MC74VHC1G126DTT2 [ONSEMI]

AHC/VHC SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO5, SC-59, SOT-23, TSOP-5;
MC74VHC1G126DTT2
型号: MC74VHC1G126DTT2
厂家: ONSEMI    ONSEMI
描述:

AHC/VHC SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO5, SC-59, SOT-23, TSOP-5

驱动 光电二极管 输出元件 逻辑集成电路
文件: 总6页 (文件大小:120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74VHC1G126  
Noninverting 3-State Buffer  
The MC74VHC1G126 is an advanced high speed CMOS  
noninverting 3state buffer fabricated with silicon gate CMOS  
technology. It achieves high speed operation similar to equivalent  
Bipolar Schottky TTL while maintaining CMOS low power  
dissipation.  
The internal circuit is composed of three stages, including a buffered  
3state output which provides high noise immunity and stable output.  
The MC74VHC1G126 input structure provides protection when  
voltages up to 7 V are applied, regardless of the supply voltage. This  
allows the MC74VHC1G126 to be used to interface 5 V circuits to 3 V  
circuits.  
http://onsemi.com  
MARKING  
DIAGRAMS  
5
5
1
W2 M G  
SC88A / SOT353 / SC70  
DF SUFFIX  
Features  
G
High Speed: t = 3.5 ns (Typ) at V = 5 V  
CASE 419A  
PD  
CC  
1
5
Low Power Dissipation: I = 1 mA (Max) at T = 25°C  
CC  
A
Power Down Protection Provided on Inputs  
Balanced Propagation Delays  
5
W2 M G  
Pin and Function Compatible with Other Standard Logic Families  
Chip Complexity: FETs = 58; Equivalent Gates = 15  
These Devices are PbFree and are RoHS Compliant  
G
1
TSOP5 / SOT23 / SC59  
DT SUFFIX  
1
CASE 483  
W2 = Device Code  
M
G
= Date Code*  
= PbFree Package  
(Note: Microdot may be in either location)  
*Date Code orientation and/or position may vary  
depending upon manufacturing location.  
5
1
2
3
V
CC  
OE  
IN A  
GND  
PIN ASSIGNMENT  
4
OUT Y  
1
2
3
4
5
OE  
IN A  
GND  
Figure 1. Pinout (Top View)  
OUT Y  
V
CC  
OE  
IN A  
EN  
OUT Y  
FUNCTION TABLE  
OE Input  
A Input  
Y Output  
Figure 2. Logic Symbol  
L
H
X
H
H
L
L
H
Z
ORDERING INFORMATION  
See detailed ordering and shipping information in the  
package dimensions section on page 4 of this data sheet.  
© Semiconductor Components Industries, LLC, 2011  
1
Publication Order Number:  
May, 2011 Rev. 15  
MC74VHC1G126/D  
MC74VHC1G126  
MAXIMUM RATINGS  
Symbol  
Characteristics  
Value  
Unit  
V
V
CC  
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
0.5 to +7.0  
0.5 to +7.0  
0.5 to 7.0  
V
IN  
V
V
OUT  
V
= 0  
CC  
V
High or Low State  
0.5 to V + 0.5  
CC  
I
Input Diode Current  
20  
+20  
mA  
mA  
mA  
mA  
mW  
°C/W  
°C  
IK  
I
Output Diode Current  
DC Output Current, per Pin  
V
< GND; V  
> V  
OK  
OUT  
OUT CC  
I
+25  
OUT  
I
DC Supply Current, V and GND  
+50  
CC  
CC  
P
Power dissipation in still air  
Thermal resistance  
SC88A, TSOP5  
SC88A, TSOP5  
200  
D
q
333  
JA  
T
Lead temperature, 1 mm from case for 10 secs  
Junction temperature under bias  
Storage temperature  
260  
L
T
+150  
65 to +150  
°C  
J
T
stg  
°C  
V
ESD  
ESD Withstand Voltage  
Human Body Model (Note 1)  
Machine Model (Note 2)  
Charged Device Model (Note 3)  
> 2000  
> 200  
N/A  
V
I
Latchup Performance  
Above V and Below GND at 125°C (Note 4)  
500  
mA  
Latchup  
CC  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Tested to EIA/JESD22A114A  
2. Tested to EIA/JESD22A115A  
3. Tested to JESD22C101A  
4. Tested to EIA/JESD78  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Characteristics  
Min  
2.0  
0.0  
0.0  
55  
Max  
5.5  
Unit  
V
V
CC  
DC Supply Voltage  
V
IN  
DC Input Voltage  
5.5  
V
V
OUT  
DC Output Voltage  
V
CC  
V
T
A
Operating Temperature Range  
Input Rise and Fall Time  
+125  
°C  
ns/V  
t , t  
V
CC  
V
CC  
= 3.3 V 0.3 V  
= 5.0 V 0.5 V  
0
0
100  
20  
r
f
Device Junction Temperature versus  
Time to 0.1% Bond Failures  
Junction  
Temperature °C  
FAILURE RATE OF PLASTIC = CERAMIC  
UNTIL INTERMETALLICS OCCUR  
Time, Hours  
Time, Years  
117.8  
47.9  
80  
1,032,200  
419,300  
178,700  
79,600  
37,000  
17,800  
8,900  
90  
100  
110  
120  
130  
140  
20.4  
1
9.4  
4.2  
1
10  
100  
1000  
2.0  
TIME, YEARS  
1.0  
Figure 3. Failure Rate vs. Time Junction Temperature  
http://onsemi.com  
2
 
MC74VHC1G126  
DC ELECTRICAL CHARACTERISTICS  
T
A
= 25°C  
T
A
85°C  
55 T 125°C  
A
V
CC  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
(V)  
Symbol  
Parameter  
Test Conditions  
Unit  
V
IH  
Minimum HighLevel  
Input Voltage  
2.0  
3.0  
4.5  
5.5  
1.5  
2.1  
3.15  
3.85  
1.5  
2.1  
3.15  
3.85  
1.5  
2.1  
3.15  
3.85  
V
V
IL  
Maximum LowLevel  
Input Voltage  
2.0  
3.0  
4.5  
5.5  
0.5  
0.9  
1.35  
1.65  
0.5  
0.9  
1.35  
1.65  
0.5  
0.9  
1.35  
1.65  
V
V
Minimum HighLevel  
V
OH  
= V or V  
2.0  
3.0  
4.5  
1.9  
2.9  
4.4  
2.0  
3.0  
4.5  
1.9  
2.9  
4.4  
1.9  
2.9  
4.4  
V
V
V
V
OH  
IN  
IH  
IL  
IL  
IL  
IL  
IL  
Output Voltage  
I
= 50 mA  
V
IN  
= V or V  
IH IL  
V
= V or V  
IN  
OH  
OH  
IH  
I
I
= 4 mA  
= 8 mA  
3.0  
4.5  
2.58  
3.94  
2.48  
3.80  
2.34  
3.66  
V
Maximum LowLevel  
V
OL  
= V or V  
2.0  
3.0  
4.5  
0.0  
0.0  
0.0  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
OL  
IN  
IH  
Output Voltage  
I
= 50 mA  
V
IN  
= V or V  
IH IL  
V
= V or V  
IN  
OL  
OL  
IH  
I
I
= 4 mA  
= 8 mA  
3.0  
4.5  
0.36  
0.36  
0.44  
0.44  
0.52  
0.52  
I
Maximum 3State  
Leakage Current  
V
V
= V or V  
5.5  
0.2  
5
2.5  
1.0  
20  
2.5  
1.0  
40  
mA  
mA  
mA  
OZ  
IN  
OUT  
IH  
= V or GND  
CC  
I
Maximum Input  
Leakage Current  
V
= 5.5 V or GND  
0 to  
5.5  
0.1  
IN  
IN  
IN  
I
Maximum Quiescent  
Supply Current  
V
= V or GND  
5.5  
1.0  
CC  
CC  
AC ELECTRICAL CHARACTERISTICS C  
= 50 pF, Input t = t = 3.0 ns  
r f  
load  
T
A
= 25°C  
T
A
85°C  
55 T 125°C  
A
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
t
,
Maximum Propagation  
Delay, Input A to Y  
(Figures 3. and 5.)  
V
V
V
= 3.3 0.3 V C = 15 pF  
4.5  
6.4  
8.0  
9.5  
12.0  
16.0  
ns  
PLH  
CC  
CC  
CC  
L
t
C = 50 pF  
11.5  
13.0  
PHL  
L
= 5.0 0.5 V C = 15 pF  
3.5  
4.5  
5.5  
7.5  
6.5  
8.5  
8.5  
10.5  
L
C = 50 pF  
L
t
,
Maximum Output Enable  
Time, Input OE to Y  
(Figures 4. and 5.)  
= 3.3 0.3 V C = 15 pF  
4.5  
6.4  
8.0  
11.5  
9.5  
13.0  
11.5  
15.0  
ns  
ns  
PZL  
L
L
t
R = 1000 W  
C = 50 pF  
PZH  
L
V
CC  
= 5.0 0.5 V C = 15 pF  
3.5  
4.5  
5.1  
7.1  
6.0  
8.0  
8.5  
10.5  
L
R = 1000 W  
C = 50 pF  
L
L
t
,
Maximum Output Disable  
Time, Input OE to Y  
(Figures 4. and 5.)  
V
CC  
= 3.3 0.3 V C = 15 pF  
6.5  
8.0  
9.7  
13.2  
11.5  
15.0  
14.5  
18.0  
PLZ  
L
t
R = 1000 W  
C = 50 pF  
PHZ  
L
L
V
CC  
= 5.0 0.5 V C = 15 pF  
4.8  
7.0  
6.8  
8.8  
8.0  
10.0  
10.0  
12.0  
L
R = 1000 W  
C = 50 pF  
L
L
C
Maximum Input  
Capacitance  
4.0  
10  
10  
10  
pF  
pF  
IN  
C
Maximum 3State Output  
Capacitance (Output in  
High Impedance State)  
6.0  
OUT  
Typical @ 25°C, V = 5.0 V  
CC  
8.0  
C
Power Dissipation Capacitance (Note 5)  
pF  
PD  
5. C is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.  
PD  
Average operating current can be obtained by the equation: I  
) = C V f + I . C is used to determine the noload dynamic  
CC(OPR  
PD CC in CC PD  
2
power consumption; P = C V  
f + I V  
.
D
PD  
CC  
in  
CC  
CC  
http://onsemi.com  
3
 
MC74VHC1G126  
SWITCHING WAVEFORMS  
V
CC  
OE  
50%  
GND  
t
t
PZL  
PLZ  
HIGH  
V
CC  
IMPEDANCE  
50%  
50% V  
Y
Y
CC  
A
Y
V
+ 0.3V  
OL  
GND  
t
t
PZH  
PHZ  
t
PHL  
t
PLH  
V
OH  
- 0.3V  
50% V  
CC  
50% V  
CC  
HIGH  
IMPEDANCE  
Figure 4. Switching Waveforms  
Figure 5.  
TEST POINT  
1 kW  
TEST POINT  
OUTPUT  
CONNECT TO V WHEN  
CC  
TESTING t AND t  
PLZ  
OUTPUT  
PZL.  
CONNECT TO GND WHEN  
TESTING t AND t  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
PHZ  
PZH.  
C *  
L
C *  
L
*Includes all probe and jig capacitance  
*Includes all probe and jig capacitance  
Figure 6. Test Circuit  
Figure 7. Test Circuit  
INPUT  
Figure 8. Input Equivalent Circuit  
Package  
ORDERING INFORMATION  
Device  
Shipping  
M74VHC1G126DFT1G  
SC88A/SOT353/SC70  
(PbFree)  
M74VHC1G126DFT2G  
M74VHC1G126DTT1G  
SC88A/SOT353/SC70  
(PbFree)  
3000 Units / Tape & Reel  
TSOP5/SOT23/SC59  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
4
MC74VHC1G126  
PACKAGE DIMENSIONS  
SC88A (SC705/SOT353)  
CASE 419A02  
ISSUE K  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
G
2. CONTROLLING DIMENSION: INCH.  
3. 419A01 OBSOLETE. NEW STANDARD  
419A02.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
http://onsemi.com  
5
MC74VHC1G126  
PACKAGE DIMENSIONS  
TSOP5  
CASE 48302  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5. OPTIONAL CONSTRUCTION: AN  
ADDITIONAL TRIMMED LEAD IS ALLOWED  
IN THIS LOCATION. TRIMMED LEAD NOT TO  
EXTEND MORE THAN 0.2 FROM BODY.  
NOTE 5  
5X  
D
0.20 C A B  
2X  
2X  
0.10  
T
T
M
5
4
3
0.20  
B
S
1
2
K
L
DETAIL Z  
G
A
MILLIMETERS  
DIM  
A
B
C
D
MIN  
3.00 BSC  
1.50 BSC  
MAX  
DETAIL Z  
J
0.90  
1.10  
0.50  
C
0.25  
SEATING  
PLANE  
0.05  
G
H
J
K
L
M
S
0.95 BSC  
H
0.01  
0.10  
0.20  
1.25  
0
0.10  
0.26  
0.60  
1.55  
10  
3.00  
T
_
_
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC74VHC1G126/D  

相关型号:

MC74VHC1G126DTT3

AHC/VHC SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO5, SC-59, SOT-23, TSOP-5
ONSEMI

MC74VHC1G126MU1TCG

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G126MU3TCG

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G126P5T5G

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G126P5T5G-L22088

Single Non-Inverting Buffer, 3-State
ONSEMI

MC74VHC1G126XV5T2G

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G126_07

Noninverting 3−State Buffer
ONSEMI

MC74VHC1G126_11

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G126_18

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G132

2-Input NAND Schmitt-Trigger
ONSEMI

MC74VHC1G132DBVT1G

单 2 输入 NAND 门极,带施密特触发器输入
ONSEMI

MC74VHC1G132DFT1

2-Input NAND Schmitt-Trigger
ONSEMI