MJE13005G [ONSEMI]

4 AMPERE NPN SILICON POWER TRANSISTOR 400 VOLTS − 75 WATTS; 4安培NPN硅功率晶体管400伏 - 75瓦
MJE13005G
型号: MJE13005G
厂家: ONSEMI    ONSEMI
描述:

4 AMPERE NPN SILICON POWER TRANSISTOR 400 VOLTS − 75 WATTS
4安培NPN硅功率晶体管400伏 - 75瓦

晶体 晶体管 功率双极晶体管 开关 局域网
文件: 总7页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MJE13005  
Preferred Device  
SWITCHMODEt Series  
NPN Silicon Power  
Transistors  
These devices are designed for high−voltage, high−speed power  
switching inductive circuits where fall time is critical. They are  
particularly suited for 115 and 220 V SWITCHMODE applications  
such as Switching Regulator’s, Inverters, Motor Controls,  
Solenoid/Relay drivers and Deflection circuits.  
http://onsemi.com  
4 AMPERE  
NPN SILICON  
POWER TRANSISTOR  
400 VOLTS − 75 WATTS  
Features  
V  
400 V  
CEO(sus)  
Reverse Bias SOA with Inductive Loads @ T = 100_C  
C
Inductive Switching Matrix 2 to 4 A, 25 and 100_C t @ 3A,  
c
100_C is 180 ns (Typ)  
700 V Blocking Capability  
SOA and Switching Applications Information  
Pb−Free Package is Available*  
MAXIMUM RATINGS  
TO−220AB  
CASE 221A−09  
Rating  
Collector−Emitter Voltage  
Collector−Emitter Voltage  
Emitter−Base Voltage  
Symbol  
Value  
400  
700  
9
Unit  
Vdc  
Vdc  
Vdc  
Adc  
1
STYLE 1  
2
V
CEO(sus)  
3
V
CEV  
V
EBO  
MARKING DIAGRAM  
Collector Current − Continuous  
− Peak (Note 1)  
I
4
8
C
I
I
I
CM  
Base Current  
− Continuous  
− Peak (Note 1)  
I
2
4
Adc  
Adc  
B
BM  
Emitter Current  
− Continuous  
− Peak (Note 1)  
I
6
12  
E
EM  
MJE13005G  
AY WW  
Total Device Dissipation @ T = 25_C  
P
P
2
16  
W
C
D
D
Derate above 25°C  
W/_C  
W
W/_C  
_C  
Total Device Dissipation @ T = 25_C  
75  
600  
C
Derate above 25°C  
Operating and Storage Junction  
Temperature Range  
T , T  
65 to  
+150  
J
stg  
A
= Assembly  
THERMAL CHARACTERISTICS  
Location  
Y
WW  
G
Characteristics  
Symbol  
Max  
62.5  
1.67  
275  
Unit  
_C/W  
_C/W  
_C  
= Year  
= Work Week  
= Pb−Free Pack-  
Thermal Resistance, Junction−to−Ambient  
Thermal Resistance, Junction−to−Case  
R
q
JA  
JC  
L
R
q
age  
ORDERING INFORMATION  
Maximum Lead Temperature for Soldering  
Purposes 1/8from Case for 5 Seconds  
T
Device  
Package  
Shipping  
Maximum ratings are those values beyond which device damage can occur.  
Maximum ratings applied to the device are individual stress limit values (not  
normal operating conditions) and are not valid simultaneously. If these limits are  
exceeded, device functional operation is not implied, damage may occur and  
reliability may be affected.  
MJE13005  
MJE13005G  
TO−220  
50 Units / Rail  
50 Units / Rail  
TO−220  
(Pb−Free)  
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
Preferred devices are recommended choices for future use  
and best overall value.  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
February, 2006 − Rev. 7  
MJE13005/D  
 
MJE13005  
ELECTRICAL CHARACTERISTICS (T = 25_C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (Note 2)  
Collector−Emitter Sustaining Voltage  
V
400  
Vdc  
CEO(sus)  
(I = 10 mA, I = 0)  
C
B
Collector Cutoff Current  
I
mAdc  
CEV  
(V  
(V  
= Rated Value, V  
= Rated Value, V  
= 1.5 Vdc)  
= 1.5 Vdc, T = 100_C)  
CEV  
CEV  
BE(off)  
BE(off)  
1
5
C
Emitter Cutoff Current  
(V = 9 Vdc, I = 0)  
I
1
mAdc  
EBO  
EB  
C
SECOND BREAKDOWN  
Second Breakdown Collector Current with base forward biased  
Clamped Inductive SOA with Base Reverse Biased  
I
See Figure 11  
See Figure 12  
S/b  
RBSOA  
ON CHARACTERISTICS (Note 2)  
DC Current Gain  
h
FE  
(I = 1 Adc, V = 5 Vdc)  
C
CE  
10  
8
60  
40  
(I = 2 Adc, V = 5 Vdc)  
C
CE  
Collector−Emitter Saturation Voltage  
(I = 1 Adc, I = 0.2 Adc)  
V
V
Vdc  
CE(sat)  
C
B
0.5  
0.6  
1
(I = 2 Adc, I = 0.5 Adc)  
C
B
(I = 4 Adc, I = 1 Adc)  
C
B
(I = 2 Adc, I = 0.5 Adc, T = 100_C)  
C
B
C
1
Base−Emitter Saturation Voltage  
(I = 1 Adc, I = 0.2 Adc)  
Vdc  
BE(sat)  
C
B
1.2  
1.6  
1.5  
(I = 2 Adc, I = 0.5 Adc)  
C
B
(I = 2 Adc, I = 0.5 Adc, T = 100_C)  
C
B
C
DYNAMIC CHARACTERISTICS  
Current−Gain − Bandwidth Product  
f
4
MHz  
pF  
T
(I = 500 mAdc, V = 10 Vdc, f = 1 MHz)  
C
CE  
Output Capacitance  
C
65  
ob  
(V = 10 Vdc, I = 0, f = 0.1 MHz)  
CB  
E
SWITCHING CHARACTERISTICS  
Resistive Load (Table 2)  
Delay Time  
t
t
0.025  
0.3  
0.1  
0.7  
4
ms  
ms  
ms  
ms  
d
(V = 125 Vdc, I = 2 A,  
CC  
C
Rise Time  
Storage Time  
Fall Time  
t
r
I
= I = 0.4 A, t = 25 ms,  
B2 p  
B1  
1.7  
s
Duty Cycle v 1%)  
t
0.4  
0.9  
f
Inductive Load, Clamped (Table 2, Figure 13)  
Voltage Storage Time  
t
0.9  
4
0.9  
ms  
ms  
ms  
sv  
(I = 2 A, V  
= 300 Vdc,  
clamp  
C
Crossover Time  
Fall Time  
t
0.32  
0.16  
c
fi  
I
= 0.4 A, V  
= 5 Vdc, T = 100_C)  
B1  
BE(off)  
C
t
2. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2%.  
http://onsemi.com  
2
 
                                              
.4  
                                                                     
0
0
.2  
0
+ꢂ0.4  
+ꢂ0.6  
0.3  
0.5 1 3  
5
10  
30  
50  
100  
300  
MJE13005  
2
100  
70  
T = 25°C  
J
T = 150°C  
J
1.6  
1.2  
0.8  
0.4  
0
50  
I = 1 A  
C
25°C  
2 A  
3 A  
4 A  
30  
20  
−ꢂ55°C  
10  
V
V
= 2 V  
= 5 V  
CE  
CE  
7
5
0.1  
0.2  
0.4 0.6  
1
2
4
0.03 0.05  
0.1  
0.2 0.3  
0.5 0.7  
1
2
3
0.04 0.06  
I , COLLECTOR CURRENT (AMP)  
C
I , BASE CURRENT (AMP)  
B
Figure 1. DC Current Gain  
Figure 2. Collector Saturation Region  
0.55  
0.45  
0.35  
0.25  
0.15  
0.05  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
I /I = 4  
C B  
V
V
@ I /I = 4  
C B  
@ V = 2 V  
BE(sat)  
BE(on)  
CE  
T = −ꢂ55°C  
J
T = −ꢂ55°C  
J
25°C  
25°C  
25°C  
150°C  
150°C  
0.04 0.06 0.1  
0.2  
0.4 0.6  
1
2
4
0.04 0.06 0.1  
0.2  
0.4 0.6  
1
2
4
I , COLLECTOR CURRENT (AMP)  
C
I , COLLECTOR CURRENT (AMP)  
C
Figure 3. Base−Emitter Voltage  
Figure 4. Collector−Emitter Saturation Voltage  
10 k  
1 k  
2 k  
V
= 250 V  
CE  
C
ib  
1 k  
700  
500  
T = 150°C  
J
100  
10  
1
300  
200  
125°C  
100°C  
75°C  
100  
70  
50°C  
25°C  
50  
30  
20  
C
ob  
REVERSE  
FORWARD  
+ꢂ0.2  
, BASE−EMITTER VOLTAGE (VOLTS)  
0.1  
V
V , REVERSE VOLTAGE (VOLTS)  
R
BE  
Figure 5. Collector Cutoff Region  
Figure 6. Capacitance  
http://onsemi.com  
3
MJE13005  
SWITCHING TIMES NOTE  
I
CPK  
V
clamp  
In resistive switching circuits, rise, fall, and storage times  
have been defined and apply to both current and voltage  
waveforms since they are in phase. However, for inductive  
loads which are common to SWITCHMODE power  
supplies and hammer drivers, current and voltage  
waveforms are not in phase. Therefore, separate  
measurements must be made on each waveform to  
determine the total switching time. For this reason, the  
following new terms have been defined.  
90% V  
90% I  
clamp  
C
I
t
sv  
t
rv  
t
fi  
t
ti  
C
t
c
V
I
10% V  
clamp  
CE  
10%  
I
2% I  
C
90% I  
CPK  
B
B1  
t
sv  
t
rv  
= Voltage Storage Time, 90% I to 10% V  
B1 clamp  
= Voltage Rise Time, 10−90% V  
clamp  
TIME  
t = Current Fall Time, 90−10% I  
fi  
C
Figure 7. Inductive Switching Measurements  
Table 1. Typical Inductive Switching Performance  
t = Current Tail, 10−2% I  
ti  
C
t = Crossover Time, 10% V  
to 10% I  
C
c
clamp  
An enlarged portion of the inductive switching  
waveforms is shown in Figure 7 to aid in the visual identity  
of these terms.  
For the designer, there is minimal switching loss during  
storage time and the predominant switching power losses  
occur during the crossover interval and can be obtained  
using the standard equation from AN−222:  
I
T
t
sv  
t
rv  
t
fi  
t
ti  
t
c
C
C
AMP  
_C  
ns  
ns  
ns  
ns  
ns  
2
25  
600  
900  
70  
110  
100  
240  
80  
130  
180  
320  
100  
3
4
25  
100  
650  
950  
60  
100  
140  
330  
60  
100  
200  
350  
PSWT = 1/2 VCCIC(tc)f  
25  
100  
550  
850  
70  
110  
160  
350  
100  
160  
220  
390  
In general, t + t ] t . However, at lower test currents  
rv  
fi  
c
this relationship may not be valid.  
NOTE: All Data recorded in the inductive Switching Circuit In Table 2.  
As is common with most switching transistors, resistive  
switching is specified at 25°C and has become a benchmark  
for designers. However, for designers of high frequency  
converter circuits, the user oriented specifications which  
make this a “SWITCHMODE” transistor are the inductive  
switching speeds (t and t ) which are guaranteed at 100_C.  
c
sv  
RESISTIVE SWITCHING PERFORMANCE  
1
10  
V
I /I = 5  
= 125 V  
V
I /I = 5  
= 125 V  
CC  
CC  
t
s
0.5  
5
C B  
C B  
T = 25°C  
J
T = 25°C  
J
t
r
0.2  
0.1  
2
1
0.5  
0.05  
t @ V  
d
= 5 V  
BE(off)  
0.3  
0.2  
t
f
0.02  
0.01  
0.1  
0.04  
0.04  
0.1  
0.2  
0.4  
1
2
4
0.1  
0.2  
0.5  
1
2
4
I , COLLECTOR CURRENT (AMP)  
C
I , COLLECTOR CURRENT (AMP)  
C
Figure 8. Turn−On Time  
Figure 9. Turn−Off Time  
http://onsemi.com  
4
 
MJE13005  
Table 2. Test Conditions for Dynamic Performance  
RESISTIVE  
SWITCHING  
REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING  
+ꢂ5 V  
V
CC  
33  
1N4933  
+125 V  
R
MJE210  
L
MR826*  
0.001 mF  
1N4933  
33  
C
5 V  
TUT  
V
clamp  
I
C
P
2N222  
2
W
R
SCOPE  
R
B
B
1 k  
DUTY CYCLE 10%  
t , t 10 ns  
68  
*SELECTED FOR 1 kV  
r
f
1 k  
+ꢂ5 V  
5.1 k  
51  
I
B
D1  
V
CE  
1 k  
T.U.T.  
1N493  
−ꢂ4.0  
V
2N2905  
3
270  
MJE200  
0.02 mF  
47  
100  
NOTE  
1/2 W  
PW and V Adjusted for Desired I  
CC  
C
−V  
BE(off)  
R
B
Adjusted for Desired I  
B1  
V
= 125 V  
CC  
Coil Data:  
Ferroxcube Core #6656  
Full Bobbin (~16 Turns) #16  
GAP for 200 mH/20 A  
= 200 mH  
V
V
= 20 V  
CC  
R = 62 W  
C
D1 = 1N5820 or Equiv.  
= 300 Vdc  
L
clamp  
coil  
R = 22 W  
B
OUTPUT WAVEFORMS  
+10 V  
0
25 ms  
t CLAMPED  
f
I
C
t UNCLAMPED t  
t ADJUSTED TO  
1
OBTAIN I  
f
2
I
C
C(pk)  
Test Equipment  
Scope−Tektronics  
475 or Equivalent  
L
(I  
t
coil C )  
pk  
t ≈  
1
t
1
t
f
−8 V  
t , t < 10 ns  
V
CC  
V
CE  
L
(I  
coil C )  
pk  
r
f
V
or  
CE  
t ≈  
2
Duty Cycle = 1.0%  
and R adjusted  
V
V
clamp  
clamp  
R
B
t
C
t
2
TIME  
for desired I and I  
B
C
1
0.7  
0.5  
D = 0.5  
0.3  
0.2  
0.2  
0.1  
0.1  
P
(pk)  
Z
= r(t) R  
q
JC  
q
JC(t)  
0.05  
0.02  
0.07  
0.05  
R
= 1.67°C/W MAX  
q
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
0.03  
0.02  
1
t
1
2
0.01  
T
− T = P  
C
Z
q
(pk) JC(t)  
J(pk)  
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.05  
0.01  
1 k  
0.01  
0.02  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
200  
500  
t, TIME (ms)  
Figure 10. Typical Thermal Response [ZqJC(t)]  
http://onsemi.com  
5
 
MJE13005  
SAFE OPERATING AREA INFORMATION  
The Safe Operating Area Figures 11 and 12 are specified ratings for these devices under the test conditions shown.  
10  
5
4
3
T
100°C  
= 2.0 A  
C
I
B1  
500 ms  
2
1
5 ms  
dc  
0.5  
2
1
0
V
= 9 V  
1 ms  
BE(off)  
0.2  
0.1  
0.05  
MJE13005  
300  
5 V  
0.02  
0.01  
3 V  
1.5 V  
MJE13005  
5
7
10  
V
20 30  
50 70 100  
200 300 500  
400  
0
100  
200  
400  
500  
600  
700  
800  
, COLLECTOR−EMITTER VOLTAGE (VOLTS)  
V
, COLLECTOR−EMITTER CLAMP VOLTAGE (VOLTS)  
CE  
CE  
Figure 11. Forward Bias Safe Operating Area  
Figure 12. Reverse Bias Switching Safe Operating Area  
FORWARD BIAS  
REVERSE BIAS  
There are two limitations on the power handling ability of  
a transistor: average junction temperature and second  
For inductive loads, high voltage and high current must be  
sustained simultaneously during turn−off, in most cases,  
with the base to emitter junction reverse biased. Under these  
conditions the collector voltage must be held to a safe level  
at or below a specific value of collector current. This can be  
accomplished by several means such as active clamping, RC  
snubbing, load line shaping, etc. The safe level for these  
devices is specified as Reverse Bias Safe Operating Area  
and represents the voltage−current conditions during  
reverse biased turn−off. This rating is verified under  
clamped conditions so that the device is never subjected to  
an avalanche mode. Figure 12 gives the complete RBSOA  
characteristics.  
breakdown. Safe operating area curves indicate I − V  
C
CE  
limits of the transistor that must be observed for reliable  
operation; i.e., the transistor must not be subjected to greater  
dissipation than the curves indicate.  
The data of Figure 11 is based on T = 25_C; T  
is  
C
J(pk)  
variable depending on power level. Second breakdown  
pulse limits are valid for duty cycles to 10% but must be  
derated when T 25_C. Second breakdown limitations do  
C
not derate the same as thermal limitations. Allowable  
current at the voltages shown on Figure 11 may be found at  
any case temperature by using the appropriate curve on  
Figure 13.  
T
may be calculated from the data in Figure 10. At  
J(pk)  
high case temperatures, thermal limitations will reduce the  
power that can be handled to values less than the limitations  
imposed by second breakdown.  
1
SECOND BREAKDOWN  
DERATING  
0.8  
0.6  
THERMAL  
DERATING  
0.4  
0.2  
0
20  
40  
60  
80  
100  
120  
140  
160  
T , CASE TEMPERATURE (°C)  
C
Figure 13. Forward Bias Power Derating  
http://onsemi.com  
6
 
MJE13005  
PACKAGE DIMENSIONS  
TO−220AB  
CASE 221A−09  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
−T−  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
−−−  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
−−−  
A
K
Q
Z
A
B
C
D
F
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
−−−  
1
2
3
U
H
G
H
J
K
L
L
R
J
N
Q
R
S
T
V
G
D
U
V
Z
N
−−− 0.080  
2.04  
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MJE13005/D  

相关型号:

MJE13005G-A-T2Q-T

NPN SILICON POWER TRANSISTORS
UTC

MJE13005G-A-TA3-T

NPN SILICON POWER TRANSISTORS
UTC

MJE13005G-B-T2Q-T

Power Bipolar Transistor
UTC

MJE13005G-B-TF3-T

NPN SILICON POWER TRANSISTORS
UTC

MJE13005G-B-TQ3-T

NPN SILICON POWER TRANSISTORS
UTC

MJE13005G-C-T2Q-T

Power Bipolar Transistor
UTC

MJE13005G-C-TM3-T

NPN SILICON POWER TRANSISTORS
UTC

MJE13005G-C-TQ3-R

NPN SILICON POWER TRANSISTORS
UTC

MJE13005G-D-T60-K

NPN SILICON POWER TRANSISTORS
UTC

MJE13005G-D-TN3-R

NPN SILICON POWER TRANSISTORS
UTC

MJE13005G-E-T6S-K

NPN SILICON POWER TRANSISTORS
UTC

MJE13005G-E-TN3-R

暂无描述
UTC