MC33184DTBR2 [ONSEMI]

QUAD OP-AMP, 11500uV OFFSET-MAX, 4MHz BAND WIDTH, PDSO14, PLASTIC, TSSOP-14;
MC33184DTBR2
型号: MC33184DTBR2
厂家: ONSEMI    ONSEMI
描述:

QUAD OP-AMP, 11500uV OFFSET-MAX, 4MHz BAND WIDTH, PDSO14, PLASTIC, TSSOP-14

放大器 光电二极管
文件: 总12页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC34181/D  
Quality bipolar fabrication with innovative design concepts are employed  
for the MC33181/2/4, MC34181/2/4 series of monolithic operational  
amplifiers. This JFET input series of operational amplifiers operates at  
210 µA per amplifier and offers 4.0 MHz of gain bandwidth product and  
10 V/µs slew rate. Precision matching and an innovative trim technique of  
the single and dual versions provide low input offset voltages. With a JFET  
input stage, this series exhibits high input resistance, low input offset voltage  
and high gain. The all NPN output stage, characterized by no deadband  
crossover distortion and large output voltage swing, provides high  
capacitance drive capability, excellent phase and gain margins, low open  
loop high frequency output impedance and symmetrical source/sink AC  
frequency response.  
8
1
8
1
P SUFFIX  
PLASTIC PACKAGE  
CASE 626  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
(SO–8)  
PIN CONNECTIONS  
1
2
3
4
8
Offset Null  
Inputs  
NC  
7
6
5
V
+
CC  
The MC33181/2/4, MC34181/2/4 series of devices are specified over the  
commercial or industrial/vehicular temperature ranges. The complete series  
of single, dual and quad operational amplifiers are available in the plastic  
DIP as well as the SOIC surface mount packages.  
Output  
V
Offset Null  
EE  
(Single, Top View)  
Low Supply Current: 210 µA (Per Amplifier)  
Wide Supply Operating Range: ±1.5 V to ±18 V  
Wide Bandwidth: 4.0 MHz  
High Slew Rate: 10 V/µs  
Low Input Offset Voltage: 2.0 mV  
Large Output Voltage Swing: –14 V to +14 V (with ±15 V Supplies)  
Large Capacitance Drive Capability: 0 pF to 500 pF  
Low Total Harmonic Distortion: 0.04%  
Excellent Phase Margin: 67°  
V
1
2
3
4
8
7
6
5
Output 1  
Inputs 1  
CC  
1
Output 2  
+
2
+
Inputs 2  
V
EE  
(Dual, Top View)  
14  
14  
Excellent Gain Margin: 6.7 dB  
1
1
Output Short Circuit Protection  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A  
Offered in New TSSOP Package Including the Standard SOIC and  
DIP Packages  
(SO–14)  
14  
ORDERING INFORMATION  
1
Op Amp  
Function  
Operating  
Temperature Range  
DTB SUFFIX  
PLASTIC PACKAGE  
CASE 948G  
Device  
Package  
Single  
MC34181P  
MC34181D  
Plastic DIP  
SO–8  
T
A
= 0° to +70°C  
(TSSOP–14)  
PIN CONNECTIONS  
MC33181P  
MC33181D  
Plastic DIP  
SO–8  
T
A
= –40° to +85°C  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Output 1  
Inputs 1  
Output 4  
Inputs 4  
Dual  
MC34182P  
MC34182D  
Plastic DIP  
SO–8  
T
= 0° to +70°C  
A
+
––  
+
MC33182P  
MC33182D  
Plastic DIP  
SO–8  
1
4
3
T
A
= –40° to +85°C  
V
V
CC  
EE  
Quad  
MC34184P  
MC34184D  
MC34184DTB  
Plastic DIP  
SO–14  
TSSOP–14  
+
+
T
A
= 0° to +70°C  
Inputs 3  
Inputs 2  
Output 2  
2
8
Output 3  
MC33184P  
MC33184D  
MC33184DTB  
Plastic DIP  
SO–14  
TSSOP–14  
T
A
= –40° to +85°C  
(Quad, Top View)  
Motorola, Inc. 1996  
Rev 1  
MC34181,2,4 MC33181,2,4  
MAXIMUM RATINGS  
Rating  
Supply Voltage (from V  
Symbol  
Value  
+36  
Unit  
V
to V  
)
V
S
CC  
EE  
Input Differential Voltage Range  
Input Voltage Range  
V
Note 1  
V
IDR  
V
Note 1  
V
IR  
Output Short Circuit Duration (Note 2)  
Operating Junction Temperature  
Storage Temperature Range  
t
Indefinite  
+150  
sec  
°C  
°C  
SC  
T
J
T
–60 to +150  
stg  
NOTES: 1. Either or both input voltages should not exceed the magnitude of V  
or V  
.
EE  
CC  
2. Power dissipation must be considered to ensure maximum junction temperature (T ) is not  
exceeded (see Figure 1).  
J
Representative Schematic Diagram  
(Each Amplifier)  
V
CC  
Internal  
Bias  
Network  
Q
8
Q
9
Q
7
Neg  
Pos  
J
J
1
2
D
D
3
1
C
1
+
R
6
D
R
2
Q
7
1
V
Q
O
4
C
2
Q
Q
2
3
R
R
Q
Q
6
1
2
5
I
3
I
4
R
R
4
3
R
5
V
EE  
1
5
Null Offsets  
MC3X181 (Single) Only  
+
5
1
V
EE  
25 k  
MC3X181 Input Offset  
Voltage Null CIrcuit  
2
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
DC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = 25°C, unless otherwise noted.)  
EE A  
CC  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (R = 50 , V = 0 V)  
V
IO  
mV  
S
O
Single  
= +25°C  
T
0.5  
2.0  
3.0  
3.5  
A
A
T
= 0° to +70°C (MC34181)  
= –40° to +85°C (MC33181)  
T
A
Dual  
T
= +25°C  
= 0° to +70°C (MC34182)  
= –40° to +85°C (MC33182)  
1.0  
3.0  
4.0  
4.5  
A
T
A
T
A
Quad  
T
= +25°C  
= 0° to +70°C (MC34184)  
= –40° to +85°C (MC33184)  
4.0  
10  
11  
11.5  
A
T
A
T
A
Average Temperature Coefficient of V (R = 50 , V = 0V)  
IO  
V /T  
IO  
10  
µV/°C  
S
O
Input Offset Current (V  
= 0 V, V = 0V)  
I
IO  
nA  
CM  
O
T
T
A
= +25°C  
= 0° to +70°C  
= –40° to +85°C  
0.001  
0.05  
1.0  
2.0  
A
T
A
Input Bias Current (V  
= 0 V, V = 0V)  
I
IB  
nA  
CM  
O
T
= +25°C  
= 0° to +70°C  
= –40° to +85°C  
0.003  
0.1  
2.0  
4.0  
A
T
A
T
A
Input Common Mode Voltage Range  
V
ICR  
(V  
EE  
+4.0 V) to (V –2.0 V)  
CC  
V
Large Signal Voltage Gain (R = 10 k, V = ±10 V)  
A
VOL  
V/mV  
L
O
25  
15  
60  
T
T
A
= +25°C  
A
= T  
to T  
low  
high  
Output Voltage Swing (V = 1.0 V, R = 10 k)  
V +  
O
V –  
O
+13.5  
+14  
–14  
–13.5  
V
ID  
L
T
= +25°C  
A
Common Mode Rejection (R = 50 , V  
= V  
, V = 0 V)  
CMR  
PSR  
70  
70  
86  
84  
dB  
dB  
S
CM  
ICR  
O
Power Supply Rejection (R = 50 , V  
= 0 V, V = 0 V)  
S
CM  
O
Output Short Circuit Current (V = 1.0 V, Output to Ground)  
ID  
Source  
Sink  
I
mA  
SC  
3.0  
8.0  
8.0  
11  
Power Supply Current (No Load, V = 0 V)  
O
Single  
I
D
µA  
T
T
A
= +25°C  
210  
250  
250  
A
= T  
to T  
low  
high  
high  
high  
Dual  
T
= +25°C  
420  
500  
500  
A
T
= T  
to T  
A
low  
Quad  
T
= +25°C  
840  
1000  
1000  
A
T
= T  
to T  
low  
A
3
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
AC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = 25°C, unless otherwise noted.)  
EE A  
CC  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Slew Rate (V = –10 V to +10 V, R = 10 k, C = 100 pF)  
SR  
V/µs  
in  
L
L
7.0  
10  
10  
A
= +1.0  
= –1.0  
V
A
V
Settling Time (A = –1.0, R = 10 k, V = 0 V to +10 V Step)  
To Within 0.10%  
To Within 0.01%  
t
s
µs  
V
L
O
1.1  
1.5  
Gain Bandwidth Product (f = 100 kHz)  
Power Bandwidth (A = +1.0, R = 10 k, V = 20 V , THD = 5.0%)  
GBW  
BW  
3.0  
4.0  
MHz  
kHz  
120  
V
L
O
pp  
p
Phase Margin (–10 V < V < +10 V)  
f
m
Degrees  
O
R
L
R
L
= 10 kΩ  
= 10 k, C = 100 pF  
67  
34  
L
Gain Margin (–10 V < V < +10 V)  
A
m
dB  
O
R
L
R
L
= 10 kΩ  
= 10 k, C = 100 pF  
6.7  
3.4  
L
Equivalent Input Noise Voltage  
= 100 , f = 1.0 kHz  
e
i
38  
0.01  
3.0  
nV/Hz  
pA/Hz  
n
R
S
Equivalent Input Noise Current  
f = 1.0 kHz  
n
Differential Input Capacitance  
Differential Input Resistance  
Total Harmonic Distortion  
C
R
pF  
W
%
i
i
12  
10  
THD  
0.04  
A
V
= 10, R = 10 k, 2.0 V < V < 20 V , f = 1.0 kHz  
L
pp pp  
O
Channel Separation (R = 10 k, –10 V < V < +10 V, 0 Hz < f < 10 kHz)  
120  
200  
dB  
L
O
Open Loop Output Impedance  
(f = 1.0 MHz)  
|Z |  
o
Figure 1. Maximum Power Dissipation versus  
Temperature for Package Variations  
Figure 2. Input Common Mode Voltage Range  
versus Temperature  
2400  
2000  
1600  
0
–1.0  
–2.0  
V
V
= +3.0 V to +15 V  
= –3.0 V to –15 V  
CC  
EE  
V
(V  
to V  
)
CC CM  
CC  
V
= 5.0 mV  
IO  
8/14 Pin  
Plastic  
TSSOP–14  
SO–14  
1200  
800  
400  
0
3.0  
2.0  
1.0  
0
SO–8  
V
EE  
–55 –40 –20  
0
20  
40  
60  
80 100 120 140 160  
C)  
–55  
–25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°C)  
A
A
4
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
Figure 3. Input Bias Current  
versus Temperature  
Figure 4. Input Bias Current versus  
Input Common Mode Voltage  
20  
15  
10  
1000  
100  
10  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
V
V
= +15 V  
= –15 V  
CC  
EE  
T
= 25  
°C  
A
1.0  
0.1  
5
0
0.01  
0.001  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
–10  
–5.0  
V , INPUT COMMON MODE VOLTAGE (V)  
ICR  
0
5.0  
10  
T , AMBIENT TEMPERATURE (  
°
A
Figure 5. Output Voltage Swing  
versus Supply Voltage  
Figure 6. Output Saturation Voltage  
versus Load Current  
40  
30  
20  
10  
0
0
V
R
T
Connected to Ground  
CC  
L
–1.0  
–2.0  
–3.0  
= 25°C  
A
V
CC  
= +15 V  
= –15 V  
Source  
V
EE  
A
T
= +25°C  
R
= 10 k  
L
+3.0  
+2.0  
+1.0  
0
Sink  
V
EE  
0
2.0  
4.0  
6.0  
8.0  
10  
12  
14  
16  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0 9.0  
10  
V
, |V |, SUPPLY VOLTAGE (V)  
I , LOAD CURRENT (mA)  
CC EE  
L
Figure 7. Output Saturation Voltage versus  
Load Resistance to Ground  
Figure 8. Output Saturation Voltage versus  
Load Resistance to V  
CC  
0
0
V
CC  
V
CC  
–1.0  
–2.0  
–3.0  
–1.0  
–2.0  
–3.0  
3.0  
2.0  
1.0  
0
V
V
= +15 V  
= –15 V  
CC  
EE  
T
= +25  
°C  
A
3.0  
2.0  
1.0  
0
V
V
= +15 V  
= –15 V  
CC  
EE  
T
= +25  
°C  
A
V
EE  
V
EE  
1.0 k  
10 k  
100 k  
1.0 M  
1.0 k  
10 k  
100 k  
1.0 M  
R , LOAD RESISTANCE TO GROUND (  
)  
R , LOAD RESISTANCE ()  
L
L
5
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
Figure 9. Output Short Circuit Current  
versus Temperature  
Figure 10. Output Impedance versus Frequency  
30  
20  
V
V
V
V
= +15 V  
= –15 V  
= 0 V  
V
V
R
V
= +15 V  
CC  
EE  
CM  
CC  
EE  
L
= –15 V  
0.1  
= 1.0 V  
300  
200  
= 0 V  
= 10  
O
ID  
I
µA  
O
T
= 25  
°C  
A
Sink  
A
= 1000  
V
100  
10  
1.0  
10  
0
100  
0
Source  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
100  
1.0 k  
10 k  
f, FREQUENCY (Hz)  
100 k  
1.0 M  
T , AMBIENT TEMPERATURE (  
°
A
Figure 11. Output Voltage Swing  
versus Frequency  
Figure 12. Output Distortion versus  
Frequency  
30  
1.0  
0.8  
V
V
V
V
= +15 V  
= –15 V  
CC  
EE  
O
CC  
V
R
EE  
24  
18  
12  
= 10 k  
L
R
T
THD = 1.0%  
= 25  
L
T
°C  
A
A
0.6  
A
= 1000  
V
0.4  
0.2  
0
100  
10  
6
0
1.0  
1.0 k  
10 k  
109 k  
1.0 M  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
f, FREQUENCY (Hz)  
Figure 13. Open Loop Voltage Gain  
versus Temperature  
Figure 14. Open Loop Voltage Gain and  
Phase versus Frequency  
70  
60  
50  
100  
V
V
V
= +15 V  
= –15 V  
= 0 V  
= 10 kΩ  
= 25°C  
CC  
EE  
O
80  
60  
40  
0
Gain  
R
L
T
A
45  
90  
135  
180  
Phase  
40  
30  
V
V
R
= +15 V  
= –15 V  
= 10 kΩ  
10 Hz  
= 25°C  
CC  
EE  
L
20  
0
f
T
A
20  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
1.0  
10  
100 1.0 k  
10 k 100 k 1.0 M 10 M 100 M  
T , AMBIENT TEMPERATURE (  
°
f, FREQUENCY (Hz)  
A
6
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
Figure 15. Normalized Gain Bandwidth  
Product versus Temperature  
Figure 16. Output Voltage Overshoot  
versus Load Capacitance  
100  
80  
60  
40  
20  
0
1.3  
1.2  
V
V
R
= +15 V  
= –15 V  
CC  
EE  
V
V
R
= +15 V  
= –15 V  
= 10 kΩ  
CC  
EE  
L
= 10 k  
L
V
= 100 mV  
O
pp  
1.1  
1.0  
–10 V < V < +10 V  
O
A
= +1.0  
V
A
T
= 25°C  
0.9  
0.8  
0.7  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
10  
100  
C , LOAD CAPACITANCE (pF)  
1.0 k  
T , AMBIENT TEMPERATURE (  
°
A
L
Figure 17. Phase Margin versus  
Load Capacitance  
Figure 18. Gain Margin versus  
Load Capacitance  
70  
60  
50  
40  
30  
20  
10  
0
10  
8.0  
6.0  
4.0  
2.0  
0
V
V
R
= +15 V  
= –15 V  
= 10 kto ∞  
V
V
R
= +15 V  
= –15 V  
= 10 kto ∞  
CC  
EE  
L
CC  
EE  
L
–10 V < V < +10 V  
–10 V < V < +10 V  
O
O
T
= 25°C  
T
= 25°C  
A
A
10  
100  
C , LOAD CAPACITANCE (pF)  
1.0 k  
10  
100  
1.0 k  
C , LOAD CAPACITANCE (pF)  
L
L
Figure 19. Phase Margin  
versus Temperature  
Figure 20. Gain Margin  
versus Temperature  
70  
60  
50  
40  
10  
9.0  
8.0  
C
= 10 pF  
L
C
C
= 10 pF  
L
7.0  
6.0  
C
= 100 pF  
5.0  
4.0  
3.0  
2.0  
1.0  
0
L
= 100 pF  
L
30  
20  
V
V
= +15 V  
= –15 V  
= 10 kto ∞  
CC  
EE  
V
V
R
= +15 V  
= –15 V  
= 10 kto ∞  
CC  
EE  
R
L
L
–10 V < V < +10 V  
O
–10 V < V < +10 V  
O
10  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
7
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
Figure 21. Normalized Slew Rate  
versus Temperature  
Figure 22. Common Mode Rejection  
versus Frequency  
1.1  
1.0  
140  
120  
100  
V
V
= +15 V  
= –15 V  
CC  
EE  
A
V
DM  
V
CM  
O
+
V
= 3.0 V  
CM  
= 25  
T
°C  
A
0.9  
0.8  
0.7  
0.6  
0.5  
V  
CM  
CMR = 20 Log  
X A  
DM  
80  
60  
40  
20  
0
V  
O
V
V
= +15 V  
= –15 V  
= +1.0  
CC  
EE  
A
V
R
C
= 10 k  
L
L
= 100 pF  
= –10 V to +10 V  
V
in  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
100 k  
1.0 M  
100  
1.0 k  
10 k  
100 k  
1.0 M  
T , AMBIENT TEMPERATURE (  
°
f, FREQUENCY (Hz)  
A
Figure 23. Input Noise Voltage  
versus Frequency  
Figure 24. Power Supply Rejection  
versus Temperature  
110  
100  
90  
100  
80  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
Positive Supply  
T
= 25°C  
A
60  
40  
20  
0
f
V
,
V
= 3.0 V  
CC  
10 Hz  
EE  
Negative Supply  
80  
–55  
10  
100  
1.0 k  
10 k  
–25  
0
25  
50  
75  
C)  
100  
125  
f, FREQUENCY (Hz)  
T
< AMBIENT TEMPERATURE (  
°
A
Figure 25. Power Supply Rejection  
versus Frequency  
Figure 26. Normalized Supply Current  
versus Supply Voltage  
140  
120  
1.2  
1.1  
V
/A  
DM  
O
+PSR = 20Log  
–PSR = 20Log  
V  
CC  
+PSR (  
V
=
±
1.5 V)  
CC  
V
/A  
100  
80  
60  
40  
20  
0
O
DM  
T
A
= 25°C  
V  
–PSR (  
V
=
±1.5 V)  
EE  
EE  
1.0  
0.9  
0.8  
0.7  
125°C  
–55°C  
V
V
T
= +15 V  
= –15 V  
CC  
EE  
A
V
V
T
R
V
= +15 V  
= –15 V  
CC  
EE  
V
V
CC  
= 25  
°C  
= 25  
°C  
A
A
DM  
V  
O
= ∞  
= 0V  
+
L
O
EE  
0
5.0  
10  
15  
100  
1.0 k  
10 k  
f, FREQUENCY (Hz)  
100 k  
20  
V
, |V |, SUPPLY VOLTAGE (V)  
CC EE  
8
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
Figure 27. Channel Separation versus Frequency  
Figure 28. Transient Response  
140  
V
V
= +15 V  
= –15 V  
= 10 kΩ  
= +1.0  
= 25°C  
CC  
EE  
L
120  
100  
80  
60  
40  
20  
0
R
A
V
A
T
V
V
T
= +15 V  
= –15 V  
CC  
EE  
A
= +25  
°C  
10 k  
100 k  
1.0 M  
10 M  
t, TIME (2.0 µs/DIV)  
f, FREQUENCY (Hz)  
Figure 29. Small Signal Transient Reponse  
V
V
R
A
= +15 V  
= –15 V  
= 10 kΩ  
= +1.0  
= 25°C  
CC  
EE  
L
V
T
A
t, TIME (0.5 µs/DIV)  
9
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
8
5
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
–B–  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
1
4
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
–A–  
NOTE 2  
0.370  
0.240  
0.155  
0.015  
0.040  
L
C
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
7.62 BSC  
–––  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.300 BSC  
–––  
0.050  
0.012  
0.135  
J
M
–T–  
SEATING  
PLANE  
N
10  
1.01  
10  
0.040  
0.76  
0.030  
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–8)  
ISSUE R  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
C
2. DIMENSIONS ARE IN MILLIMETERS.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
8
1
5
4
M
M
0.25  
B
H
E
h X 45  
MILLIMETERS  
B
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.18  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
C
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
OUTLINE DIMENSIONS – continued  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE L  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
4. ROUNDED CORNERS OPTIONAL.  
14  
1
8
7
B
INCHES  
MILLIMETERS  
A
F
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
C
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
0.300 BSC  
7.62 BSC  
SEATING  
PLANE  
K
0
10  
0
10  
0.015  
0.039  
0.39  
1.01  
H
G
D
M
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A–03  
(SO–14)  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
14  
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
0.25 (0.010)  
B
1
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
0.337  
0.150  
0.054  
0.014  
0.016  
–T–  
SEATING  
PLANE  
J
M
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
R
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC34181,2,4 MC33181,2,4  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC34181/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY