MC34161DMR2 [ONSEMI]

Universal Voltage Monitors; 通用电压监测器
MC34161DMR2
型号: MC34161DMR2
厂家: ONSEMI    ONSEMI
描述:

Universal Voltage Monitors
通用电压监测器

电源电路 电源管理电路 光电二极管
文件: 总18页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC34161, MC33161,  
NCV33161  
Universal Voltage Monitors  
The MC34161/MC33161 are universal voltage monitors intended  
for use in a wide variety of voltage sensing applications. These devices  
offer the circuit designer an economical solution for positive and  
negative voltage detection. The circuit consists of two comparator  
channels each with hysteresis, a unique Mode Select Input for channel  
programming, a pinned out 2.54 V reference, and two open collector  
outputs capable of sinking in excess of 10 mA. Each comparator  
channel can be configured as either inverting or noninverting by the  
Mode Select Input. This allows over, under, and window detection of  
positive and negative voltages. The minimum supply voltage needed  
for these devices to be fully functional is 2.0 V for positive voltage  
sensing and 4.0 V for negative voltage sensing.  
http://onsemi.com  
MARKING  
DIAGRAMS  
8
MC3x161P  
AWL  
YYWWG  
PDIP−8  
P SUFFIX  
CASE 626  
Applications include direct monitoring of positive and negative  
voltages used in appliance, automotive, consumer, and industrial  
equipment.  
1
1
8
SOIC−8  
D SUFFIX  
CASE 751  
3x161  
ALYW  
G
Features  
Unique Mode Select Input Allows Channel Programming  
Over, Under, and Window Voltage Detection  
Positive and Negative Voltage Detection  
Fully Functional at 2.0 V for Positive Voltage Sensing and 4.0 V  
for Negative Voltage Sensing  
1
1
8
Micro8t  
DM SUFFIX  
CASE 846A  
x161  
AYW G  
G
Pinned Out 2.54 V Reference with Current Limit Protection  
Low Standby Current  
1
Open Collector Outputs for Enhanced Device Flexibility  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Control Changes  
1
x
A
= 3 or 4  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
Pb−Free Packages are Available  
V
CC  
G or G = Pb−Free Package  
8
(Note: Microdot may be in either location)  
1
7
2
2.54V  
Reference  
PIN CONNECTIONS  
V
S
V
1
2
3
4
8
7
6
5
V
CC  
ref  
+
Input 1  
Input 2  
GND  
Mode Select  
Output 1  
6
5
+
2.8V  
+
+
+
Output 2  
1.27V  
(TOP VIEW)  
+
+
3
0.6V  
+
ORDERING INFORMATION  
1.27V  
See detailed ordering and shipping information in the package  
dimensions section on page 15 of this data sheet.  
4
This device contains  
141 transistors.  
Figure 1. Simplified Block Diagram  
(Positive Voltage Window Detector Application)  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
June, 2006 − Rev. 9  
MC34161/D  
MC34161, MC33161, NCV33161  
MAXIMUM RATINGS (Note 1)  
Rating  
Symbol  
Value  
Unit  
V
Power Supply Input Voltage  
V
CC  
40  
− 1.0 to +40  
20  
Comparator Input Voltage Range  
V
in  
V
Comparator Output Sink Current (Pins 5 and 6) (Note 2)  
Comparator Output Voltage  
I
mA  
V
Sink  
V
out  
40  
Power Dissipation and Thermal Characteristics (Note 2)  
P Suffix, Plastic Package, Case 626  
Maximum Power Dissipation @ T = 70°C  
P
800  
100  
mW  
°C/W  
A
D
Thermal Resistance, Junction−to−Air  
D Suffix, Plastic Package, Case 751  
R
q
JA  
Maximum Power Dissipation @ T = 70°C  
P
450  
178  
mW  
°C/W  
A
D
Thermal Resistance, Junction−to−Air  
DM Suffix, Plastic Package, Case 846A  
Thermal Resistance, Junction−to−Ambient  
R
q
JA  
240  
°C/W  
°C  
R
q
JA  
Operating Junction Temperature  
T
T
+150  
J
Operating Ambient Temperature (Note 3)  
°C  
A
MC34161  
MC33161  
NCV33161  
0 to +70  
− 40 to +105  
−40 to +125  
Storage Temperature Range  
T
stg  
− 55 to +150  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per MIL−STD−883, Method 3015.  
Machine Model Method 200 V.  
2. Maximum package power dissipation must be observed.  
3. T  
=
0°C for MC34161  
−40°C for MC33161  
−40°C for NCV33161  
T
high  
=
+70°C for MC34161  
+105°C for MC33161  
+125°C for NCV33161  
low  
http://onsemi.com  
2
 
MC34161, MC33161, NCV33161  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, for typical values T = 25°C, for min/max values T is the operating ambient  
CC  
A
A
temperature range that applies [Notes 4 and 5], unless otherwise noted.)  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
COMPARATOR INPUTS  
Threshold Voltage, V Increasing (T = 25°C)  
V
th  
1.245  
1.235  
1.27  
1.295  
1.295  
V
in  
A
(T = T  
to T  
)
A
min  
max  
Threshold Voltage Variation (V = 2.0 V to 40 V)  
DV  
15  
7.0  
25  
15  
35  
mV  
mV  
mV  
V
CC  
th  
Threshold Hysteresis, V Decreasing  
V
H
in  
Threshold Difference |V − V  
|
V
D
1.0  
1.27  
15  
th1  
th2  
Reference to Threshold Difference (V − V ), (V − V  
)
V
RTD  
1.20  
1.32  
ref  
in1  
ref  
in2  
Input Bias Current (V = 1.0 V)  
I
IB  
40  
85  
200  
400  
nA  
in  
(V = 1.5 V)  
in  
MODE SELECT INPUT  
Mode Select Threshold Voltage (Figure 6)  
Channel 1  
Channel 2  
V
V
V
ref  
+0.15  
0.3  
V
+0.23  
0.63  
V +0.30  
ref  
V
th(CH 1)  
th(CH 2)  
ref  
0.9  
COMPARATOR OUTPUTS  
Output Sink Saturation Voltage (I  
= 2.0 mA)  
= 10 mA)  
= 0.25 mA, V = 1.0 V)  
V
OL  
0.05  
0.22  
0.02  
0.3  
0.6  
0.2  
V
Sink  
Sink  
Sink  
(I  
(I  
CC  
Off−State Leakage Current (V = 40 V)  
I
0
1.0  
mA  
OH  
OH  
REFERENCE OUTPUT  
Output Voltage (I = 0 mA, T = 25°C)  
V
ref  
2.48  
2.54  
0.6  
5.0  
2.60  
15  
V
O
A
Load Regulation (I = 0 mA to 2.0 mA)  
Reg  
mV  
mV  
V
O
load  
Line Regulation (V = 4.0 V to 40 V)  
Reg  
15  
CC  
line  
ref  
Total Output Variation over Line, Load, and Temperature  
Short Circuit Current  
DV  
2.45  
2.60  
30  
I
8.5  
mA  
SC  
TOTAL DEVICE  
Power Supply Current (V , V , V = GND)  
Mode in1 in2  
(V = 5.0 V)  
(V = 40 V)  
CC  
I
CC  
450  
560  
700  
900  
mA  
CC  
Operating Voltage Range (Positive Sensing)  
(Negative Sensing)  
V
CC  
2.0  
4.0  
40  
40  
V
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
5. T  
=
0°C for MC34161  
−40°C for MC33161  
−40°C for NCV33161  
T
high  
=
+70°C for MC34161  
+105°C for MC33161  
+125°C for NCV33161  
low  
http://onsemi.com  
3
 
MC34161, MC33161, NCV33161  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
500  
V
= 5.0 V  
R = 10 k to V  
CC  
L
CC  
V
V
= 5.0 V  
= GND  
CC  
T
°
A = 25 C  
400  
300  
200  
100  
0
Mode  
T = 25°C  
A
T = 85°C  
A
T = 85°C  
A
T = −40°C  
A
A
T = 25°C  
A
T = 25°C  
T = −40°C  
A
0
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
0
1.0  
2.0  
3.0  
4.0  
5.0  
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 2. Comparator Input Threshold Voltage  
Figure 3. Comparator Input Bias Current  
versus Input Voltage  
3600  
3000  
2400  
8.0  
V
= 5.0 V  
Undervoltage Detector  
Programmed to trip at 4.5 V  
R = 1.8 k, R = 4.7 k  
CC  
1. V  
2. V  
3. V  
4. V  
= GND, Output Falling  
= V , Output Rising  
Mode  
Mode  
Mode  
Mode  
T = 25°C  
A
CC  
= V , Output Falling  
1
2
CC  
= GND, Output Rising  
6.0  
4.0  
2.0  
0
R = 10 k to V  
L
CC  
Refer to Figure 17  
1800  
1200  
600  
1
2
T = −40°C  
A
3
T = −25°C  
A
T = −85°C  
4
A
0
2.0  
4.0  
6.0  
8.0  
10  
0
2.0  
4.0  
V , SUPPLY VOLTAGE (V)  
CC  
6.0  
8.0  
PERCENT OVERDRIVE (%)  
Figure 4. Output Propagation Delay Time  
versus Percent Overdrive  
Figure 5. Output Voltage versus Supply Voltage  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
40  
35  
30  
25  
20  
15  
10  
V
= 5.0 V  
Channel 2 Threshold  
Channel 1 Threshold  
CC  
T = 25°C  
A
V
= 5.0 V  
R = 10 k to V  
CC  
L
CC  
T = 85°C  
A
T = 85°C  
T = 25°C  
A
A
T = 25°C  
A
T = −40°C  
A
T = −40°C  
A
5.0  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
1.0  
2.0  
3.0  
4.0  
5.0  
V , MODE SELECT INPUT VOLTAGE (V)  
Mode  
V , MODE SELECT INPUT VOLTAGE (V)  
Mode  
Figure 6. Mode Select Thresholds  
Figure 7. Mode Select Input Current  
versus Input Voltage  
http://onsemi.com  
4
 
MC34161, MC33161, NCV33161  
2.8  
2.610  
2.578  
2.546  
2.514  
V
ref  
Max = 2.60 V  
2.4  
2.0  
1.6  
1.2  
0.8  
V
ref  
Typ = 2.54 V  
V
V
= 5.0 V  
= GND  
CC  
Mode  
2.482  
2.450  
V
= GND  
Mode  
0.4  
0
T = 25°C  
A
V Min = 2.48 V  
ref  
0
10  
20  
30  
40  
−55  
−25  
0
25  
50  
75  
100  
125  
V
CC  
, SUPPLY VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 8. Reference Voltage  
versus Supply Voltage  
Figure 9. Reference Voltage  
versus Ambient Temperature  
0
−2.0  
−4.0  
−6.0  
0.5  
0.4  
0.3  
V
= 5.0 V  
= GND  
CC  
V
Mode  
T = 85°C  
A
T = 25°C  
A
V
V
= 5.0 V  
= GND  
CC  
Mode  
0.2  
0.1  
0
T = −40°C  
A
−8.0  
−10  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0
4.0  
8.0  
12  
16  
I , REFERENCE SOURCE CURRENT (mA)  
ref  
I , OUTPUT SINK CURRENT (mA)  
out  
Figure 10. Reference Voltage Change  
versus Source Current  
Figure 11. Output Saturation Voltage  
versus Output Sink Current  
1.6  
0.8  
V
Mode  
= V  
CC  
Pins 2, 3 =  
GND  
V
= GND  
Pins 2, 3 = 1.5 V  
Mode  
0.6  
0.4  
1.2  
0.8  
V
= V  
ref  
Mode  
Pin 1 = 1.5 V  
Pin 2 = GND  
V
V
= 5.0 V  
= GND  
CC  
0.2  
0
Mode  
0.4  
0
I
measured at Pin 8  
CC  
T = 25°C  
A
T = 25°C  
A
0
10  
20  
, SUPPLY VOLTAGE (V)  
30  
40  
0
4.0  
8.0  
12  
16  
V
CC  
I , OUTPUT SINK CURRENT (mA)  
out  
Figure 12. Supply Current versus  
Supply Voltage  
Figure 13. Supply Current  
versus Output Sink Current  
http://onsemi.com  
5
 
MC34161, MC33161, NCV33161  
V
CC  
8
2.54V  
Reference  
V
ref  
1
Channel 1  
Mode Select  
Input 1  
+
7
2
+
Output 1  
2.8V  
+
6
+
1.27V  
Channel 2  
+
+
Output 2  
0.6V  
Input 2  
+
5
3
+
1.27V  
4
GND  
Figure 14. MC34161 Representative Block Diagram  
Mode Select  
Pin 7  
Input 1  
Pin 2  
Output 1  
Pin 6  
Input 2  
Pin 3  
Output 2  
Pin 5  
Comments  
GND  
0
1
0
1
0
1
0
1
Channels 1 & 2: Noninverting  
V
ref  
0
1
0
1
0
1
1
0
Channel 1: Noninverting  
Channel 2: Inverting  
V
CC  
(>2.0 V)  
0
1
1
0
0
1
1
0
Channels 1 & 2: Inverting  
Figure 15. Truth Table  
http://onsemi.com  
6
 
MC34161, MC33161, NCV33161  
FUNCTIONAL DESCRIPTION  
Reference  
Introduction  
To be competitive in today’s electronic equipment market,  
new circuits must be designed to increase system reliability  
with minimal incremental cost. The circuit designer can take  
a significant step toward attaining these goals by  
implementing economical circuitry that continuously  
monitors critical circuit voltages and provides a fault signal  
in the event of an out−of−tolerance condition. The  
MC34161, MC33161 series are universal voltage monitors  
intended for use in a wide variety of voltage sensing  
applications. The main objectives of this series was to  
configure a device that can be used in as many voltage  
sensing applications as possible while minimizing cost. The  
flexibility objective is achieved by the utilization of a unique  
Mode Select input that is used in conjunction with  
traditional circuit building blocks. The cost objective is  
achieved by processing the device on a standard Bipolar  
Analog flow, and by limiting the package to eight pins. The  
device consists of two comparator channels each with  
hysteresis, a mode select input for channel programming, a  
pinned out reference, and two open collector outputs. Each  
comparator channel can be configured as either inverting or  
noninverting by the Mode Select input. This allows a single  
device to perform over, under, and window detection of  
positive and negative voltages. A detailed description of  
each section of the device is given below with the  
representative block diagram shown in Figure 14.  
The 2.54 V reference is pinned out to provide a means for  
the input comparators to sense negative voltages, as well as  
a means to program the Mode Select input for window  
detection applications. The reference is capable of sourcing  
in excess of 2.0 mA output current and has built−in short  
circuit protection. The output voltage has a guaranteed  
tolerance of 2.4% at room temperature.  
The 2.54 V reference is derived by gaining up the internal  
1.27 V reference by a factor of two. With a power supply  
voltage of 4.0 V, the 2.54 V reference is in full regulation,  
allowing the device to accurately sense negative voltages.  
Mode Select Circuit  
The key feature that allows this device to be flexible is the  
Mode Select input. This input allows the user to program  
each of the channels for various types of voltage sensing  
applications. Figure 15 shows that the Mode Select input has  
three defined states. These states determine whether  
Channel 1 and/or Channel 2 operate in the inverting or  
noninverting mode. The Mode Select thresholds are shown  
in Figure 6. The input circuitry forms a tristate switch with  
thresholds at 0.63 V and V + 0.23 V. The mode select input  
ref  
current is 10 mA when connected to the reference output, and  
42 mA when connected to a V of 5.0 V, refer to Figure 7.  
CC  
Output Stage  
The output stage uses a positive feedback base boost  
circuit for enhanced sink saturation, while maintaining a  
relatively low device standby current. Figure 11 shows that  
the sink saturation voltage is about 0.2 V at 8.0 mA over  
temperature. By combining the low output saturation  
characteristics with low voltage comparator operation, this  
Input Comparators  
The input comparators of each channel are identical, each  
having an upper threshold voltage of 1.27 V 2.0% with  
25 mV of hysteresis. The hysteresis is provided to enhance  
output switching by preventing oscillations as the  
comparator thresholds are crossed. The comparators have an  
input bias current of 60 nA at their threshold which  
approximates a 21.2 MW resistor to ground. This high  
impedance minimizes loading of the external voltage  
divider for well defined trip points. For all positive voltage  
sensing applications, both comparator channels are fully  
device is capable of sensing positive voltages at a V of  
CC  
1.0 V. These characteristics are important in undervoltage  
sensing applications where the output must stay in a low  
state as V approaches ground. Figure 5 shows the Output  
CC  
Voltage versus Supply Voltage in an undervoltage sensing  
application. Note that as V drops below the programmed  
CC  
4.5 V trip point, the output stays in a well defined active low  
functional at a V of 2.0 V. In order to provide enhanced  
CC  
state until V drops below 1.0 V.  
CC  
device ruggedness for hostile industrial environments,  
additional circuitry was designed into the inputs to prevent  
device latchup as well as to suppress electrostatic discharges  
(ESD).  
APPLICATIONS  
The following circuit figures illustrate the flexibility of  
this device. Included are voltage sensing applications for  
over, under, and window detectors, as well as three unique  
configurations. Many of the voltage detection circuits are  
shown with the open collector outputs of each channel  
connected together driving a light emitting diode (LED).  
This ‘ORed’ connection is shown for ease of explanation  
and it is only required for window detection applications.  
Note that many of the voltage detection circuits are shown  
with a dashed line output connection. This connection gives  
the inverse function of the solid line connection. For  
example, the solid line output connection of Figure 16 has  
the LED ‘ON’ when input voltage V is above trip voltage  
S
V , for overvoltage detection. The dashed line output  
2
connection has the LED ‘ON’ when V is below trip voltage  
S
V , for undervoltage detection.  
2
http://onsemi.com  
7
MC34161, MC33161, NCV33161  
V
8
CC  
V
V
2
2.54V  
Reference  
Input V  
Output  
V
S
Hys  
1
V
S1  
1
7
2
+
+
+
R
2
GND  
2.8V  
+
6
5
V
V
S2  
+
+
CC  
1.27V  
R
1
Voltage  
Pins 5, 6  
+
0.6V  
LED ‘ON’  
GND  
R
2
+
3
1.27V  
R
1
4
The above figure shows the MC34161 configured as a dual positive overvoltage detector. As the input voltage increases from ground, the LED will turn ‘ON’ when  
or V exceeds V . With the dashed line output connection, the circuit becomes a dual positive undervoltage detector. As the input voltage decreases from  
V
S1  
S2  
2
the peak towards ground, the LED will turn ‘ON’ when V or V falls below V .  
S1  
S2  
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
H
R
1
R
R
R
V
R
R
V
V
2
2
2
1
1
2
1
2
* V )ǒ Ǔ  
ǒ Ǔ  
V
+ (V  
) 1  
V
+ V  
th  
) 1  
+
* 1  
+
* 1  
1
th  
2
R
1
V * V  
th H  
th  
Figure 16. Dual Positive Overvoltage Detector  
V
CC  
8
2.54V  
Reference  
V
V
2
1
Input V  
Output  
S
V
V
Hys  
S1  
1
7
2
+
+
+
R
R
2
2.8V  
+
6
5
GND  
+
+
V
S2  
1.27V  
V
1
CC  
+
0.6V  
Voltage  
Pins 5, 6  
LED ‘ON’  
R
2
GND  
+
3
1.27V  
R
1
4
The above figure shows the MC34161 configured as a dual positive undervoltage detector. As the input voltage decreases towards ground, the LED will turn ‘ON’  
when V or V falls below V . With the dashed line output connection, the circuit becomes a dual positive overvoltage detector. As the input voltage increases  
S1  
S2  
1
from ground, the LED will turn ‘ON’ when V or V exceeds V .  
S1  
S2  
2
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
V
R
R
V
V
R
H
R
1
R
2
R
1
2
1
1
2
1
2
2
+
* 1  
+
* 1  
* V )ǒ Ǔ  
ǒ Ǔ  
V
+ (V  
) 1  
V
+ V  
th  
) 1  
1
th  
2
V
* V  
H
th  
th  
Figure 17. Dual Positive Undervoltage Detector  
http://onsemi.com  
8
MC34161, MC33161, NCV33161  
V
8
CC  
2.54V  
Reference  
GND  
1
R
2
+
7
2
V
+
+
1
R1  
2.8V  
Input −V  
V
Hys  
S
+
6
5
−V  
S1  
+
+
1.27V  
V
2
+
0.6V  
R
2
Output  
Voltage  
Pins 5, 6  
V
CC  
R1  
+
−V  
S2  
LED ‘ON’  
GND  
3
1.27V  
4
The above figure shows the MC34161 configured as a dual negative overvoltage detector. As the input voltage increases from ground, the LED will turn ‘ON’ when  
−V or −V exceeds V . With the dashed line output connection, the circuit becomes a dual negative undervoltage detector. As the input voltage decreases from  
S1  
S2  
2
the peak towards ground, the LED will turn ‘ON’ when −V or −V falls below V .  
S1  
S2  
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
V
* V  
* V  
V
* V ) V  
R
R
R
R
R
R
R
R
1
th  
2
th  
H
1
2
1
2
1
2
1
2
V
+
(V * V ) ) V  
V
+
(V * V * V ) ) V * V  
H
+
+
1
th  
th  
2
th  
H
th  
ref  
ref  
V
V
* V * V  
th  
ref  
th  
H
ref  
Figure 18. Dual Negative Overvoltage Detector  
V
CC  
8
2.54V  
Reference  
1
R
2
GND  
+
7
2
+
+
R1  
V
1
2.8V  
+
6
5
−V  
V
S1  
+
+
1.27V  
Hys  
Input −V  
S
V
+
0.6V  
2
R
2
R1  
Output  
Voltage  
Pins 5, 6  
V
CC  
−V  
+
S2  
3
1.27V  
LED ‘ON’  
GND  
4
The above figure shows the MC34161 configured as a dual negative undervoltage detector. As the input voltage decreases towards ground, the LED will turn ‘ON’  
when −V or −V falls below V . With the dashed line output connection, the circuit becomes a dual negative overvoltage detector. As the input voltage increases  
S1  
S2  
1
from ground, the LED will turn ‘ON’ when −V or −V exceeds V .  
S1  
S2  
2
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
V
* V  
* V  
V
* V ) V  
R
R
R
R
R
R
R
R
1
th  
2
th  
H
1
2
1
2
1
2
1
2
V
+
(V * V ) ) V  
V
+
(V * V * V ) ) V * V  
H
+
+
1
th  
th  
2
th  
H
th  
ref  
ref  
V
V
* V * V  
th  
ref  
th  
H
ref  
Figure 19. Dual Negative Undervoltage Detector  
http://onsemi.com  
9
MC34161, MC33161, NCV33161  
V
8
CC  
2.54V  
Reference  
V
V
4
CH2  
CH1  
V
Hys2  
V
1
7
2
S
3
Input V  
Output  
S
V
V
2
V
Hys1  
+
+
R
3
1
2.8V  
+
6
5
1.27V  
+
+
GND  
R
R
2
1
V
+
0.6V  
CC  
+
‘ON’  
LED ‘OFF’  
LED ‘ON’  
‘OFF’  
LED ‘ON’  
Voltage  
Pins 5, 6  
+
3
GND  
1.27V  
4
The above figure shows the MC34161 configured as a positive voltage window detector. This is accomplished by connecting channel 1 as an undervoltage detector,  
and channel 2 as an overvoltage detector. When the input voltage V falls out of the window established by V and V , the LED will turn ‘ON’. As the input voltage  
S
1
4
falls within the window, V increasing from ground and exceeding V , or V decreasing from the peak towards ground and falling below V , the LED will turn ‘OFF’.  
S
2
S
3
With the dashed line output connection, the LED will turn ‘ON’ when the input voltage V is within the window.  
S
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
3
) R  
R
) R  
V (V * V  
)
)
R
R
V (V * V ) V  
)
H1  
R
R
2
3
3
th2  
H2  
H1  
3
1
3
1
th1  
2
1
V
V
+ (V * V  
)
ǒ
) 1  
Ǔ
V
V
+ (V * V )  
ǒ
) 1  
Ǔ
+
+
* 1  
+
+
1
2
th1  
H1  
3
4
th2  
H2  
R
R
1
V (V * V  
V (V * V  
)
H2  
1
2
1
th1  
1
th2  
R
R
) R  
V
V
x V  
x V  
R
R
V (V * V  
)
th1  
R
R
3
2
3
4
2
th2  
th1  
3
1
4
2
2
1
+ V  
ǒ
) 1  
Ǔ
+ V  
ǒ
) 1  
Ǔ
* 1  
th1  
th2  
R
) R  
R
1
V
x V  
2
th2  
1
2
Figure 20. Positive Voltage Window Detector  
V
8
CC  
2.54V  
Reference  
1
GND  
+
V
V
1
CH2  
CH1  
V
Hys2  
7
2
+
+
R
R
R
3
2
2.8V  
Input −V  
+
S
6
5
V
V
+
+
3
V
Hys1  
1.27V  
+
0.6V  
4
2
V
Output  
Voltage  
Pins 5, 6  
CC  
+
‘ON’  
LED ‘OFF’  
LED ‘ON’  
‘OFF’  
LED ‘ON’  
3
1.27V  
1
GND  
−V  
S
4
The above figure shows the MC34161 configured as a negative voltage window detector. When the input voltage −V falls out of the window established by V  
S
1
and V , the LED will turn ‘ON’. As the input voltage falls within the window, −V increasing from ground and exceeding V , or −V decreasing from the peak towards  
4
S
2
S
ground and falling below V , the LED will turn ‘OFF’. With the dashed line output connection, the LED will turn ‘ON’ when the input voltage −V is within the window.  
3
S
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R (V * V  
)
V * V  
1
th2  
R
1
th2  
ref  
1
V
V
V
V
+
+
+
+
) V  
+
+
+
+
1
2
3
4
th2  
R
) R  
R
R
R
R
) R  
V
* V  
th2  
ref  
2
3
2
2
1
1
3
3
2
2
R (V * V * V  
)
V
* V ) V  
H2  
R
1
) R  
1
th2  
H2  
2
ref  
th2  
) V * V  
th2  
H2  
R
) R  
V
* V * V  
2
3
th2  
H2  
ref  
(R ) R )(V * V  
)
V
* V  
R
3
) R  
1
2
th1  
th1  
ref  
ref  
) V  
th1  
R
V
* V  
th1  
3
3
(R ) R )(V * V * V  
)
V
* V * V  
th1 H1  
R
3
) R  
1
2
th1  
R
H1  
ref  
ref  
) V * V  
th1  
H1  
V ) V * V  
4
H1 th1  
3
Figure 21. Negative Voltage Window Detector  
http://onsemi.com  
10  
MC34161, MC33161, NCV33161  
V
8
CC  
V
V
4
2.54V  
Reference  
Input V  
V
Hys2  
S2  
1
7
2
3
GND  
+
+
+
R
4
2.8V  
−V  
+
S1  
V
V
6
5
1
V
Hys1  
R
3
1.27V  
Input −V  
+
+
S1  
2
+
0.6V  
Output  
Voltage  
Pins 5, 6  
V
CC  
R2  
LED ‘ON’  
+
V
S2  
3
GND  
1.27V  
R
1
4
The above figure shows the MC34161 configured as a positive and negative overvoltage detector. As the input voltage increases from ground, the LED will turn  
‘ON’ when either −V exceeds V , or V exceeds V . With the dashed line output connection, the circuit becomes a positive and negative undervoltage detector.  
S1  
2
S2  
4
As the input voltage decreases from the peak towards ground, the LED will turn ‘ON’ when either V falls below V , or −V falls below V .  
S2  
3
S1  
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
(V * V  
)
th1  
R
3
R
R
R
V
4
3
4
1
2
2
1
+
+
V
V
+
+
(V * V ) ) V  
ref  
th1 th1  
)ǒ Ǔ  
V
V
+ (V * V  
) 1  
+
+
* 1  
1
2
3
4
th2  
H2  
(V * V  
)
R
R
1
V
th1  
ref  
4
th2  
R
R
(V * V ) V  
)
H1  
R
R
V
3
* V  
R
2
R
R
3
4
2
th1  
3
4
2
1
ǒ Ǔ  
(V * V * V ) ) V * V  
+ V  
) 1  
* 1  
th1  
H1  
ref  
th1  
H1  
th2  
(V * V * V  
)
R
1
V
th1  
H1  
ref  
th2  
H2  
Figure 22. Positive and Negative Overvoltage Detector  
V
CC  
8
V
2
2.54V  
Reference  
V
Input V  
Hys1  
S1  
V
1
1
7
GND  
+
+
+
R
4
V
3
2.8V  
+
6
Input −V  
V
2
V
Hys2  
S2  
1.27V  
S1  
+
+
R
3
V
4
+
0.6V  
R
2
V
Output  
Voltage  
Pins 5, 6  
CC  
+
5
LED ‘ON’  
3
1.27V  
R
1
GND  
−V  
S2  
4
The above figure shows the MC34161 configured as a positive and negative undervoltage detector. As the input voltage decreases toward ground, the LED will  
turn ‘ON’ when either V falls below V , or −V falls below V . With the dashed line output connection, the circuit becomes a positive and negative overvoltage  
S1  
1
S2  
3
detector. As the input voltage increases from the ground, the LED will turn ‘ON’ when either V exceeds V , or −V exceeds V .  
S1  
2
S1  
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
V
) V * V  
H2 th2  
R
R
R
R
R
R
V
R
R
4
4
3
1
2
4
3
2
1
2
V
V
+ (V * V  
)
ǒ
) 1  
Ǔ
V
V
+
+
(V * V ) ) V  
th2  
+
+
* 1  
+
+
1
2
th1  
H1  
3
4
th  
ref  
V
V
V
* V * V  
th2 H2  
ref  
th1  
V
* V  
th2  
R
4
R
R
R
R
V
1
* V  
R
R
3
1
2
4
3
1
2
+ V  
ǒ
) 1  
Ǔ
(V * V * V ) ) V * V  
H2  
* 1  
th1  
th  
H2  
ref  
th2  
R
V
* V  
th2  
ref  
3
th1  
H1  
Figure 23. Positive and Negative Undervoltage Detector  
http://onsemi.com  
11  
MC34161, MC33161, NCV33161  
V
8
CC  
R
A
2.54V  
Reference  
V
V
2
Piezo  
1
V
Hys  
Input V  
Output  
V
S
S
1
7
+
R
+
+
2
2.8V  
+
GND  
6
5
2
1.27V  
+
+
R
1
V
CC  
+
0.6V  
Voltage  
Pins 5, 6  
Osc ‘ON’  
GND  
+
3
1.27V  
4
R
B
C
T
The above figure shows the MC34161 configured as an overvoltage detector with an audio alarm. Channel 1 monitors input voltage V while channel 2 is connected  
S
as a simple RC oscillator. As the input voltage increases from ground, the output of channel 1 allows the oscillator to turn ‘ON’ when V exceeds V .  
S
2
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
R
V
R
R
V
V
2
2
2
1
1
2
1
2
* V )ǒ ǓV ǒ Ǔ  
V
+ (V  
) 1  
+ V  
th  
R
) 1  
+
* 1  
+
* 1  
1
th  
H
2
R
V * V  
th H  
1
1
th  
Figure 24. Overvoltage Detector with Audio Alarm  
V
8
CC  
2.54V  
Reference  
1
V
V
2
Input V  
Output  
V
Hys  
S
R
3
1
7
+
+
+
2.8V  
GND  
+
6
5
2
V
1.27V  
+
+
S
V
CC  
Voltage  
Pin 5  
+
0.6V  
R
DLY  
GND  
R
2
+
t
DLY  
3
1.27V  
R
Output  
Voltage  
Pin 6  
V
CC  
1
Reset LED ‘ON’  
GND  
4
C
DLY  
The above figure shows the MC34161 configured as a microprocessor reset with a time delay. Channel 2 monitors input voltage V while channel 1 performs the  
S
time delay function. As the input voltage decreases towards ground, the output of channel 2 quickly discharges C  
when V falls below V . As the input voltage  
DLY  
S 1  
increases from ground, the output of channel 2 allows R  
to charge C when V exceeds V .  
DLY S 2  
DLY  
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
H
R
1
R
R
R
V
R
R
V
V
2
2
2
1
1
2
1
2
* V )ǒ Ǔ  
ǒ Ǔ  
V
+ (V  
) 1  
V
+ V  
th  
) 1  
+
* 1  
+
* 1  
1
th  
2
R
1
V * V  
th H  
th  
1
For known R  
C
values, the reset time delay is:  
t
= R  
C
In  
DLY DLY  
DLY  
DLY DLY  
V
th  
1 −  
V
CC  
Figure 25. Microprocessor Reset with Time Delay  
http://onsemi.com  
12  
MC34161, MC33161, NCV33161  
B+  
+
+
220  
250V  
75k  
75k  
MAC  
228A6FP  
MR506  
T
Input  
92 Vac to  
276 Vac  
8
220  
250V  
10k  
3.0A  
2.54V  
Reference  
RTN  
1.2k  
1
10k  
+
7
2
+
+
2.8V  
+
6
5
+
+
1.27V  
100k  
+
0.6V  
1.6M  
+
3
1.27V  
+
10  
+
1N  
4742  
47  
4
10k  
3W  
The above circuit shows the MC34161 configured as an automatic line voltage selector. The IC controls the triac, enabling the circuit to function  
as a fullwave voltage doubler or a fullwave bridge. Channel 1 senses the negative half cycles of the AC line voltage. If the line voltage is less  
than150 V, the circuit will switch from bridge mode to voltage doubling mode after a preset time delay. The delay is controlled by the 100 kW resistor  
and the 10 mF capacitor. If the line voltage is greater than 150 V, the circuit will immediately return to fullwave bridge mode.  
Figure 26. Automatic AC Line Voltage Selector  
http://onsemi.com  
13  
MC34161, MC33161, NCV33161  
470mH  
MPS750  
V
in  
12V  
V
O
5.0V/250mA  
+
+
8
330  
1000  
1N5819  
470  
2.54V  
Reference  
1.8k  
0.01  
1
7
2
+
+
+
0.01  
4.7k  
1.6k  
2.8V  
+
6
5
+
+
1.27V  
+
0.6V  
+
3
1.27V  
47k  
4
0.005  
Figure 27. Step−Down Converter  
Test  
Conditions  
Results  
40 mV = 0.1%  
Line Regulation  
Load Regulation  
Output Ripple  
Efficiency  
V
in  
V
in  
V
in  
V
in  
= 9.5 V to 24 V, I = 250 mA  
O
= 12 V, I = 0.25 mA to 250 mA  
2.0 mV = 0.2%  
50 mVpp  
O
= 12 V, I = 250 mA  
O
= 12 V, I = 250 mA  
87.8%  
O
The above figure shows the MC34161 configured as a step−down converter. Channel 1 monitors the output voltage while Channel  
2 performs the oscillator function. Upon initial powerup, the converters output voltage will be below nominal, and the output of Channel  
1 will allow the oscillator to run. The external switch transistor will eventually pump−up the output capacitor until its voltage exceeds  
the input threshold of Channel 1. The output of Channel 1 will then switch low and disable the oscillator. The oscillator will commence  
operation when the output voltage falls below the lower threshold of Channel 1.  
http://onsemi.com  
14  
MC34161, MC33161, NCV33161  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC34161D  
SOIC−8  
98 Units/Rail  
2500/Tape & Reel  
4000/Tape & Reel  
50 Units/Rail  
MC34161DG  
SOIC−8  
(Pb−Free)  
MC34161DR2  
SOIC−8  
MC34161DR2G  
SOIC−8  
(Pb−Free)  
MC34161DMR2  
Micro8  
MC34161DMR2G  
Micro8  
(Pb−Free)  
MC34161P  
PDIP−8  
MC34161PG  
PDIP−8  
(Pb−Free)  
MC33161D  
SOIC−8  
98 Units/Rail  
MC33161DG  
SOIC−8  
(Pb−Free)  
MC33161DR2  
SOIC−8  
2500/Tape & Reel  
4000/Tape & Reel  
MC33161DR2G  
SOIC−8  
(Pb−Free)  
MC33161DMR2  
Micro8  
MC33161DMR2G  
Micro8  
(Pb−Free)  
MC33161P  
PDIP−8  
50 Units/Rail  
MC33161PG  
PDIP−8  
(Pb−Free)  
NCV33161DR2*  
SOIC−8  
2500/Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV: T = −40°C, T  
= +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and control changes.  
low  
high  
http://onsemi.com  
15  
MC34161, MC33161, NCV33161  
PACKAGE DIMENSIONS  
PDIP−8  
CASE 626−05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
8
5
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−B−  
1
4
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
−A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
K
L
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
_
1.01  
−−−  
0.030  
10  
0.040  
_
J
−T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T
A
http://onsemi.com  
16  
MC34161, MC33161, NCV33161  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AH  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
17  
MC34161, MC33161, NCV33161  
PACKAGE DIMENSIONS  
Micro8t  
CASE 846A−02  
ISSUE G  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
D
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED  
0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846A−01 OBSOLETE, NEW STANDARD 846A−02.  
H
E
E
MILLIMETERS  
INCHES  
NOM  
−−  
0.003  
0.013  
0.007  
0.118  
DIM  
A
A1  
b
c
D
MIN  
−−  
NOM  
−−  
MAX  
MIN  
−−  
MAX  
0.043  
0.006  
0.016  
0.009  
0.122  
0.122  
PIN 1 ID  
1.10  
0.15  
0.40  
0.23  
3.10  
3.10  
e
0.05  
0.25  
0.13  
2.90  
2.90  
0.08  
0.002  
0.010  
0.005  
0.114  
0.114  
b 8 PL  
0.33  
M
S
S
0.08 (0.003)  
T
B
A
0.18  
3.00  
E
3.00  
0.118  
e
L
H
E
0.65 BSC  
0.55  
4.90  
0.026 BSC  
0.021  
0.193  
0.40  
4.75  
0.70  
5.05  
0.016  
0.187  
0.028  
0.199  
SEATING  
PLANE  
−T−  
A
0.038 (0.0015)  
L
A1  
c
SOLDERING FOOTPRINT*  
1.04  
0.38  
8X  
8X 0.041  
0.015  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.65  
6X0.0256  
SCALE 8:1  
mm  
inches  
ǒ
Ǔ
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Micro8 is a trademark of International Rectifier.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC34161/D  

相关型号:

MC34161DMR2G

Universal Voltage Monitors
ONSEMI

MC34161DR2

Universal Voltage Monitors
ONSEMI

MC34161DR2G

Universal Voltage Monitors
ONSEMI

MC34161P

Universal Voltage Monitors
ONSEMI

MC34161P

UNIVERSAL VOLTAGE MONITORS
MOTOROLA

MC34161PG

Universal Voltage Monitors
ONSEMI

MC34161_06

Universal Voltage Monitors
ONSEMI

MC34161_15

Universal Voltage Monitors
ONSEMI

MC34163

POWER SWITCHING REGULATORS
ONSEMI

MC34163DW

POWER SWITCHING REGULATORS
ONSEMI

MC34163DWG

3.4 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

MC34163DWR2

3.4 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI