MC74VHC1G126 [ONSEMI]

Noninverting 3−State Buffer; 同相三态缓冲器
MC74VHC1G126
型号: MC74VHC1G126
厂家: ONSEMI    ONSEMI
描述:

Noninverting 3−State Buffer
同相三态缓冲器

文件: 总6页 (文件大小:79K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74VHC1G126  
Noninverting 3−State Buffer  
The MC74VHC1G126 is an advanced high speed CMOS  
noninverting 3−state buffer fabricated with silicon gate CMOS  
technology. It achieves high speed operation similar to equivalent  
Bipolar Schottky TTL while maintaining CMOS low power  
dissipation.  
The internal circuit is composed of three stages, including a buffered  
3−state output which provides high noise immunity and stable output.  
The MC74VHC1G126 input structure provides protection when  
voltages up to 7.0 V are applied, regardless of the supply voltage. This  
allows the MC74VHC1G126 to be used to interface 5.0 V circuits to  
3.0 V circuits.  
http://onsemi.com  
MARKING  
DIAGRAMS  
5
5
1
W2 M G  
SC−88A/SOT−353/SC−70  
DF SUFFIX  
G
Features  
1
5
High Speed: t = 3.5 ns (Typ) at V = 5.0 V  
CASE 419A  
PD  
CC  
Low Power Dissipation: I = 1 mA (Max) at T = 25°C  
CC  
A
Power Down Protection Provided on Inputs  
Balanced Propagation Delays  
5
W2 AYW G  
Pin and Function Compatible with Other Standard Logic Families  
Chip Complexity: FETs = 58; Equivalent Gates = 15  
Pb−Free Packages are Available  
G
1
TSOP−5/SOT−23/SC−59  
DT SUFFIX  
1
CASE 483  
W2  
M
A
= Device Code  
= Date Code*  
= Assembly Location  
= Year  
Y
5
1
2
3
V
CC  
OE  
IN A  
GND  
W
G
= Work Week  
= Pb−Free Package  
(Note: Microdot may be in either location)  
*Date Code orientation and/or position may  
vary depending upon manufacturing location.  
4
OUT Y  
PIN ASSIGNMENT  
1
2
3
4
5
OE  
Figure 1. Pinout (Top View)  
IN A  
GND  
OUT Y  
V
CC  
OE  
IN A  
EN  
OUT Y  
FUNCTION TABLE  
OE Input  
A Input  
Y Output  
Figure 2. Logic Symbol  
L
H
X
H
H
L
L
H
Z
ORDERING INFORMATION  
See detailed ordering and shipping information in the  
package dimensions section on page 4 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
August, 2005 − Rev. 13  
MC74VHC1G126/D  
MC74VHC1G126  
MAXIMUM RATINGS  
Symbol  
Characteristics  
Value  
Unit  
V
V
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
−0.5 to +7.0  
−0.5 to +7.0  
−0.5 to 7.0  
CC  
V
V
IN  
V
V
= 0  
CC  
V
OUT  
High or Low State  
−0.5 to V + 0.5  
CC  
I
Input Diode Current  
−20  
+20  
mA  
mA  
mA  
mA  
mW  
°C/W  
°C  
IK  
I
Output Diode Current  
DC Output Current, per Pin  
V
< GND; V  
> V  
OK  
OUT  
OUT CC  
I
+25  
OUT  
I
DC Supply Current, V and GND  
+50  
CC  
CC  
P
Power dissipation in still air  
Thermal resistance  
SC−88A, TSOP−5  
SC−88A, TSOP−5  
200  
D
q
333  
JA  
T
Lead temperature, 1 mm from case for 10 s  
Junction temperature under bias  
Storage temperature  
260  
L
J
T
+150  
−65 to +150  
°C  
T
stg  
°C  
V
ESD Withstand Voltage  
Human Body Model (Note 1)  
Machine Model (Note 2)  
Charged Device Model (Note 3)  
> 2000  
> 200  
N/A  
V
ESD  
I
Latchup Performance  
Above V and Below GND at 125°C (Note 4)  
500  
mA  
Latchup  
CC  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. Tested to EIA/JESD22−A114−A  
2. Tested to EIA/JESD22−A115−A  
3. Tested to JESD22−C101−A  
4. Tested to EIA/JESD78  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Characteristics  
Min  
2.0  
0.0  
0.0  
−55  
Max  
5.5  
Unit  
V
V
DC Supply Voltage  
CC  
V
DC Input Voltage  
5.5  
V
IN  
V
DC Output Voltage  
V
V
OUT  
CC  
T
A
Operating Temperature Range  
Input Rise and Fall Time  
+125  
°C  
ns/V  
t , t  
r
V
V
= 3.3 V 0.3 V  
= 5.0 V 0.5 V  
0
0
100  
20  
f
CC  
CC  
Device Junction Temperature versus  
Time to 0.1% Bond Failures  
FAILURE RATE OF PLASTIC = CERAMIC  
UNTIL INTERMETALLICS OCCUR  
Junction  
Temperature °C  
Time, Hours  
Time, Years  
80  
1,032,200  
419,300  
178,700  
79,600  
37,000  
17,800  
8,900  
117.8  
47.9  
20.4  
9.4  
90  
100  
110  
120  
130  
140  
1
4.2  
1
10  
100  
1000  
2.0  
TIME, YEARS  
1.0  
Figure 3. Failure Rate vs. Time  
Junction Temperature  
http://onsemi.com  
2
 
MC74VHC1G126  
DC ELECTRICAL CHARACTERISTICS  
T
A
= 25°C  
T
A
85°C  
−55 T 125°C  
A
V
CC  
(V)  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
V
Minimum High−Level  
Input Voltage  
2.0  
3.0  
4.5  
5.5  
1.5  
2.1  
3.15  
3.85  
1.5  
2.1  
3.15  
3.85  
1.5  
2.1  
3.15  
3.85  
V
IH  
V
Maximum Low−Level  
Input Voltage  
2.0  
3.0  
4.5  
5.5  
0.5  
0.9  
1.35  
1.65  
0.5  
0.9  
1.35  
1.65  
0.5  
0.9  
1.35  
1.65  
V
IL  
V
Minimum High−Level  
Output Voltage  
V
= V or V  
= −50 mA  
2.0  
3.0  
4.5  
1.9  
2.9  
4.4  
2.0  
3.0  
4.5  
1.9  
2.9  
4.4  
1.9  
2.9  
4.4  
V
V
V
V
OH  
IN  
IH  
IL  
IL  
IL  
IL  
IL  
I
OH  
V
= V or V  
IN  
IH IL  
V
= V or V  
IN  
OH  
OH  
IH  
I
I
= −4 mA  
= −8 mA  
3.0  
4.5  
2.58  
3.94  
2.48  
3.80  
2.34  
3.66  
V
Maximum Low−Level  
Output Voltage  
V
= V or V  
2.0  
3.0  
4.5  
0.0  
0.0  
0.0  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
OL  
IN  
IH  
I
= 50 mA  
OL  
V
= V or V  
IN  
IH IL  
V
= V or V  
IN  
OL  
OL  
IH  
I
I
= 4 mA  
= 8 mA  
3.0  
4.5  
0.36  
0.36  
0.44  
0.44  
0.52  
0.52  
I
I
Maximum 3−State  
Leakage Current  
V
V
= V or V  
5.5  
0.25  
2.5  
1.0  
20  
2.5  
1.0  
40  
mA  
mA  
mA  
OZ  
IN  
IH  
= V or GND  
OUT  
CC  
I
Maximum Input  
Leakage Current  
V
= 5.5 V or GND  
0 to  
5.5  
0.1  
IN  
IN  
IN  
Maximum Quiescent  
Supply Current  
V
= V or GND  
5.5  
1.0  
CC  
CC  
AC ELECTRICAL CHARACTERISTICS C  
= 50 pF, Input t = t = 3.0 ns  
r f  
load  
T
A
= 25°C  
T
A
85°C  
−55 T 125°C  
A
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
t
t
,
Maximum Propagation  
Delay,  
Input A to Y  
V
V
V
= 3.3 0.3 VC = 15 pF  
4.5  
6.4  
8.0  
11.5  
9.5  
13.0  
12.0  
16.0  
ns  
PLH  
CC  
CC  
CC  
L
C = 50 pF  
L
PHL  
= 5.0 0.5 VC = 15 pF  
3.5  
4.5  
5.5  
7.5  
6.5  
8.5  
8.5  
10.5  
L
(Figures 3. and 5.)  
C = 50 pF  
L
t
,
Maximum Output  
Enable Time,  
Input OE to Y  
= 3.3 0.3 VC = 15 pF  
4.5  
6.4  
8.0  
11.5  
9.5  
13.0  
11.5  
15.0  
ns  
ns  
PZL  
L
t
R = 1000 W  
C = 50 pF  
L
PZH  
L
V
= 5.0 0.5 VC = 15 pF  
3.5  
4.5  
5.1  
7.1  
6.0  
8.0  
8.5  
10.5  
CC  
L
(Figures 4. and 5.)  
R = 1000 W  
C = 50 pF  
L
L
t
,
Maximum Output  
Disable Time,  
V
= 3.3 0.3 VC = 15 pF  
6.5  
8.0  
9.7  
13.2  
11.5  
15.0  
14.5  
18.0  
PLZ  
CC  
L
t
R = 1000 W  
C = 50 pF  
L
PHZ  
L
Input OE to Y  
(Figures 4. and 5.)  
V
= 5.0 0.5 VC = 15 pF  
4.8  
7.0  
6.8  
8.8  
8.0  
10.0  
10.0  
12.0  
CC  
L
R = 1000 W  
C = 50 pF  
L
L
C
Maximum Input  
Capacitance  
4.0  
10  
10  
10  
pF  
pF  
IN  
C
OUT  
Maximum 3−State Output  
Capacitance (Output in  
High Impedance State)  
6.0  
Typical @ 25°C, V = 5.0 V  
CC  
8.0  
C
PD  
Power Dissipation Capacitance (Note 5)  
pF  
5. C is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.  
PD  
Average operating current can be obtained by the equation: I  
power consumption; P = C V  
) = C V f + I . C is used to determine the no−load dynamic  
CC(OPR  
PD CC in CC PD  
2
f + I V  
.
D
PD  
CC  
in  
CC  
CC  
http://onsemi.com  
3
 
MC74VHC1G126  
SWITCHING WAVEFORMS  
V
CC  
OE  
50%  
V
GND  
CC  
50%  
t
t
PZL  
PLZ  
A
Y
GND  
HIGH  
t
PHL  
t
IMPEDANCE  
PLH  
50% V  
Y
CC  
V
V
+ 0.3V  
OL  
50% V  
CC  
t
t
PZH  
PHZ  
− 0.3V  
OH  
50% V  
Y
CC  
HIGH  
IMPEDANCE  
Figure 4. Switching Waveforms  
Figure 5.  
TEST POINT  
1 kW  
TEST POINT  
OUTPUT  
CONNECT TO V WHEN  
CC  
TESTING t AND t  
PLZ  
OUTPUT  
PZL.  
CONNECT TO GND WHEN  
TESTING t AND t  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
PHZ  
PZH.  
C *  
L
C *  
L
*Includes all probe and jig capacitance  
*Includes all probe and jig capacitance  
Figure 6. Test Circuit  
Figure 7. Test Circuit  
INPUT  
Figure 8. Input Equivalent Circuit  
DEVICE ORDERING INFORMATION  
Device Order Number  
Package Type  
Tape and Reel Size  
MC74VHC1G126DFT1  
SC−88A/SOT−353/SC−70  
178 mm (7”)  
3000 Units / Tape & Reel  
M74VHC1G126DFT1G  
MC74VHC1G126DFT2  
M74VHC1G126DFT2G  
MC74VHC1G126DTT1  
M74VHC1G126DTT1G  
SC−88A/SOT−353/SC−70  
(Pb−Free)  
178 mm (7”)  
3000 Units / Tape & Reel  
SC−88A/SOT−353/SC−70  
178 mm (7”)  
3000 Units / Tape & Reel  
SC−88A/SOT−353/SC−70  
(Pb−Free)  
178 mm (7”)  
3000 Units / Tape & Reel  
TSOP−5/SOT−23/SC−59  
178 mm (7”)  
3000 Units / Tape & Reel  
TSOP−5/SOT−23/SC−59  
(Pb−Free)  
178 mm (7”)  
3000 Units / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
4
MC74VHC1G126  
PACKAGE DIMENSIONS  
SC−88A / SOT−353 / SC70  
CASE 419A−02  
ISSUE H  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419A−01 OBSOLETE. NEW STANDARD  
419A−02.  
G
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
−B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
−−−  
0.004  
0.004  
0.004  
0.010  
0.012  
−−−  
0.10  
0.10  
0.10  
0.25  
0.30  
N
K
N
S
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
SOLDERING FOOTPRINT*  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
mm  
inches  
ǒ
Ǔ
1.9  
0.0748  
SCALE 20:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
5
MC74VHC1G126  
PACKAGE DIMENSIONS  
TSOP−5 / SOT23−5 / SC59−5  
DT SUFFIX  
CASE 483−02  
ISSUE D  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B
C
S
1
2
L
G
A
MILLIMETERS  
INCHES  
MIN MAX  
0.1142 0.1220  
DIM  
A
B
C
D
G
H
J
K
L
MIN  
2.90  
1.30  
0.90  
0.25  
0.85  
0.013  
0.10  
0.20  
1.25  
0
MAX  
3.10  
J
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
0.100 0.0005 0.0040  
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
0.05 (0.002)  
H
M
K
M
S
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC74VHC1G126/D  

相关型号:

MC74VHC1G126DBVT1G

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G126DFT1

Noninverting 3−State Buffer
ONSEMI

MC74VHC1G126DFT2

Noninverting 3−State Buffer
ONSEMI

MC74VHC1G126DFT4

AHC/VHC SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO5, SC-70, SC-88A, SOT-353, 5 PIN
ONSEMI

MC74VHC1G126DTT1

Noninverting 3−State Buffer
ONSEMI

MC74VHC1G126DTT1G

AHC/VHC SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO5, SC-59, SOT-23, TSOP-5
ONSEMI

MC74VHC1G126DTT2

AHC/VHC SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO5, SC-59, SOT-23, TSOP-5
ONSEMI

MC74VHC1G126DTT3

AHC/VHC SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO5, SC-59, SOT-23, TSOP-5
ONSEMI

MC74VHC1G126MU1TCG

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G126MU3TCG

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G126P5T5G

Noninverting 3-State Buffer
ONSEMI

MC74VHC1G126P5T5G-L22088

Single Non-Inverting Buffer, 3-State
ONSEMI