MC74VHCXXXM [ONSEMI]

Octal Bus Transceiver; 八路总线收发器
MC74VHCXXXM
型号: MC74VHCXXXM
厂家: ONSEMI    ONSEMI
描述:

Octal Bus Transceiver
八路总线收发器

总线收发器
文件: 总8页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
MC74VHC245  
Octal Bus Transceiver  
The MC74VHC245 is an advanced high speed CMOS octal bus  
transceiver fabricated with silicon gate CMOS technology. It achieves  
high speed operation similar to equivalent Bipolar Schottky TTL  
while maintaining CMOS low power dissipation.  
It is intended for twoway asynchronous communication between  
data buses. The direction of data transmission is determined by the  
level of the DIR input. The output enable pin (OE) can be used to  
disable the device, so that the buses are effectively isolated.  
All inputs are equipped with protection circuits against static  
discharge.  
DW SUFFIX  
20LEAD SOIC WIDE PACKAGE  
CASE 751D05  
High Speed: t = 4.0ns (Typ) at V = 5V  
PD  
CC  
DT SUFFIX  
20LEAD TSSOP PACKAGE  
CASE 948E02  
Low Power Dissipation: I = 4μA (Max) at T = 25°C  
CC  
A
High Noise Immunity: V  
= V = 28% V  
NIL CC  
NIH  
Power Down Protection Provided on Inputs  
Balanced Propagation Delays  
Designed for 2V to 5.5V Operating Range  
Low Noise: V  
= 1.2V (Max)  
OLP  
M SUFFIX  
20LEAD SOIC EIAJ PACKAGE  
CASE 96701  
Pin and Function Compatible with Other Standard Logic Families  
Latchup Performance Exceeds 300mA  
ESD Performance: HBM > 2000V; Machine Model > 200V  
Chip Complexity: 308 FETs or 77 Equivalent Gates  
w These devices are available in Pbfree package(s). Specifications herein  
apply to both standard and Pbfree devices. Please see our website at  
www.onsemi.com for specific Pbfree orderable part numbers, or  
contact your local ON Semiconductor sales office or representative.  
ORDERING INFORMATION  
MC74VHCXXXDW  
MC74VHCXXXDT  
MC74VHCXXXM  
SOIC WIDE  
TSSOP  
SOIC EIAJ  
APPLICATION NOTES  
Do not force a signal on an I/O pin when it is an active output,  
damage may occur.  
All floating (high impedance) input or I/O pins must be fixed by  
means of pull up or pull down resistors or bus terminator ICs.  
A parasitic diode is formed between the bus and V terminals.  
CC  
Therefore, the VHC245 cannot be used to interface 5V to 3V systems  
directly.  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
March, 2006 Rev. 5  
MC74VHC245/D  
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
DIR  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
1
2
3
4
5
6
7
8
9
20  
V
CC  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
19 OE  
18 B1  
17 B2  
16 B3  
15 B4  
14 B5  
13 B6  
12 B7  
11 B8  
A
DATA  
PORT  
B
DATA  
PORT  
1
DIR  
OE  
19  
GND 10  
Figure 1. LOGIC  
DIAGRAM  
Figure 2. PIN ASSIGNMENT  
FUNCTION TABLE  
Control Inputs  
OE  
L
DIR  
L
Operation  
Data Transmitted from Bus B to Bus A  
Data Transmitted from Bus A to Bus B  
Buses Isolated (HighImpedance State)  
L
H
H
X
http://onsemi.com  
2
MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this highimpedance cir-  
V
DC Supply Voltage  
DC Input Voltage  
– 0.5 to + 7.0  
– 0.5 to + 7.0  
CC  
V
V
in  
V
DC Output Voltage  
Input Diode Current  
Output Diode Current  
– 0.5 to V + 0.5  
V
out  
IK  
CC  
I
20  
± 20  
± 25  
± 75  
mA  
mA  
mA  
mA  
mW  
cuit. For proper operation, V and  
in  
I
OK  
V
out  
should be constrained to the  
range GND v (V or V ) v V  
.
I
DC Output Current, per Pin  
DC Supply Current, V and GND Pins  
in  
out  
CC  
out  
CC  
Unused inputs must always be  
tied to an appropriate logic voltage  
I
CC  
level (e.g., either GND or V ).  
P
D
Power Dissipation in Still Air  
SOIC Packages†  
TSSOP Package†  
500  
450  
CC  
Unused outputs must be left open.  
T
stg  
Storage Temperature  
– 65 to + 150  
_C  
* Absolute maximum continuous ratings are those values beyond which damage to the device  
may occur. Exposure to these conditions or conditions beyond those indicated may  
adversely affect device reliability. Functional operation under absolutemaximumrated  
conditions is not implied.  
†Derating — SOIC Packages: – 7 mW/_C from 65_ to 125_C  
TSSOP Package: 6.1 mW/_C from 65_ to 125_C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.0  
0
Max  
5.5  
Unit  
V
V
CC  
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
V
in  
5.5  
V
V
out  
0
V
CC  
V
T
Operating Temperature  
Input Rise and Fall Time  
40  
+ 85  
_C  
ns/V  
A
t , t  
r
V
CC  
= 3.3V ±0.3V  
=5.0V ±0.5V  
0
0
100  
20  
f
V
CC  
DC ELECTRICAL CHARACTERISTICS  
T
A
= 25°C  
T = 40 to 85°C  
A
V
CC  
Min  
1.50  
Typ  
Max  
Min  
Max  
V
Symbol  
Parameter  
Test Conditions  
Unit  
V
IH  
Minimum HighLevel  
Input Voltage  
2.0  
3.0 to  
5.5  
1.50  
V
V
x 0.7  
V
x 0.7  
CC  
CC  
V
Maximum LowLevel  
Input Voltage  
2.0  
3.0 to  
5.5  
0.50  
0.50  
V
V
IL  
V
x 0.3  
V
x 0.3  
CC  
CC  
V
OH  
Minimum HighLevel  
Output Voltage  
V
= V or V  
= 50μA  
2.0  
3.0  
4.5  
1.9  
2.9  
4.4  
2.0  
3.0  
4.5  
1.9  
2.9  
4.4  
in  
IH  
IL  
I
OH  
V
in  
= V or V  
IH  
IL  
I
I
= 4mA  
= 8mA  
3.0  
4.5  
2.58  
3.94  
2.48  
3.80  
OH  
OH  
V
OL  
Maximum LowLevel  
Output Voltage  
V
= V or V  
= 50μA  
2.0  
3.0  
4.5  
0.0  
0.0  
0.0  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
V
in  
IH  
IL  
I
OL  
V
in  
= V or V  
IH  
IL  
I
I
= 4mA  
= 8mA  
3.0  
4.5  
0.36  
0.36  
0.44  
0.44  
OL  
OL  
I
in  
Maximum Input  
Leakage Current  
V
= 5.5 V or GND  
0 to 5.5  
± 0.1  
± 1.0  
μA  
in  
(DIR, OE)  
http://onsemi.com  
3
DC ELECTRICAL CHARACTERISTICS  
T
A
= 25°C  
T = 40 to 85°C  
A
V
CC  
Min  
Typ  
Max  
Min  
Max  
V
Symbol  
Parameter  
Maximum  
Test Conditions  
= V or V  
Unit  
I
V
in  
5.5  
± 0.25  
± 2.5  
μA  
OZ  
IL  
IH  
ThreeState Leakage  
V
= V or GND  
out CC  
Current  
I
Maximum Quiescent  
Supply Current  
V
in  
= V or GND  
5.5  
4.0  
40.0  
μA  
CC  
CC  
AC ELECTRICAL CHARACTERISTICS (Input t = t = 3.0ns)  
r
f
T
A
= 25°C  
T
A
= 40 to 85°C  
Min  
Typ  
Max  
Min  
1.0  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
t
t
t
,
Maximum Propagation Delay,  
A to B or B to A  
V
V
V
= 3.3 ± 0.3V  
= 5.0 ± 0.5V  
= 3.3 ± 0.3V  
C = 15pF  
C = 50pF  
L
5.8  
8.3  
8.4  
11.9  
10.0  
13.5  
ns  
PLH  
t
CC  
CC  
CC  
L
1.0  
PHL  
C = 15pF  
4.0  
5.5  
5.5  
7.5  
1.0  
1.0  
6.5  
8.5  
L
C = 50pF  
L
,
Output Enable Time  
OE to A or B  
C = 15pF  
L
8.5  
11.0  
13.2  
16.7  
1.0  
1.0  
15.5  
19.0  
ns  
ns  
PZL  
t
R = 1 kΩ  
C = 50pF  
L
PZH  
L
V
CC  
= 5.0 ± 0.5V  
C = 15pF  
L
5.8  
7.3  
8.5  
10.6  
1.0  
1.0  
10.0  
12.0  
R = 1 kΩ  
C = 50pF  
L
L
,
Output Disable Time  
OE to A or B  
V
CC  
= 3.3 ± 0.3V  
C = 50pF  
L
11.5  
15.8  
9.7  
1.5  
1.0  
10  
1.0  
18.0  
11.0  
1.5  
PLZ  
t
R = 1 kΩ  
PHZ  
L
V
CC  
= 5.0 ± 0.5V  
C = 50pF  
L
7.0  
1.0  
R = 1 kΩ  
L
t
,
Output to Output Skew  
V
CC  
= 3.3 ± 0.3V  
C = 50pF  
L
ns  
ns  
pF  
pF  
OSLH  
t
(Note 1)  
OSHL  
V
CC  
= 5.0 ± 0.5V  
C = 50pF  
L
1.0  
(Note 1)  
C
Maximum Input Capacitance  
DIR, OE  
4
8
10  
in  
C
Maximum ThreeState  
I/O  
I/O Capacitance  
Typical @ 25°C, V = 5.0V  
CC  
21  
C
Power Dissipation Capacitance (Note 2)  
pF  
PD  
1. Parameter guaranteed by design. t = |t t  
|, t  
= |t  
t  
PHLn  
|.  
OSLH  
PLHm  
PLHn OSHL  
PHLm  
2. C is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.  
PD  
Average operating current can be obtained by the equation: I  
) = C V f + I / 8 (per bit). C is used to determine the noload  
CC(OPR  
CC  
PD CC in CC PD  
2
dynamic power consumption; P = C V  
f + I V  
.
D
PD  
CC  
in  
CC  
NOISE CHARACTERISTICS (Input t = t = 3.0ns, C = 50pF, V = 5.0V)  
r
f
L
CC  
T
A
= 25°C  
Typ  
Max  
Symbol  
Parameter  
Unit  
V
V
V
Quiet Output Maximum Dynamic V  
0.9  
1.2  
1.2  
3.5  
OLP  
OL  
Quiet Output Minimum Dynamic V  
0.9  
V
OLV  
OL  
V
IHD  
Minimum High Level Dynamic Input Voltage  
Maximum Low Level Dynamic Input Voltage  
V
V
ILD  
1.5  
V
http://onsemi.com  
4
 
SWITCHING WAVEFORMS  
V
CC  
DIR  
OE  
50%  
GND  
V
CC  
50% V  
50% V  
CC  
CC  
GND  
V
CC  
A or B  
B or A  
t
t
PLZ  
PZL  
50%  
HIGH  
GND  
IMPEDANCE  
50% V  
CC  
t
t
PHL  
A or B  
A or B  
PLH  
V
+0.3V  
−0.3V  
OL  
t
t
PHZ  
PZH  
50% V  
CC  
V
OH  
50% V  
CC  
HIGH  
IMPEDANCE  
Figure 3.  
Figure 4.  
TEST CIRCUITS  
TEST POINT  
OUTPUT  
TEST POINT  
1 kΩ  
CONNECT TO V WHEN  
CC  
OUTPUT  
TESTING t AND t  
PLZ  
.
PZL  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
CONNECT TO GND WHEN  
TESTING t AND t  
.
PZH  
PHZ  
C *  
L
C *  
L
*Includes all probe and jig capacitance  
*Includes all probe and jig capacitance  
Figure 5.  
Figure 6.  
http://onsemi.com  
5
2
3
4
5
6
7
8
9
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
18  
17  
16  
15  
B1  
B2  
B3  
B4  
14  
13  
12  
11  
B5  
B6  
B7  
B8  
1
DIR  
OE  
19  
Figure 7. EXPANDED LOGIC DIAGRAM  
DIR, OE  
A, B  
INPUT  
I/O  
Figure 9. BUS TERMINAL EQUIVALENT CIRCUIT  
Figure 8. INPUT EQUIVALENT CIRCUIT  
http://onsemi.com  
6
OUTLINE DIMENSIONS  
DW SUFFIX  
SOIC  
CASE 751D05  
ISSUE F  
D
A
q
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
20  
11  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
E
B
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION SHALL  
BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
1
10  
MILLIMETERS  
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
12.95  
7.60  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
12.65  
7.40  
20X B  
M
S
S
B
T
0.25  
A
e
1.27 BSC  
A
H
h
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
L
SEATING  
PLANE  
q
_
_
18X e  
A1  
C
T
DT SUFFIX  
TSSOP  
CASE 948E02  
ISSUE A  
20X K REF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
S
S
V
0.10 (0.004)  
T
U
S
T U  
0.15 (0.006)  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
K
K1  
20  
11  
2X L/2  
J J1  
B
L
U−  
PIN 1  
IDENT  
SECTION NN  
1
10  
0.25 (0.010)  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
N
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE −W−.  
S
0.15 (0.006)  
T U  
M
A
V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.260  
0.177  
0.047  
0.006  
0.030  
A
B
6.40  
4.30  
−−−  
6.60 0.252  
4.50 0.169  
N
C
1.20  
−−−  
D
0.05  
0.50  
0.15 0.002  
0.75 0.020  
F
F
G
H
0.65 BSC  
0.026 BSC  
DETAIL E  
0.27  
0.09  
0.09  
0.19  
0.19  
0.37  
0.011  
0.015  
0.008  
0.006  
0.012  
0.010  
J
0.20 0.004  
0.16 0.004  
0.30 0.007  
0.25 0.007  
W−  
J1  
K
C
K1  
L
6.40 BSC  
0.252 BSC  
0
G
D
M
0
8
8
_
_
_
_
H
DETAIL E  
0.100 (0.004)  
TSEATING  
PLANE  
http://onsemi.com  
7
M SUFFIX  
SOIC EIAJ  
CASE 96701  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH OR PROTRUSIONS AND ARE MEASURED  
AT THE PARTING LINE. MOLD FLASH OR  
PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
L
E
20  
11  
Q
1
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
H
E
_
E
M
5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
L
1
10  
DETAIL P  
Z
D
VIEW P  
MILLIMETERS  
INCHES  
MIN  
e
A
DIM MIN  
MAX  
2.05  
0.20  
0.50  
0.27  
12.80  
5.45  
MAX  
0.081  
0.008  
0.020  
0.011  
0.504  
0.215  
c
A
−−−  
0.05  
0.35  
0.18  
12.35  
5.10  
−−−  
0.002  
0.014  
0.007  
0.486  
0.201  
A
1
b
c
D
E
e
A
b
1
1.27 BSC  
0.050 BSC  
M
0.10 (0.004)  
0.13 (0.005)  
H
7.40  
0.50  
1.10  
8.20  
0.85  
1.50  
0.291  
0.020  
0.043  
0.323  
0.033  
0.059  
E
L
L
E
M
Q
0
10  
0
10  
_
0.035  
0.032  
_
_
_
0.70  
−−−  
0.90  
0.81  
0.028  
−−−  
1
Z
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 850821312 USA  
Phone: 4808297710 or 8003443860 Toll Free USA/Canada  
Fax: 4808297709 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
291 Kamimeguro, Meguroku, Tokyo, Japan 1530051  
Phone: 81357733850  
For additional information, please contact your  
local Sales Representative.  
MC74VHC245/D  

相关型号:

MC74VHCXXXXD

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74VHCXXXXDT

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74VHT4051

Analog Multiplexer Demultiplexer
FREESCALE

MC74VQ02

LOW-VOLTAGE QUIET CMOS QUAD 2-INPUT NOR GATE
MOTOROLA

MC75107P

LINE RECEIVER, PDIP14, 646-06
MOTOROLA

MC75108P

Line Receiver, 1 Func, 2 Rcvr, BIPolar, PDIP14, 646-06
MOTOROLA

MC75110P

Line Driver
ROCHESTER

MC75110P

Line Driver/Receiver, 2 Driver, BIPolar, PDIP14
MOTOROLA

MC75172B

QUAD EIA-485 LINE DRIVERS
ONSEMI

MC75172B

QUAD EIA-485 LINE DRIVERS WITH THREE-STATE OUTPUTS
MOTOROLA

MC75172BDW

QUAD EIA-485 LINE DRIVERS
ONSEMI

MC75172BDW

QUAD EIA-485 LINE DRIVERS WITH THREE-STATE OUTPUTS
MOTOROLA