MC74LVXT4051DTG [ONSEMI]

Analog Multiplexer Demultiplexer; 模拟多路复用器多路解复用器
MC74LVXT4051DTG
型号: MC74LVXT4051DTG
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexer Demultiplexer
模拟多路复用器多路解复用器

解复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总15页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74LVXT4051  
Analog Multiplexer/  
Demultiplexer  
HighPerformance SiliconGate CMOS  
The MC74LVXT4051 utilizes silicongate CMOS technology to  
achieve fast propagation delays, low ON resistances, and low leakage  
currents. This analog multiplexer/demultiplexer controls analog  
voltages that may vary across the complete power supply range (from  
http://onsemi.com  
MARKING  
DIAGRAMS  
V
CC  
to V ).  
EE  
The LVXT4051 is similar in pinout to the LVX8051, the HC4051A,  
16  
and the metalgate MC14051B. The ChannelSelect inputs determine  
which one of the Analog Inputs/Outputs is to be connected, by means  
of an analog switch, to the Common Output/Input. When the Enable  
pin is HIGH, all analog switches are turned off.  
The ChannelSelect and Enable inputs are compatible with standard  
TTL levels. These inputs are overvoltage tolerant (OVT) for level  
translation from 6.0 V down to 3.0 V.  
SOIC16  
D SUFFIX  
CASE 751B  
LVXT4051G  
AWLYWW  
1
16  
LVXT  
4051  
ALYWG  
G
TSSOP16  
DT SUFFIX  
CASE 948F  
This device has been designed so the ON resistance (R ) is more  
ON  
linear over input voltage than the R of metalgate CMOS analog  
ON  
switches and HighSpeed CMOS analog switches.  
1
Features  
16  
Select Pins Compatible with TTL Levels  
Fast Switching and Propagation Speeds  
Low Crosstalk Between Switches  
SOEIAJ16  
M SUFFIX  
CASE 966  
LVXT4051  
ALYWG  
Analog Power Supply Range (V V ) = *3.0 V to )3.0 V  
1
CC  
EE  
Digital (Control) Power Supply Range (V GND) = 2.5 to 6.0 V  
CC  
LVXT4051 = Specific Device Code  
Improved Linearity and Lower ON Resistance Than MetalGate,  
A
WL, L  
Y
= Assembly Location  
= Wafer Lot  
= Year  
HSL, or VHC Counterparts  
Low Noise  
WW, W  
G or G  
= Work Week  
= PbFree Package  
Designed to Operate on a Single Supply with V = GND, or Using  
EE  
Split Supplies up to 3.0 V  
(Note: Microdot may be in either location)  
BreakBeforeMake Circuitry  
These Devices are PbFree and are RoHS Compliant  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
© Semiconductor Components Industries, LLC, 2011  
1
Publication Order Number:  
May, 2011 Rev. 5  
MC74LVXT4051/D  
MC74LVXT4051  
FUNCTION TABLE  
Control Inputs  
V
X2  
15  
X1  
14  
X0  
13  
X3  
12  
A
B
C
9
CC  
Select  
B
16  
11  
10  
Enable  
C
A
ON Channels  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
NONE  
L
H
H
H
H
X
1
2
3
4
5
6
7
8
L
X4  
X6  
X
X7  
X5 Enable V  
GND  
EE  
H
H
X
Figure 1. Pin Connection and Marking Diagram  
(Top View)  
X = Don’t Care  
13  
X0  
14  
X1  
15  
X2  
3
COMMON  
OUTPUT/INPUT  
X
12  
X3  
ANALOG  
INPUTS/OUTPUTS  
MULTIPLEXER/  
DEMULTIPLEXER  
1
X4  
5
X5  
X6  
2
4
X7  
A
11  
10  
9
CHANNEL  
SELECT INPUTS  
PIN 16 = V  
CC  
B
C
PIN 8 = GND  
PIN 7 = V  
EE  
6
ENABLE  
Figure 2. Logic Diagram  
SinglePole, 8Position Plus Common Off  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC74LVXT4051DG  
SOIC16  
(PbFree)  
48 Units / Rail  
MC74LVXT4051DR2G  
SOIC16  
(PbFree)  
2500 Tape & Reel  
MC74LVXT4051DTG  
MC74LVXT4051DTR2G  
MC74LVXT4051MG  
TSSOP16*  
TSSOP16*  
96 Units / Rail  
2500 Tape & Reel  
50 Units / Rail  
SOEIAJ16  
(PbFree)  
MC74LVXT4051MELG  
SOEIAJ16  
(PbFree)  
2000 Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*This package is inherently PbFree.  
http://onsemi.com  
2
MC74LVXT4051  
MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
V
EE  
CC  
Negative DC Supply Voltage  
Positive DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
*7.0 to )0.5  
V
*0.5 to )7.0  
*0.5 to )7.0  
V
(Referenced to V  
)
EE  
V
Analog Input Voltage  
V
EE *0.5 to V )0.5  
V
V
IS  
CC  
V
IN  
Digital Input Voltage  
(Referenced to GND)  
*0.5 to 7.0  
$20  
I
DC Current, Into or Out of Any Pin  
Storage Temperature Range  
mA  
T
STG  
*65 to )150  
260  
_C  
T
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature under Bias  
Thermal Resistance  
_C  
L
T
)150  
_C  
J
SOIC  
TSSOP  
143  
164  
°C/W  
JA  
P
D
Power Dissipation in Still Air,  
SOIC  
TSSOP  
500  
450  
mW  
MSL  
Moisture Sensitivity  
Flammability Rating  
ESD Withstand Voltage  
Level 1  
F
R
Oxygen Index: 30% 35%  
UL 94V0 @ 0.125 in  
V
ESD  
Human Body Model (Note 1)  
Machine Model (Note 2)  
Charged Device Model (Note 3)  
u2000  
u200  
u1000  
V
I
Latchup Performance  
Above V and Below GND at 125°C (Note 4)  
$300  
mA  
LATCHUP  
CC  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. Tested to EIA/JESD22A114A.  
2. Tested to EIA/JESD22A115A.  
3. Tested to JESD22C101A.  
4. Tested to EIA/JESD78.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
EE  
CC  
Negative DC Supply Voltage  
Positive DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
*6.0  
GND  
V
2.5  
2.5  
6.0  
6.0  
V
(Referenced to V  
)
EE  
V
Analog Input Voltage  
Digital Input Voltage  
V
V
CC  
V
V
IS  
EE  
V
IN  
(Note 5) (Referenced to GND)  
0
6.0  
T
Operating Temperature Range, All Package Types  
*55  
125  
_C  
ns/V  
A
t , t  
r
Input Rise/Fall Time  
(Channel Select or Enable Inputs)  
V
CC  
V
CC  
= 3.0 V $ 0.3 V  
= 5.0 V $ 0.5 V  
0
0
100  
20  
f
5. Unused inputs may not be left open. All inputs must be tied to a highlogic voltage level or a lowlogic input voltage level.  
DEVICE JUNCTION TEMPERATURE VERSUS  
FAILURE RATE OF PLASTIC = CERAMIC  
UNTIL INTERMETALLICS OCCUR  
TIME TO 0.1% BOND FAILURES  
Junction  
Temperature °C  
Time, Hours  
1,032,200  
419,300  
178,700  
79,600  
Time, Years  
117.8  
47.9  
80  
90  
1
100  
110  
120  
130  
140  
20.4  
9.4  
1
10  
100  
1000  
37,000  
4.2  
TIME, YEARS  
17,800  
2.0  
Figure 3. Failure Rate vs. Time Junction Temperature  
8,900  
1.0  
http://onsemi.com  
3
 
MC74LVXT4051  
DC CHARACTERISTICS Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
*55 to 25°C v85°C v125°C  
V
Symbol  
Parameter  
Condition  
Unit  
V
IH  
Minimum HighLevel Input  
Voltage,  
ChannelSelect or Enable Inputs  
3.0  
4.5  
5.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
V
V
IL  
Maximum LowLevel Input  
Voltage,  
ChannelSelect or Enable Inputs  
3.0  
4.5  
5.5  
0.5  
0.8  
0.8  
0.5  
0.8  
0.8  
0.5  
0.8  
0.8  
V
I
Maximum Input Leakage Current,  
V
= 6.0 or GND  
0 V to 6.0 V  
$0.1  
$1.0  
$1.0  
A  
A  
IN  
IN  
ChannelSelect or Enable Inputs  
I
Maximum Quiescent Supply  
Current (per Package)  
Channel Select, Enable and  
= V or GND  
6.0  
4.0  
40  
80  
CC  
V
IS  
CC  
DC ELECTRICAL CHARACTERISTICS Analog Section  
Guaranteed Limit  
V
CC  
V
EE  
*55 to 25°C v85_C v125_C  
V
V
Symbol  
Parameter  
Test Conditions  
= V or V  
Unit  
R
Maximum “ON” Resistance  
V
V
S
3.0  
4.5  
3.0  
0
0
86  
37  
26  
108  
46  
120  
55  
ON  
IN  
IS  
IL  
IH  
= ½ (V V  
)
CC  
EE  
|I | = 2.0 mA (Figure 4)  
*3.0  
33  
37  
R
Maximum Difference in “ON” Res-  
istance Between Any Two  
Channels in the Same Package  
V
V
S
= V or V  
IH  
3.0  
4.5  
3.0  
0
0
15  
13  
10  
20  
18  
15  
20  
18  
15  
ON  
IN  
IS  
IL  
= ½ (V V  
)
CC  
EE  
|I | = 2.0 mA  
*3.0  
I
off  
Maximum OffChannel Leakage  
Current, Any One Channel  
V
V
= V or V ;  
IH  
5.5  
+3.0  
0
3.0  
0.1  
0.1  
0.5  
0.5  
1.0  
1.0  
A
in  
IL  
= V or GND;  
IO  
CC  
Switch Off (Figure 3)  
Maximum OffChannel  
Leakage Current,  
V
V
= V or V ;  
IH  
5.5  
+3.0  
0
3.0  
0.2  
0.2  
2.0  
2.0  
4.0  
4.0  
in  
IL  
= V or GND;  
IO  
CC  
Common Channel  
Switch Off (Figure 4)  
I
on  
Maximum OnChannel  
Leakage Current,  
V
= V or V  
;
IH  
5.5  
+3.0  
0
3.0  
0.2  
0.2  
2.0  
2.0  
4.0  
4.0  
A
in  
IL  
SwitchtoSwitch =  
ChanneltoChannel  
V
CC  
or GND; (Figure 5)  
AC CHARACTERISTICS (Input t = t = 3 ns)  
r
f
Guaranteed Limit  
*55 to 25_C  
V
V
V
EE  
V
CC  
Min  
Typ*  
Symbol  
Parameter  
Test Conditions  
v85_C v125_C Unit  
t
Minimum BreakBeforeMake  
V
V
= V or V  
3.0  
4.5  
3.0  
0.0  
0.0  
1.0  
1.0  
6.5  
5.0  
3.5  
ns  
BBM  
IN  
IS  
L
IL  
IH  
Time  
= V  
CC  
R = 300 ꢂ ꢄ C = 35 pF  
L
*3.0 1.0  
(Figures 12 and 13)  
*Typical Characteristics are at 25_C.  
http://onsemi.com  
4
MC74LVXT4051  
AC CHARACTERISTICS (C = 50 pF, Input t = t = 3 ns)  
L
r
f
Guaranteed Limit  
*55 to 25°C  
v85°C  
v125°C  
V
V
V
EE  
V
CC  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Unit  
t
t
t
,
Maximum Propagation Delay, ChannelSelect  
2.5  
3.0  
4.5  
3.0  
0
0
0
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
PLH  
t
to Analog Output (Figures 16 and 17)  
PHL  
*3.0  
,
Maximum Propagation Delay, Enable to Analog  
Output (Figures 14 and 15)  
2.5  
3.0  
4.5  
3.0  
0
0
0
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
ns  
PLZ  
t
PHZ  
*3.0  
,
Maximum Propagation Delay, Enable to Analog  
Output (Figures 14 and 15)  
2.5  
3.0  
4.5  
3.0  
0
0
0
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
PZL  
t
PZH  
*3.0  
Typical @ 25°C, V = 5.0 V, V = 0V  
CC  
EE  
45  
pF  
pF  
C
Power Dissipation Capacitance (Figure 18) (Note 6)  
PD  
C
Maximum Input Capacitance, ChannelSelect or Enable Inputs  
10  
IN  
10  
10  
1.0  
C
Maximum Capacitance  
(All Switches Off)  
Analog I/O  
Common O/I  
Feedthrough  
I/O  
pF  
2
6. Used to determine the noload dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Typ  
V
CC  
V
EE  
V
V
25°C  
Symbol  
Parameter  
Condition  
Unit  
BW  
Maximum OnChannel Bandwidth or  
Minimum Frequency Response  
V
= ½ (V V  
EE  
)
80  
80  
80  
80  
MHz  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
IS  
CC  
Ref and Test Attn = 10 dB  
Source Amplitude = 0 dB  
(Figure 7)  
*3.0  
V
OffChannel Feedthrough Isolation  
f = 1 MHz; V = ½ (V V  
EE  
)
*70  
*70  
*70  
*70  
dB  
dB  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
ISO  
IS  
CC  
Adjust Network Analyzer output to 10 dBm  
on each output from the power splitter.  
(Figures 8 and 9)  
*3.0  
V
ONL  
Maximum Feedthrough On Loss  
V
IS  
= ½ (V V )  
EE  
*2  
*2  
*2  
*2  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
CC  
Adjust Network Analyzer output to 10 dBm on  
each output from the power splitter.  
(Figure 11)  
*3.0  
Q
Charge Injection  
V
R
= V to V  
f
= 1 kHz, t = t = 3 ns  
5.0  
3.0  
0.0  
*3.0  
9.0  
12  
pC  
%
IN  
CC  
EE, IS  
r
f
= 0 , C = 1000 pF, Q = C * V  
IS  
L
L
OUT  
(Figure 10)  
f = 1 MHz, R = 10 K, C = 50 pF,  
IS  
THD  
Total Harmonic Distortion THD + Noise  
L
L
V
V
= 5.0 V sine wave  
6.0  
3.0  
0.0  
*3.0  
0.10  
0.05  
IS  
PP  
= 6.0 V sine wave  
IS  
PP  
(Figure 19)  
http://onsemi.com  
5
 
MC74LVXT4051  
PLOTTER  
PROGRAMMABLE  
POWER  
MINI  
COMPUTER  
DC ANALYZER  
SUPPLY  
*
)
V
CC  
DEVICE  
UNDER TEST  
ANALOG IN  
COMMON OUT  
GND  
GND  
Figure 4. On Resistance, Test SetUp  
V
CC  
V
CC  
V
CC  
16  
A
V
CC  
ON  
16  
V
EE  
N/C  
COMMON O/I  
V
EE  
OFF  
OFF  
OFF  
A
A
V
V
CC  
V
CC  
ANALOG I/O  
NC  
COMMON O/I  
V
IL  
6
7
8
V
EE  
6
7
8
IH  
V
EE  
Figure 5. Maximum Off Channel Leakage Current,  
Figure 6. Maximum On Channel Leakage Current,  
Any One Channel, Test SetUp  
Channel to Channel, Test SetUp  
HP4195A  
Network Anl  
S1 R1 T1  
0.1 F  
V
IS  
HP11667B  
Pwr Splitter  
V
CC  
100 Kꢂ  
0.1 F  
ON  
All untested Analog I/O pins  
OFF  
50 Kꢂ  
Channel Selects  
V
EE  
6
7
8
connected to address  
pins on HP4195A and  
appropriately configured  
to test each switch.  
9 11  
Figure 7. Maximum On Channel Bandwidth, Test SetUp  
http://onsemi.com  
6
MC74LVXT4051  
HP4195A  
Network Anl  
S1 R1 T1  
0.1 F  
HP11667B  
Pwr Splitter  
0.1 F  
V
IS  
V
CC  
100 Kꢂ  
16  
OFF  
ON  
All untested Analog I/O pins  
50 Kꢂ  
Channel Selects  
V
EE  
6
7
8
connected to address  
pins on HP4195A and  
appropriately configured  
to test each switch.  
9 11  
Config = Network  
Format = T/R (dB)  
CAL = Trans Cal  
V
ISO  
(dB) = 20 log (V /V  
)
T1 R1  
Display = Rectan X*A)B  
Scale Ref = Auto Scale  
View = Off, Off, Off  
Trig = Cont Mode  
Source Amplitude = )13 dB  
Reference Attenuation = 20 dB  
Test Attenuation = 0 dB  
Figure 8. Maximum Off Channel Feedthrough Isolation, Test SetUp  
HP4195A  
Network Anl  
S1 R1 T1  
0.1 F  
V
IS  
HP11667B  
Pwr Splitter  
V
CC  
100 Kꢂ  
0.1 F  
16  
OFF  
ON  
50 Kꢂ  
All untested Analog I/O pins  
Channel Selects  
V
EE  
50 ꢂ  
6
7
8
connected to address  
pins on HP4195A and  
appropriately configured  
to test each switch.  
9 11  
Config = Network  
Format = T/R (dB)  
CAL = Trans Cal  
Display = Rectan X*A)B  
Scale Ref = Auto Scale  
View = Off, Off, Off  
V
(dB) = 20 log (V /V  
)
ISOC  
T1 R1  
Trig = Cont Mode  
Source Amplitude = )13 dB  
Reference Attenuation = 20 dB  
Test Attenuation = 0 dB  
Figure 9. Maximum CommonChannel Feedthrough Isolation, Test SetUp  
http://onsemi.com  
7
MC74LVXT4051  
V
CC  
16  
ON/OFF  
OFF/ON  
V
OUT  
C *  
L
Enable  
6
V
EE  
Bias Channel Selects to  
test each combination of  
analog inputs to common  
analog output.  
7
8
R
9 11  
V
IN  
IS  
*Includes all probe and jig capacitance.  
V
V
IH  
V
IS  
IL  
Q = C * V  
L
OUT  
V  
OUT  
V
OUT  
Figure 10. Charge Injection, Test SetUp  
HP4195A  
Network Anl  
S1 R1 T1  
0.1 F  
HP11667B  
Pwr Splitter  
0.1 F  
V
IS  
V
CC  
100 Kꢂ  
16  
ON  
All untested Analog I/O pins  
OFF  
50 ꢂ  
Channel Selects  
V
EE  
6
7
8
connected to address  
pins on HP4195A and  
appropriately configured  
to test each switch.  
9 11  
Config = Network  
Format = T/R (dB)  
CAL = Trans Cal  
Display = Rectan X*A)B  
Scale Ref = Auto Scale  
View = Off, Off, Off  
V
ONL  
(dB) = 20 log (V /V  
)
T1 R1  
Trig = Cont Mode  
Source Amplitude = )13 dB  
Reference Attenuation = 20 dB  
Test Attenuation = 20 dB  
Figure 11. Maximum On Channel Feedthrough On Loss, Test SetUp  
http://onsemi.com  
8
MC74LVXT4051  
Tek 11801B  
DSO  
V
CC  
COM INPUT  
V
CC  
V
IN  
V
OH  
16  
80%  
OFF  
ON  
80% of  
C
V
OH  
L
R
L
Channel Selects connected  
V
EE  
to V and appropriately  
configured to test each switch.  
IN  
6
7
8
9 11  
GND  
t
BBM  
V
IN  
50 ꢂ  
Figure 12. BreakBeforeMake, Test SetUp  
Figure 13. BreakBeforeMake Time  
V
CC  
V
CC  
16  
COMMON  
O/I  
V
CC  
ON/OFF  
OFF/ON  
TEST  
POINT  
ANALOG I/O  
CHANNEL  
SELECT  
50%  
GND  
C *  
L
6
7
8
t
t
PHL  
PLH  
ANALOG  
OUT  
50%  
CHANNEL SELECT  
*Includes all probe and jig capacitance.  
Figure 14. Propagation Delays, Channel Select  
to Analog Out  
Figure 15. Propagation Delay, Test SetUp  
Channel Select to Analog Out  
GND  
t
f
t
r
POSITION 1 WHEN TESTING t  
POSITION 2 WHEN TESTING t  
AND t  
AND t  
PHZ  
PLZ  
PZH  
PZL  
V
CC  
1
2
90%  
50%  
10%  
ENABLE  
V
CC  
GND  
1 Kꢂ  
V
CC  
t
t
t
16  
PZL  
PLZ  
HIGH  
IMPEDANCE  
1
2
ANALOG I/O  
TEST  
POINT  
ON/OFF  
ANALOG  
OUT  
50%  
50%  
10%  
V
OL  
C *  
L
t
PHZ  
PZH  
ENABLE  
6
V
OH  
90%  
ANALOG  
OUT  
7
8
HIGH  
IMPEDANCE  
Figure 16. Propagation Delays, Enable to  
Analog Out  
Figure 17. Propagation Delay, Test SetUp  
Enable to Analog Out  
http://onsemi.com  
9
MC74LVXT4051  
V
CC  
A
V
CC  
ON/OFF  
OFF/ON  
NC  
V
IL  
15  
10 11,  
13 14  
12  
Channel  
Select  
Figure 18. Power Dissipation Capacitance, Test SetUp  
HP3466  
)V  
DMM  
COM  
HP3466  
DMM  
)V  
COM  
HP E3630A  
DC Pwr Supply  
HP 339  
Distortion Measurement Set  
COM )20 V  
*20 V  
Analyzer  
Oscillator  
Input COM Output COM  
16  
ON  
R
C
L
L
OFF  
50 Kꢂ  
Channel Selects connected  
to DC bias supply or ground  
and appropriately configured  
to test each switch.  
6
7
8
9 11  
Figure 19. Total Harmonic Distortion, Test SetUp  
http://onsemi.com  
10  
MC74LVXT4051  
APPLICATIONS INFORMATION  
The Channel Select and Enable control pins should be at  
or GND logic levels. V being recognized as a logic  
outputs to V or GND through a low value resistor helps  
CC  
minimize crosstalk and feedthrough noise that may be  
V
CC  
CC  
high and GND being recognized as a logic low. In this  
example:  
picked up by an unused switch.  
Although used here, balanced supplies are not a  
requirement. The only constraints on the power supplies are  
that:  
V
CC  
= )5 V = logic high  
GND = 0 V = logic low  
V
V
V
GND = 0 to *6 volts  
GND = 2.5 to 6 volts  
EE  
The maximum analog voltage swing is determined by the  
CC  
supply voltages V and V . The positive peak analog  
CC  
EE  
V = 2.5 to 6 volts  
CC  
EE  
voltage should not exceed V . Similarly, the negative peak  
CC  
and V v GND  
EE  
analog voltage should not go below V . In this example,  
EE  
the difference between V and V is five volts. Therefore,  
When voltage transients above V and/or below V are  
CC EE  
CC  
EE  
using the configuration of Figure 21, a maximum analog  
signal of five volts peaktopeak can be controlled. Unused  
analog inputs/outputs may be left floating (i.e., not  
connected). However, tying unused analog inputs and  
anticipated on the analog channels, external Germanium or  
Schottky diodes (D ) are recommended as shown in  
x
Figure 22. These diodes should be able to absorb the  
maximum anticipated current surges during clipping.  
)3.0 V  
)5 V  
)5 V  
)3.0 V  
*3.0 V  
16  
16  
)3.0 V  
*3.0 V  
)5 V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON  
ON  
GND  
GND  
TO EXTERNAL CMOS  
CIRCUITRY 0 to 3.0 V  
DIGITAL SIGNALS  
TO EXTERNAL CMOS  
CIRCUITRY 0 to 5 V  
DIGITAL SIGNALS  
6
7
8
11  
10  
9
6
7
8
11  
10  
9
*3.0 V  
Figure 20. Application Example  
Figure 21. Application Example  
V
CC  
V
CC  
V
CC  
D
D
x
16  
ON/OFF  
x
D
D
x
x
V
EE  
V
EE  
7
8
V
EE  
Figure 22. External Germanium or Schottky Clipping Diodes  
http://onsemi.com  
11  
 
MC74LVXT4051  
11  
10  
9
13  
14  
15  
12  
1
LEVEL  
SHIFTER  
A
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
X
LEVEL  
SHIFTER  
B
C
LEVEL  
SHIFTER  
5
6
2
LEVEL  
SHIFTER  
ENABLE  
4
3
Figure 23. Function Diagram, LVXT4051  
http://onsemi.com  
12  
MC74LVXT4051  
PACKAGE DIMENSIONS  
SOIC16  
CASE 751B05  
ISSUE K  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
16  
9
8
B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
0.386  
DIM MIN  
MAX  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00  
G
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
K
M
P
R
C
7
0
_
_
_
_
T−  
SEATING  
PLANE  
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
J
M
D
16 PL  
M
S
S
A
0.25 (0.010)  
T B  
SOLDERING FOOTPRINT  
8X  
6.40  
16X  
1.12  
1
16  
16X  
0.58  
1.27  
PITCH  
8
9
DIMENSIONS: MILLIMETERS  
http://onsemi.com  
13  
MC74LVXT4051  
PACKAGE DIMENSIONS  
TSSOP16  
CASE 948F01  
ISSUE B  
16X KREF  
NOTES:  
M
S
S
0.10 (0.004)  
T U  
V
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
S
0.15 (0.006) T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
K
K1  
16  
9
2X L/2  
J1  
SECTION NN  
B
U−  
L
J
PIN 1  
IDENT.  
N
8
0.25 (0.010)  
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
M
S
0.15 (0.006) T U  
A
V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
N
A
B
C
D
F
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
F
1.20  
−−− 0.047  
DETAIL E  
0.15 0.002 0.006  
0.75 0.020 0.030  
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
W−  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007 0.011  
C
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.10 (0.004)  
H
DETAIL E  
SEATING  
PLANE  
T−  
6.40 BSC  
0.252 BSC  
D
G
M
0
8
0
8
_
_
_
_
SOLDERING FOOTPRINT  
7.06  
1
0.65  
PITCH  
01.36X6  
16X  
1.26  
DIMENSIONS: MILLIMETERS  
http://onsemi.com  
14  
MC74LVXT4051  
PACKAGE DIMENSIONS  
SOEIAJ16  
CASE 96601  
ISSUE A  
NOTES:  
ꢀꢁ1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
ꢀꢁ2. CONTROLLING DIMENSION: MILLIMETER.  
ꢀꢁ3. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS AND ARE  
MEASURED AT THE PARTING LINE. MOLD FLASH  
OR PROTRUSIONS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
L
16  
9
E
Q
1
H
E
M
_
E
ꢀꢁ4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
1
8
L
ꢀꢁ5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
DETAIL P  
Z
D
VIEW P  
e
A
c
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
2.05  
0.20  
0.50  
0.20  
10.50  
5.45  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
A
---  
0.05  
0.35  
0.10  
9.90  
5.10  
---  
0.002  
0.014  
0.007  
0.390  
0.201  
A
1
A
1
b
c
b
0.13 (0.005)  
D
E
0.10 (0.004)  
M
e
1.27 BSC  
0.050 BSC  
H
7.40  
0.50  
1.10  
8.20  
0.85  
1.50  
0.291  
0.020  
0.043  
0.323  
0.033  
0.059  
E
L
L
E
0
10  
10  
_
0.035  
0.031  
M
Q
0
_
_
_
0.70  
---  
0.90  
0.78  
0.028  
---  
1
Z
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC74LVXT4051/D  

相关型号:

MC74LVXT4051DTR2

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4051DTR2G

Analog Multiplexer Demultiplexer
ONSEMI

MC74LVXT4051DTRG

Analog Multiplexer Demultiplexer
ONSEMI

MC74LVXT4051M

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4051MEL

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4051MELG

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4051MG

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4051_05

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4052

Analog Multiplexer Demultiplexer
ONSEMI

MC74LVXT4052D

Analog Multiplexer Demultiplexer
ONSEMI

MC74LVXT4052DG

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4052DR2

Analog Multiplexer Demultiplexer
ONSEMI