Vdc  
(V = 0.5 or 4.5 Vdc)  
5.0  
10  
15  
3.5  
7.0  
11  
3.5  
7.0  
11  
2.75  
5.50  
8.25  
3.5  
7.0  
11  
O
(V = 1.0 or 9.0 Vdc)  
O
(V = 1.5 or 13.5 Vdc)  
O
Output Drive Current  
I
mAdc  
OH  
(V = 2.5 Vdc)  
Source  
Sink  
5.0  
5.0  
10  
– 3.0  
– 0.64  
– 1.6  
– 4.2  
– 2.4  
– 0.51  
– 1.3  
– 3.4  
– 4.2  
– 0.88  
– 2.25  
– 8.8  
– 1.7  
– 0.36  
– 0.9  
– 2.4  
OH  
(V = 4.6 Vdc)  
OH  
(V = 9.5 Vdc)  
OH  
(V = 13.5 Vdc)  
OH  
15  
(V = 0.4 Vdc)  
I
OL  
5.0  
10  
15  
0.64  
1.6  
4.2  
0.51  
1.3  
3.4  
0.88  
2.25  
8.8  
0.36  
0.9  
2.4  
mAdc  
OL  
(V = 0.5 Vdc)  
OL  
(V = 1.5 Vdc)  
OL  
Input Current, Pin 2 or 14  
Input Current, Other Inputs  
I
I
15  
15  
±0.05  
±0.1  
±0.00001 ±0.05  
±0.5  
±1.0  
µAdc  
µAdc  
pF  
in  
±0.00001  
25  
±0.1  
in  
Input Capacitance, Pin 2 or 14  
Input Capacitance, Other Inputs  
C
C
in  
in  
5.0  
7.5  
pF  
(V = 0)  
in  
Quiescent Current  
(Per Package)  
I
5.0  
10  
15  
5.0  
10  
20  
0.005  
0.010  
0.015  
5.0  
10  
20  
150  
300  
600  
µAdc  
mAdc  
µAdc  
DD  
DD  
Q = Low, Q = High  
Quiescent Current, Active State  
(Both) (Per Package)  
I
5.0  
10  
15  
2.0  
2.0  
2.0  
0.04  
0.08  
0.13  
0.20  
0.45  
0.70  
2.0  
2.0  
2.0  
Q = High, Q = Low  
–2  
–5  
Total Supply Current at an external  
load capacitance (C ) and at  
external timing network (R , C )  
I
T
5.0  
10  
I = (3.5 x 10 ) R C f + 4C f + 1 x 10 C f  
T X X X L  
I = (8.0 x 10 ) R C f + 9C f + 2 x 10 C f  
T X X X L  
I = (1.25 x 10 ) R C f + 12C f + 3 x 10 C f  
T X X X L  
–2  
–5  
L
(5.)  
–1  
–5  
X
X
where: I in µA (one monostable switching only),  
T
where: C in µF, C in pF, R in k ohms, and  
X
L
X
where: f in Hz is the input frequency.  
4. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
5. The formulas given are for the typical characteristics only at 25 C.  
http://onsemi.com  
3
MC14538B  
SWITCHING CHARACTERISTICS (6.) (C = 50 pF, T = 25 C)  
L
A
All Types  
V
Vdc  
DD  
(7.)  
Characteristic  
Symbol  
Unit  
Min  
Typ  
Max  
Output Rise Time  
t
ns  
TLH  
THL  
t
t
t
= (1.35 ns/pF) C + 33 ns  
= (0.60 ns/pF) C + 20 ns  
= (0.40 ns/pF) C + 20 ns  
5.0  
10  
15  
100  
50  
40  
200  
100  
80  
TLH  
TLH  
TLH  
L
L
L
Output Fall Time  
t
ns  
ns  
t
t
t
= (1.35 ns/pF) C + 33 ns  
= (0.60 ns/pF) C + 20 ns  
= (0.40 ns/pF) C + 20 ns  
5.0  
10  
15  
100  
50  
40  
200  
100  
80  
THL  
THL  
THL  
L
L
L
Propagation Delay Time  
A or B to Q or Q  
t
,
PLH  
t
PHL  
t
t
t
, t  
= (0.90 ns/pF) C + 255 ns  
= (0.36 ns/pF) C + 132 ns  
L
= (0.26 ns/pF) C + 87 ns  
L
5.0  
10  
15  
300  
150  
100  
600  
300  
220  
PLH PHL  
L
, t  
PLH PHL  
, t  
PLH PHL  
Reset to Q or Q  
ns  
t
t
t
, t  
= (0.90 ns/pF) C + 205 ns  
= (0.36 ns/pF) C + 107 ns  
L
= (0.26 ns/pF) C + 82 ns  
L
5.0  
10  
15  
250  
125  
95  
500  
250  
190  
PLH PHL  
L
, t  
PLH PHL  
, t  
PLH PHL  
Input Rise and Fall Times  
Reset  
t , t  
r
5
10  
15  
15  
5
4
µs  
ms  
f
B Input  
A Input  
5
10  
15  
300  
1.2  
0.4  
1.0  
0.1  
0.05  
5
10  
15  
No Limit  
Input Pulse Width  
A, B, or Reset  
t
t
,
5.0  
10  
15  
170  
90  
80  
85  
45  
40  
ns  
ns  
µs  
WH  
WL  
Retrigger Time  
t
rr  
5.0  
10  
15  
0
0
0
Output Pulse Width — Q or Q  
Refer to Figures 8 and 9  
T
C
C
C
= 0.002 µF, R = 100 kΩ  
5.0  
10  
15  
198  
200  
202  
210  
212  
214  
230  
232  
234  
X
X
X
X
= 0.1 µF, R = 100 kΩ  
5.0  
10  
15  
9.3  
9.4  
9.5  
9.86  
10  
10.14  
10.5  
10.6  
10.7  
ms  
s
X
= 10 µF, R = 100 kΩ  
5.0  
10  
15  
0.91  
0.92  
0.93  
0.965  
0.98  
0.99  
1.03  
1.04  
1.06  
X
Pulse Width Match between circuits in  
the same package.  
100  
[(T – T )/T ]  
5.0  
10  
15  
± 1.0  
± 1.0  
± 1.0  
± 5.0  
± 5.0  
± 5.0  
%
1
2
1
C
= 0.1 µF, R = 100 kΩ  
X
X
6. The formulas given are for the typical characteristics only at 25 C.  
7. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
http://onsemi.com  
4
MC14538B  
OPERATING CONDITIONS  
External Timing Resistance  
External Timing Capacitance  
(8.)  
R
C
5.0  
0
kΩ  
µF  
X
X
No  
(9.)  
Limit  
8. The maximum usable resistance R is a function of the leakage of the capacitor C , leakage of the MC14538B, and leakage due to board  
X
X
layout and surface resistance. Susceptibility to externally induced noise signals may occur for R > 1 M..  
X
9. If C > 15 µF, use discharge protection diode per Fig. 11.  
X
V
DD  
V
DD  
P1  
R
X
2 (14)  
ENABLE  
C2  
+
+
C1  
V
ref1  
R
Q
6 (10)  
(9)  
V
ref2  
C
X
ENABLE  
OUTPUT  
LATCH  
(15)  
1
S
Q
7
N1  
V
SS  
CONTROL  
4 (12)  
5 (11)  
A
B
NOTE: Pins 1, 8 and 15 must  
be externally grounded  
Q
Q
R
R
3 (13)  
RESET LATCH  
RESET  
S
R
Figure 1. Logic Diagram  
(1/2 of DevIce Shown)  
V
DD  
0.1 µF  
CERAMIC  
500 pF  
I
D
R
X
R ′  
X
V
SS  
C
X
C ′  
X
V
SS  
V
in  
C /R  
X
X
A
B
Q
20 ns  
20 ns  
C
L
RESET  
A′  
Q
V
DD  
90%  
10%  
C
L
Q′  
Q′  
C
L
V
in  
0 V  
B′  
C
L
RESET′  
V
SS  
Figure 2. Power Dissipation Test Circuit and Waveforms  
http://onsemi.com  
5
MC14538B  
V
DD  
INPUT CONNECTIONS  
R
X
R ′  
X
Characteristics  
Reset  
A
B
* C = 50 pF  
L
C
X
C ′  
X
t
, t  
, t  
, t  
,
V
DD  
PG1  
V
DD  
PLH PHL TLH THL  
V
SS  
V
SS  
T, t , t  
WH WL  
C /R  
t
, t  
, t  
, t  
,
V
V
PG2  
X
X
PLH PHL TLH THL  
DD  
SS  
A
B
PULSE  
GENERATOR  
T, t , t  
WH WL  
Q
Q
t
t
, t  
,
PG3  
PG1  
PG2  
PLH(R) PHL(R)  
C
L
, t  
WH WL  
RESET  
PULSE  
GENERATOR  
C
L
A′  
Q′  
* Includes capacitance of probes,  
wiring, and fixture parasitic.  
PG1 =  
C
L
B′  
Q′  
PULSE  
GENERATOR  
PG2 =  
PG3 =  
NOTE: Switching test waveforms  
C
L
RESET′  
for PG1, PG2, PG3 are shown  
In Figure 4.  
V
SS  
Figure 3. Switching Test Circuit  
90%  
10%  
50%  
50%  
V
DD  
A
B
t
t
t
THL  
TLH  
WH  
t
t
TLH  
THL  
90%  
10%  
V
DD  
50%  
t
WL  
t
t
THL  
PHL  
RESET  
90%  
10%  
V
DD  
50%  
t
WL  
t
t
THL  
t
PLH  
TLH  
T
t
t
rr  
t
PLH  
PHL  
90%  
10%  
50%  
t
50%  
50%  
50%  
Q
Q
t
t
THL  
TLH  
t
t
PLH  
PHL  
PHL  
90%  
10%  
50%  
50%  
50%  
50%  
Figure 4. Switching Test Waveforms  
T = 25°C  
R = 100 kΩ  
X
A
0% POINT PULSE WIDTH  
R = 100 kΩ  
C = 0.1 µF  
X
X
V
= 5.0 V, T = 9.8 ms  
= 10 V, T = 10 ms  
= 15 V, T = 10.2 ms  
C = 0.1 µF  
X
DD  
V
1.0  
0.8  
0.6  
0.4  
0.2  
0
DD  
2
1
0
1
2
V
DD  
–4 –2  
0
2
4
5
6
7
8
9
10  
V , SUPPLY VOLTAGE (VOLTS)  
DD  
11  
12  
13  
14  
15  
T, OUTPUT PULSE WIDTH (%)  
Figure 5. Typical Normalized Distribution  
of Units for Output Pulse Width  
Figure 6. Typical Pulse Width Variation as  
a Function of Supply Voltage VDD  
http://onsemi.com  
6
MC14538B  
1000  
100  
10  
FUNCTION TABLE  
Inputs  
Outputs  
R = 100 k, C = 50 pF  
ONE MONOSTABLE SWITCHING ONLY  
X
L
Reset  
A
B
Q
Q
H
H
H
L
V
DD  
= 15 V  
H
H
L
Not Triggered  
Not Triggered  
5.0 V  
H
10 V  
H
H
L, H,  
L
H
L, H,  
Not Triggered  
Not Triggered  
1.0  
0.1  
L
X
X
X
X
L
H
Not Triggered  
0.001  
0.1  
1.0  
OUTPUT DUTY CYCLE (%)  
10  
100  
Figure 7. Typical Total Supply Current  
versus Output Duty Cycle  
R = 100 kΩ  
X
C = .002 µF  
X
R = 100 kΩ  
C = 0.1 µF  
X
X
3.0  
V
= 15 V  
= 10 V  
DD  
2
1
2.0  
1.0  
V
= 15 V  
= 10 V  
DD  
V
DD  
0
0
V
DD  
V
= 5 V  
DD  
–1  
–2  
1.0  
2.0  
3.0  
V
DD  
= 5.0 V  
60 40 20  
0
20  
40  
60  
80 100 120 140  
60 40 20  
0
20  
40  
60  
80 100 120 140  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 8. Typical Error of Pulse Width  
Equation versus Temperature  
Figure 9. Typical Error of Pulse Width  
Equation versus Temperature  
http://onsemi.com  
7
MC14538B  
THEORY OF OPERATION  
1
3
4
A
B
2
5
RESET  
V
ref 2  
V
ref 2  
V
ref 2  
V
ref 2  
C /R  
X
X
V
ref 1  
V
ref 1  
V
ref 1  
V
ref 1  
Q
T
T
T
1
4
5
Positive edge trigger  
Positive edge re–trigger (pulse lengthening)  
Positive edge re–trigger (pulse lengthening)  
2
3
Negative edge trigger  
Positive edge trigger  
Figure 10. Timing Operation  
TRIGGER OPERATION  
RETRIGGER OPERATION  
The block diagram of the MC14538B is shown in  
Figure 1, with circuit operation following.  
As shown in Figure 1 and 10, before an input trigger  
occurs, the monostable is in the quiescent state with the Q  
The MC14538B is retriggered if a valid trigger occurs  
followed by another valid trigger before the Q output has  
returned to the quiescent (zero) state. Any retrigger, after the  
timing node voltage at pin 2 or 14 has begun to rise from  
output low, and the timing capacitor C completely charged  
V
ref 1  
, but has not yet reached V  
, will cause an increase  
X
ref 2  
to V . When the trigger input A goes from V to V  
in output pulse width T. When a valid retrigger is initiated  
, the voltage at C /R will again drop to V before  
DD  
SS  
DD  
(while inputs B and Reset are held to V ) a valid trigger is  
DD  
X
X
ref 1  
recognized, which turns on comparator C1 and N–channel  
transistorN1 . Atthesametimetheoutputlatchisset. With  
progressing along the RC charging curve toward V . The  
Q output will remain high until time T, after the last valid  
retrigger.  
DD  
transistor N1 on, the capacitor C rapidly discharges toward  
X
V
until V  
is reached. At this point the output of  
SS  
ref1  
RESET OPERATION  
comparator C1 changes state and transistor N1 turns off.  
Comparator C1 then turns off while at the same time  
comparatorC2turnson. WithtransistorN1off, thecapacitor  
C begins to charge through the timing resistor, R , toward  
X
V
The MC14538B may be reset during the generation of the  
output pulse. In the reset mode of operation, an input pulse  
on Reset sets the reset latch and causes the capacitor to be  
X
. When the voltage across C equals V , comparator  
DD  
X ref 2  
fast charged to V by turning on transistor P1 . When the  
DD  
C2 changes state, causing the output latch to reset (Q goes  
low)whileatthesametimedisablingcomparatorC2 . This  
ends at the timing cycle with the monostable in the quiescent  
state, waiting for the next trigger.  
voltage on the capacitor reaches V , the reset latch will  
ref 2  
clear, and will then be ready to accept another pulse. It the  
Reset input is held low, any trigger inputs that occur will be  
inhibited and the Q and Q outputs of the output latch will not  
change. Since the Q output is reset when an input low level  
isdetectedontheResetinput, theoutputpulseTcanbemade  
significantly shorter than the minimum pulse width  
specification.  
In the quiescent state, C is fully charged to V causing  
X
DD  
the current through resistor R to be zero. Both comparators  
X
are “off” with total device current due only to reverse  
junction leakages. An added feature of the MC14538B is  
that the output latch is set via the input trigger without regard  
to the capacitor voltage. Thus, propagation delay from  
triggertoQisindependentofthevalueofC , R , ortheduty  
X
X
cycle of the input waveform.  
http://onsemi.com  
8
MC14538B  
D
x
POWER–DOWN CONSIDERATIONS  
Large capacitance values can cause problems due to the  
large amount of energy stored. When a system containing  
the MC14538B is powered down, the capacitor voltage may  
C
x
V
DD  
R
x
V
SS  
V
DD  
discharge from V through the standard protection diodes  
DD  
at pin 2 or 14. Current through the protection diodes should  
be limited to 10 mA and therefore the discharge time of the  
Q
Q
V
supply must not be faster than (V ). (C)/(10 mA).  
DD  
DD  
For example, if V = 10 V and C = 10 µF, the V supply  
DD  
X
DD  
RESET  
should discharge no faster than (10 V) x (10 µF)/(10 mA)  
= 10 ms. This is normally not a problem since power  
suppliesareheavilyfilteredandcannotdischargeatthisrate.  
Figure 11. Use of a Diode to Limit  
Power Down Current Surge  
When a more rapid decrease of V to zero volts occurs,  
DD  
theMC14538Bcansustaindamage. Toavoidthispossibility  
use an external clamping diode, D , connected as shown in  
X
Fig. 11.  
TYPICAL APPLICATIONS  
C
X
R
X
C
X
R
X
RISING–EDGE  
TRIGGER  
V
DD  
V
DD  
Q
RISING–EDGE  
A
A
B
Q
TRIGGER  
Q
B
Q
B = V  
DD  
RESET = V  
DD  
RESET = V  
DD  
C
X
C
X
R
X
R
X
V
DD  
A = V  
V
DD  
SS  
Q
Q
Q
A
B
B
Q
FALLING–EDGE  
TRIGGER  
FALLING–EDGE  
TRIGGER  
RESET = V  
RESET = V  
DD  
DD  
Figure 12. Retriggerable  
Monostables Circuitry  
Figure 13. Non–Retriggerable  
Monostables Circuitry  
NC  
Q
Q
NC  
NC  
A
B
C
D
V
DD  
V
DD  
Figure 14. Connection of Unused Sections  
http://onsemi.com  
9
MC14538B  
PACKAGE DIMENSIONS  
PDIP–16  
P SUFFIX  
PLASTIC DIP PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
16  
1
9
8
B
S
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
0.740 0.770 18.80 19.55  
MILLIMETERS  
MIN MAX  
F
A
B
C
D
F
G
H
J
K
L
M
S
C
L
0.250 0.270  
0.145 0.175  
0.015 0.021  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
0.040  
0.70  
SEATING  
PLANE  
–T–  
0.100 BSC  
0.050 BSC  
0.008 0.015  
2.54 BSC  
1.27 BSC  
K
M
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295 0.305  
10  
0.020 0.040  
0.130  
2.80  
7.50  
0
G
D 16 PL  
0
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
SOIC–16  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751B–05  
ISSUE J  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
1
9
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
0.25 (0.010)  
B
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00 0.386  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
R X 45  
K
C
G
J
K
M
P
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
J
M
D
16 PL  
7
0
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T B  
A
R
http://onsemi.com  
10  
MC14538B  
PACKAGE DIMENSIONS  
SOIC–16  
DW SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751G–03  
ISSUE B  
A
D
16  
9
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
1
8
MILLIMETERS  
B
16X B  
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
10.45  
7.60  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
10.15  
7.40  
M
S
S
0.25  
T A  
B
e
1.27 BSC  
H
h
L
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
SEATING  
PLANE  
14X  
e
C
T
TSSOP–16  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948F–01  
ISSUE O  
16X KREF  
M
S
S
0.10 (0.004)  
T U  
V
S
0.15 (0.006) T U  
K
K1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
9
2X L/2  
J1  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS. MOLD  
FLASH OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
B
–U–  
SECTION N–N  
L
J
PIN 1  
IDENT.  
8
1
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE W.  
N
0.25 (0.010)  
S
0.15 (0.006) T U  
A
M
–V–  
N
F
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
4.90  
4.30  
–––  
5.10 0.193 0.200  
4.50 0.169 0.177  
DETAIL E  
1.20  
––– 0.047  
D
F
G
H
J
J1  
K
K1  
L
0.05  
0.50  
0.65 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.15 0.002 0.006  
0.75 0.020 0.030  
0.026 BSC  
0.28 0.007 0.011  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
–W–  
C
0.10 (0.004)  
DETAIL E  
H
SEATING  
PLANE  
–T–  
D
G
6.40 BSC  
0.252 BSC  
M
0
8
0
8
http://onsemi.com  
11  
MC14538B  
PACKAGE DIMENSIONS  
SOEIAJ–16  
F SUFFIX  
PLASTIC EIAJ SOIC PACKAGE  
CASE 966–01  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
ISSUE O  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS AND ARE  
MEASURED AT THE PARTING LINE. MOLD FLASH  
OR PROTRUSIONS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
L
E
16  
9
8
Q
1
H
E
M
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
E
5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
1
L
DETAIL P  
Z
D
VIEW P  
e
MILLIMETERS  
INCHES  
A
DIM MIN  
MAX  
MIN  
–––  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
c
A
1
–––  
0.05  
0.35  
0.18  
9.90  
5.10  
2.05  
A
0.20 0.002  
0.50 0.014  
0.27 0.007  
10.50 0.390  
5.45 0.201  
b
c
D
E
A
1
b
0.13 (0.005)  
e
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
M
H
7.40  
0.50  
1.10  
0
0.70  
–––  
8.20 0.291  
0.85 0.020  
1.50 0.043  
10  
0.90 0.028  
0.78 –––  
0.323  
0.033  
0.059  
10  
0.035  
0.031  
E
L
L
E
M
Q
0
1
Z
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MC14538B/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY