MC33349 [ONSEMI]

Lithium Battery Protection Circuit for One Cell Battery Packs; 锂电池保护电路一节电池组
MC33349
型号: MC33349
厂家: ONSEMI    ONSEMI
描述:

Lithium Battery Protection Circuit for One Cell Battery Packs
锂电池保护电路一节电池组

电池
文件: 总12页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The MC33349 is a monolithic lithium battery protection circuit that  
is designed to enhance the useful operating life of a one cell  
rechargeable battery pack. Cell protection features consist of  
internally trimmed charge and discharge voltage limits, discharge  
current limit detection, and a low current standby mode when the cell  
is discharged. This protection circuit requires a minimum number of  
external components and is targeted for inclusion within the battery  
pack.  
http://onsemi.com  
6
1
PLASTIC PACKAGE  
N SUFFIX  
Internally Trimmed Charge and Discharge Voltage Limits  
Discharge Current Limit Detection  
CASE 1262  
(SOT–23)  
Low Current Standby Mode when Cells are Discharged  
Dedicated for One Cell Applications  
Minimum Components for Inclusion within the Battery Pack  
Available in a Low Profile Surface Mount Package  
MARKING DIAGRAMS  
1
Typical One Cell Smart Battery Pack  
v
= Version code number  
xx = Date code  
5
PIN CONNECTIONS  
1
2
3
6
5
4
DO  
P–  
Gnd  
MC33349  
V
cell  
CO  
C
t
6
4
(Top View)  
1
3
2
ORDERING INFORMATION  
Seedetailedorderingandshippinginformationinthepackage  
dimensions section on page 10 of this data sheet.  
Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
May, 2000 – Rev. 1  
MC33349/D  
MC33349  
MAXIMUM RATINGS  
Characteristics  
Symbol  
Value  
Unit  
Supply Voltage (Pin 5 to Pin 6)  
V
DD  
–0.3 to 12  
V
Input Voltage  
P– Pin Voltage (Pin 5 to Pin 2)  
Ct Pin (Pin 4 to Pin 6)  
V
V
V
– 28 to V  
+ 0.3  
+ 0.3  
V
V
P–  
Ct  
DD  
DD  
DD  
Gnd – 0.3 to V  
Output Voltage  
CO Pin Voltage (Pin 3 to Pin 2)  
DO Pin Voltage (Pin 1 to Pin 6)  
V
CO  
V
DO  
V
– 28 to V  
+ 0.3  
+ 0.3  
V
V
DD  
DD  
DD  
Gnd – 0.3 to V  
Power Dissipation  
P
150  
mW  
°C  
D
Operating Junction Temperature  
Storage Temperature  
T
–40 to 85  
J
T
stg  
–55 to 125  
°C  
ELECTRICAL CHARACTERISTICS (C = 0.01 µF, T = 25°C, for min/max values T is the operating junction temperature range  
t
A
A
that applies, unless otherwise noted.)  
1
Note  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
VOLTAGE SENSING  
Cell Charging Cutoff (Pin 5 to Pin 6)  
Overvoltage Threshold, V  
–3, –4 Suffix  
–7 Suffix  
Increasing  
V
B
DD  
DET1  
4.2  
4.3  
150  
4.25  
4.35  
200  
4.3  
4.4  
250  
V
V
mV  
Overvoltage Hysteresis V  
Decreasing  
V
V
B
C
DD  
HYS1  
Cell Discharging Cutoff (Pin 5 to Pin 6)  
Undervoltage Threshold, V Decreasing  
2.437  
55  
2.5  
80  
2.563  
105  
V
DD  
Overvoltage Delay Time (C = 0.01 µF, V  
DET2  
= 3.6V to 4.5V)  
t
ms  
B
C
t
DD  
(DET1)  
Undervoltage Delay Time (V  
= 3.6V to 2.4V)  
t
7.0  
10  
13  
ms  
DD  
(DET2)  
CURRENT SENSING  
Excess Current Threshold (Detect rising edge of P– pin voltage)  
V
D
D
DET3  
–3, –7 Suffix  
–4 Suffix  
170  
45  
200  
75  
230  
105  
mV  
mV  
Short Protection Voltage (V  
DD  
= 3.0V)  
= 3.0V)  
V
V
– 1.1  
V
– 0.8  
V – 0.5  
DD  
V
SHORT  
DD  
DD  
Current Limit Delay Time (V  
DD  
t
9.0  
13  
5.0  
17  
50  
ms  
µs  
D
D
(DET3)  
t
(SHORT)  
Reset Resistance for Short Protection  
R
50  
100  
150  
k
D
SHORT  
OUTPUTS  
CO Nch On Voltage (I = 50 µA, V  
= 4.4V)  
V
ol1  
0.2  
3.8  
0.2  
3.7  
0.5  
V
V
V
V
E
F
O
DD  
CO Pch On Voltage (I = –50 µA, V  
= 3.9V)  
V
oh1  
3.4  
O
DD  
DO Nch On Voltage (I = 50 µA, V  
= 2.4V)  
V
ol2  
0.5  
G
H
O
DD  
DO Pch On Voltage (I = –50 µA, V  
= 3.9V)  
V
oh2  
3.4  
O
DD  
TOTAL DEVICE  
Operating Input Voltage  
V
DD  
1.5  
10  
V
A
Supply Current  
I
cell  
Operating (V  
= 3.9 V, V = 0V)  
P–  
3.0  
0.3  
6.0  
0.6  
µA  
µA  
I
I
DD  
= 2.0 V)  
Standby (V  
DD  
Minimum Operating Cell Voltage for Zero Volt Charging (Pin 5 to  
Pin 2)  
V
ST  
1.2  
V
A
1. Indicates test circuits shown on next page.  
http://onsemi.com  
2
MC33349  
A
B
C
F
G
H
I
A
5
2
6
5
2
6
3
3
1
V
V
V
OSCILLOSCOPE  
5
5
2
6
4
V
2
6
1
A
3
V
5
2
6
5
1
A
V
2
6
V
1
D
5
2
6
5
2
6
A
1
A
V
E
5
2
6
3
A
V
Figure 1. Test Circuit Schematics  
http://onsemi.com  
3
MC33349  
Vcell  
Ct  
5
4
Level  
Shift  
VD1  
VD2  
10 kOhm  
Short Circuit  
Delay  
Detector  
VD3  
Rshort  
6
1
3
2
Gnd  
Do  
Co  
P–  
Figure 2. Detailed Block Diagram  
PIN FUNCTION DESCRIPTION  
Description  
Pin  
Symbol  
1
DO  
This output connects to the gate of the discharge MOSFET allowing it to enable or disable battery pack  
discharging.  
2
P–  
This pin monitors cell discharge current.  
The excess current detector sets when the combined voltage drop of the charge MOSFET and the discharge  
MOSFET exceeds the discharge current limit threshold voltage, V  
. The short circuit detector activates when  
(DET3)  
V
(P–)  
is pulled within 0.8V of the cell voltage by a short circuit.  
3
4
5
CO  
This output connects to the gate of the charge MOSFET allowing it to enable or disable battery pack charging.  
This pin connects to the external capacitor for setting the output delay of the overvoltage detector (VD1).  
C
t
V
cell  
This input connects to the positive terminal of the cell for voltage monitoring and provides operating bias for the  
integrated circuit.  
6
Gnd  
This is the ground pin of the IC.  
http://onsemi.com  
4
MC33349  
TYPICAL CHARACTERISTICS  
4.27  
4.26  
2.54  
2.53  
4.25  
4.24  
4.23  
4.22  
4.21  
4.20  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
–60  
40  
20  
0
20  
40  
60  
80  
100  
–60  
40  
20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 3. Overvoltage Threshold  
vs Temperature  
Figure 4. Undervoltage Threshold  
vs Temperature  
MC33349N–3X  
MC33349N–3X / MC33349N–7X  
0.210  
0.205  
0.200  
0.195  
0.190  
2.40  
V
DD  
= 3.0 V  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
–60  
40  
20  
0
20  
40  
60  
80  
100  
–60  
40  
20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 5. Excess Current Threshold  
vs Temperature  
Figure 6. Short Protection Voltage  
vs Temperature  
MC33349N–3X / MC33349N–7X  
MC33349N–3X  
100  
90  
18  
16  
14  
80  
70  
60  
50  
40  
30  
20  
12  
10  
8
C3 = 0.01µF  
V
DD  
= 3.6V to 2.4V  
6
V
= 3.6V to 4.3V  
DD  
4
2
–60  
–60  
40  
20  
0
20  
40  
60  
80  
100  
40  
20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 7. Output Delay of Overvoltage  
vs Temperature  
Figure 8. Output Delay of Undervoltage  
vs Temperature  
MC33349N–3X  
MC33349N–3X / MC33349N–7X  
http://onsemi.com  
5
MC33349  
10  
20  
18  
16  
14  
12  
10  
8
V
DD  
= 3.0 V  
V
DD  
= 3.0 V  
8
6
4
2
6
4
2
0
–60  
0
–60  
40  
20  
0
20  
40  
60  
80  
100  
40  
20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 9. Output Delay of Excess Current  
vs Temperature  
Figure 10. Output Delay of Short Circuit  
Detector vs Temperature  
MC33349N–3X  
MC33349N–3X  
0.210  
4.0  
3.5  
3.0  
0.205  
0.200  
0.195  
0.190  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
V
= 3.9 V  
DD  
= 0 V  
P–  
–60  
40  
20  
0
20  
40  
60  
80  
100  
–60  
40  
20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 11. Overvoltage Threshold Hysteresis  
vs Temperature  
Figure 12. Operating Current  
vs Temperature  
MC33349N–3X / MC33349N–7X  
MC33349N–3X  
0.40  
0.35  
0.30  
0.30  
V
DD  
= 2.0 V  
0.25  
0.20  
0.15  
0.10  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
I
V
= 50µA  
OL  
0.05  
0.00  
= 4.4V  
DD  
–60  
40  
20  
0
20  
40  
60  
80  
100  
–60  
40  
20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 13. Standby Current vs Temperature  
MC33349N–3X  
Figure 14. Cout Nch Driver On Voltage (Vol1)  
vs Temperature  
MC33349N–3X  
http://onsemi.com  
6
MC33349  
3.90  
0.30  
3.85  
3.80  
3.75  
3.70  
0.25  
0.20  
0.15  
0.10  
I
V
= –50µA  
OH  
I
V
= 50µA  
3.65  
3.60  
0.05  
0.00  
OL  
= 3.9V  
DD  
= 2.4V  
DD  
–60  
40  
20  
0
20  
40  
60  
80  
100  
–60  
40  
20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 15. Cout Pch Driver On Voltage (Voh1)  
vs Temperature  
Figure 16. Dout Nch Driver On Voltage (Vol2)  
vs Temperature  
MC33349N–3X  
MC33349N–3X  
10000  
1000  
100  
3.90  
I
V
= –50µA  
OH  
= 3.9V  
3.85  
3.80  
3.75  
3.70  
DD  
10  
0
R2 = 1k  
3.65  
3.60  
V
= 3.0V  
DD  
0.001  
0.01  
0.1  
1
–60  
40  
20  
0
20  
40  
60  
80  
100  
EXTERNAL CAPACITANCE C2 (µF)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 17. Dout Pch Driver On Voltage (Voh2)  
vs Temperature  
Figure 18. Short Protection Delay Time  
vs Capacitance C2  
MC33349N–3X  
MC33349N–3X  
25.00  
20.00  
15.00  
10.00  
5.00  
0.00  
2.5  
3.0  
3.5  
SUPPLY VOLTAGE V (V)  
4.0  
4.5  
DD  
Figure 19. Excess Current Delay Time vs V  
MC33349N–3X  
DD  
http://onsemi.com  
7
MC33349  
0.210  
0.209  
4.258  
C1 = 0 to 0.68µF  
C3 = 0.22µF  
C3 = 0.01µF  
4.256  
4.254  
4.252  
4.250  
C3 = 0.1µF  
0.208  
0.207  
0.206  
0.205  
0.204  
0.203  
0.202  
4.248  
4.246  
V
= 3.0V  
DD  
0
0.5  
1
1.5  
2
2.5  
3
0
200  
400  
600  
800  
1000  
EXTERNAL RESISTANCE R2(k  
)
EXTERNAL RESISTANCE R1( )  
Figure 20. Excess Current Threshold vs  
External Resistance R2  
Figure 21. Overvoltage Threshold vs  
External Resistance R1  
MC33349N–3X  
MC33349N–3X / MC33349N–7X  
OPERATING DESCRIPTION  
VD1 / Over–Charge Detector  
pin goes to a ”Low” level, and the external discharge control  
Nch MOSFET turns off. The IC enters a low current standby  
mode after detection of an over–discharged voltage byVD2.  
Supply current then reduces to approximately 0.3 µA.  
During standby mode, only the charger detector operates.  
VD2 can only reset after connecting the pack to a charger.  
VD1monitorsthevoltageattheV  
itexceedstheover–chargedetectorthreshold, V  
senses an over–charging condition, the CO pin goes to a  
”Low” level, and the external charge control,  
Nch–MOSFET turns off.  
pin(V ).When  
DD  
CELL  
. VD1  
DET1  
Resetting VD1 allows resumption of the charging  
process. VD1 resets under two conditions, thus, making the  
CO pin level ”High.” The first case occurs when the cell  
While V  
threshold, V  
remains under the over–discharge detector  
, discharge current can flow through the  
DD  
DET2  
parasitic diode of the external discharge control FET. The  
DO level goes ”High” when the cell voltage rises above  
voltagedropsbelow”V  
–V  
.”(V istypically  
DET1 HYS1  
HYS1  
200 mV). Inthesecondcase, disconnectingthechargerfrom  
the battery pack can reset VD1 after V drops between  
V
due to the charging current through the parasitic  
DET2  
diode.Connectingachargertothebatterypackwillinstantly  
set DO ”High” if this causes V to rise above V  
DD  
”V ” and ”V  
DET1  
– V  
”.  
HYS1  
.
DD DET2  
DET1  
After detecting over–charge, connecting a load to the  
batterypackallowsloadcurrenttoflowthroughtheparasitic  
diode of the external charge control FET. The CO level goes  
When cell voltage equals zero, one can charge the battery  
pack if the voltage is greater than the minimum charge  
voltage, V  
.
ST  
Output delay time for the over–discharge detection  
)isfixedinternally.Ifthevoltagefaultoccurswithin  
”HighwhenthecellvoltagedropsbelowV  
current draw through the parasitic diode.  
duetoload  
DET1  
(t  
VDET2  
An external capacitor connected between the Gnd pin and  
Ct pin sets the output delay time for over–charge detection.  
The external capacitor sets up a delay time from the moment  
of over–charge detection to the time CO outputs a signal,  
which enables the charge control FET to turn off. If the  
voltage fault occurs within the time delay window. CO will  
not turn off the charge control FET. The output delay time  
can be calculated as follows:  
the time delay window, DO will not turn off the discharge  
control FET.  
A CMOS buffer sets the output of the DO pin to a ”High”  
level of V  
and a ”Low” level of Gnd.  
DD  
VD3 / Excess Current Detector, Short Circuit Detector  
Both the excess current detector and the short circuit  
detector can work when the two control FET’s are on. When  
the voltage at the P– pin rises to a value between the short  
6
t
[sec]  
VDET1  
(Ct[F] (VDD[V] 0.7) (0.48 10  
)
circuit protection voltage, V  
, and the excess current  
SHORT  
threshold, V  
Increasing V  
, the excess current detector operates.  
higher than V  
DET3  
A level shifter incorporated in a buffer driver for the CO  
pin drives the ”Low” level of CO pin to the P– pin voltage.  
enables the short  
SHORT  
(P–)  
circuit detector. The DO pin then goes to a ”Low” level, and  
the external discharge control Nch MOSFET turns off.  
A CMOS buffer sets the ”High” level of CO pin to V  
.
DD  
VD2 / Over–Discharge Detector  
Outputdelaytimeforexcesscurrentdetection(t )is  
VDET3  
fixed internally. If the excess current fault occurs within the  
time delay window, DO will not turn off the discharge  
control FET. However, when the short circuit protector is  
VD2monitorsthevoltageattheV  
CELL  
pin(V  
DD)  
.When  
it drops below the over–discharge detector threshold,  
, VD2 senses an over–discharge condition, the DO  
V
DET2  
http://onsemi.com  
8
MC33349  
–NOTE–  
enabled, DO can turn off the discharge control FET. Its delay  
time would be approximately 5 µs.  
If V  
voltage is higher than the over–discharge voltage  
, when excess current is detected the IC  
is below  
when excess current is detected, the IC will enter a  
DD  
The P– pin has a built–in pull down resistor, typically 100  
k , which connects to the Gnd pin. Once an excess current  
or short circuit fault is removed, the internal resistor pulls  
threshold, V  
DET2  
will not enter a standby mode. However, if V  
DD  
V
DET2  
standby mode. This will not occur when the short circuit  
detector activates.  
V
(P–)  
to the Gnd pin potential. Therefore, the voltage from  
P– to Gnd drops below the current detection thresholds and  
DO turns the external MOSFET back on.  
Figure 22. Timing Diagram / Operational Description  
http://onsemi.com  
9
MC33349  
+
R1  
100  
C1  
0.01µF  
5
4
6
MC33349  
1
2
C3  
0.01µF  
3
C2  
0.22µF  
R2  
1k  
Figure 23. Typical Application Circuit  
Technical Notes  
R1 and C1 will stabilize a supply voltage to the MC33349. A recommended R1 value is less than 1 k . A larger value of R1  
leads to higher detection voltage because of shoot through current into the IC.  
R2 and C2 stabilize P– pin voltage. Larger R2 values could possibly disable reset from over–discharge by connecting a charger.  
Recommended values are less than 1 k . After an over–charge detection even connecting a battery pack to a system could  
probably not allow a system to draw load current if one uses a larger R2C2 time constant. The recommended C2 value is less  
than 1µF.  
R1 and R2 can operate as a current limiter against setting cell reverse direction or for applying excess charging voltage to the  
IC and battery pack. Smaller R1 and R2 values may cause excessive power consumption over the specified power dissipation  
rating. Therefore R1+R2 should be more than 1 k .  
The time constants R1C1 and R2C2 must have a relation as follows:  
R1C1 R2C2  
If the R1C1 time constant for the Vcell pin is larger than the R2C2 time constant for the P– pin, the IC might enter a standby  
mode after detecting excess current. This was noted in the operating description of the current detectors.  
ORDERING INFORMATION  
Overvoltage  
Threshold (V)  
Undervoltage  
Threshold (V)  
Current Limit  
Threshold (V)  
Device  
Marking  
A1xx*  
Reel Size  
Tape width  
Quantity  
MC33349N–3R1  
MC33349N–4R1  
MC33349N–7R1  
4.25  
4.25  
4.35  
2.5  
2.5  
2.5  
0.2  
0.075  
0.2  
A2xx*  
7”  
8 mm  
3000  
A0xx*  
* xxdenotes the date code marking.  
Consult factory for information on other threshold values.  
http://onsemi.com  
10  
MC33349  
OUTLINE DIMENSIONS  
N SUFFIX  
PLASTIC PACKAGE  
CASE 1262–01  
(SOT–23)  
ISSUE O  
E
M
M
0.05  
0.20  
C B  
PIN 1 INK MARK  
IDENTIFIER  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSION D DOES NOT INCLUDE FLASH OR  
PROTRUSIONS. FLASH OR PROTRUSIONS  
SHALL NOT EXCEED 0.23 PER SIDE.  
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
C
1
2
6
5
A
A
5. DIMENSIONS D AND E1 ARE TO BE DETERMINED  
AT DATUM PLANE H.  
3
4
MILLIMETERS  
A1  
A
DIM MIN  
MAX  
1.45  
0.15  
0.50  
0.45  
0.20  
0.15  
3.00  
3.00  
1.75  
E1  
A
A1  
b
b1  
c
c1  
D
E
E1  
e
0.90  
0.00  
0.35  
0.35  
0.09  
0.09  
2.80  
2.60  
1.50  
B
A
b
0.95  
1.90  
e1  
L
0.25  
0
0.55  
10  
H
L
b1  
SECTION A–A  
http://onsemi.com  
11  
MC33349  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MC33349/D  

相关型号:

MC33349N

Power Supply Support Circuit, Fixed, 1 Channel, PDSO6, PLASTIC, SOT-23, 6 PIN
MOTOROLA

MC33349N-1

LITHIUM BATTERY PROTECTION CIRCUIT FOR ONE CELL SMART BATTERY PACKS
MOTOROLA

MC33349N-10

LITHIUM BATTERY PROTECTION CIRCUIT FOR ONE CELL SMART BATTERY PACKS
MOTOROLA

MC33349N-2

LITHIUM BATTERY PROTECTION CIRCUIT FOR ONE CELL SMART BATTERY PACKS
MOTOROLA

MC33349N-3

LITHIUM BATTERY PROTECTION CIRCUIT FOR ONE CELL SMART BATTERY PACKS
MOTOROLA

MC33349N-3R1

Lithium Battery Protection Circuit for One Cell Battery Packs
ONSEMI

MC33349N-4

LITHIUM BATTERY PROTECTION CIRCUIT FOR ONE CELL SMART BATTERY PACKS
MOTOROLA

MC33349N-4R1

Lithium Battery Protection Circuit for One Cell Battery Packs
ONSEMI

MC33349N-5

LITHIUM BATTERY PROTECTION CIRCUIT FOR ONE CELL SMART BATTERY PACKS
MOTOROLA

MC33349N-5R1

MC33349N-5R1
ONSEMI

MC33349N-6

LITHIUM BATTERY PROTECTION CIRCUIT FOR ONE CELL SMART BATTERY PACKS
MOTOROLA

MC33349N-6R1

MC33349N-6R1
ONSEMI