MMBFJ309 [ONSEMI]

JFET VHF/UHF Amplifier Transistor; JFET VHF / UHF放大器晶体管
MMBFJ309
型号: MMBFJ309
厂家: ONSEMI    ONSEMI
描述:

JFET VHF/UHF Amplifier Transistor
JFET VHF / UHF放大器晶体管

晶体 放大器 小信号场效应晶体管 射频小信号场效应晶体管 光电二极管
文件: 总8页 (文件大小:88K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
JFET - VHF/UHF Amplifier  
Transistor  
N–Channel  
MMBFJ309LT1  
MMBFJ310LT1  
3
MAXIMUM RATINGS  
1
2
Rating  
Drain–Source Voltage  
Symbol  
Value  
25  
Unit  
Vdc  
V
V
DS  
CASE 318–08, STYLE 10  
SOT–23 (TO–236AB)  
Gate–Source Voltage  
25  
Vdc  
GS  
Gate Current  
I
10  
mAdc  
G
2 SOURCE  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
3
(1)  
Total Device Dissipation FR–5 Board  
P
225  
mW  
D
GATE  
T
= 25°C  
A
Derate above 25°C  
1.8  
556  
mW/°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
1 DRAIN  
qJA  
T , T  
–55 to +150  
J
stg  
MMBFJ309LT1 = 6U; MMBFJ310LT1 = 6T  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Gate–Source Breakdown Voltage (I = –1.0 µAdc, V  
= 0)  
V
(BR)GSS  
–25  
Vdc  
G
DS  
Gate Reverse Current (V  
Gate Reverse Current (V  
= –15 Vdc)  
= –15 Vdc, T = 125°C)  
I
–1.0  
–1.0  
nAdc  
µAdc  
GS  
GS  
GSS  
A
Gate Source Cutoff Voltage  
(V = 10 Vdc, I = 1.0 nAdc)  
MMBFJ309  
MMBFJ310  
V
–1.0  
–2.0  
–4.0  
–6.5  
Vdc  
GS(off)  
DS  
D
ON CHARACTERISTICS  
Zero–Gate–Voltage Drain Current  
MMBFJ309  
MMBFJ310  
I
12  
24  
30  
60  
mAdc  
Vdc  
DSS  
(V  
DS  
= 10 Vdc, V  
= 0)  
GS  
Gate–Source Forward Voltage (I = 1.0 mAdc, V  
G
= 0)  
V
1.0  
DS  
GS(f)  
SMALL–SIGNAL CHARACTERISTICS  
Forward Transfer Admittance (V  
= 10 Vdc, I = 10 mAdc, f = 1.0 kHz)  
|Y  
|
8.0  
18  
250  
5.0  
2.5  
mmhos  
µmhos  
pF  
DS  
D
fs  
Output Admittance (V  
= 10 Vdc, I = 10 mAdc, f = 1.0 kHz)  
|y  
|
DS  
D
os  
Input Capacitance (V  
= –10 Vdc, V  
= 0 Vdc, f = 1.0 MHz)  
C
GS  
DS  
= –10 Vdc, V  
iss  
rss  
Reverse Transfer Capacitance (V  
GS  
= 0 Vdc, f = 1.0 MHz)  
C
pF  
DS  
Equivalent Short–Circuit Input Noise Voltage  
(V = 10 Vdc, I = 10 mAdc, f = 100 Hz)  
e
10  
Ǹ
n
nVń Hz  
DS  
D
1. FR–5 = 1.0 0.75 0.062 in.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
November, 2001 – Rev. 2  
MMBFJ309LT1/D  
MMBFJ309LT1 MMBFJ310LT1  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
V
= 10 V  
T = -ā55°C  
A
DS  
50  
40  
30  
20  
10  
+ā25°C  
I
DSS  
+ā25°C  
+150°C  
+150°C  
+ā25°C  
-ā55°C  
-1.0  
0
-5.0  
-4.0  
-3.0  
-2.0  
I
D
- V , GATE-SOURCE VOLTAGE (VOLTS)  
GS  
I - V , GATE-SOURCE CUTOFF VOLTAGE (VOLTS)  
DSS GS  
Figure 1. Drain Current and Transfer  
Characteristics versus Gate–Source Voltage  
100 k  
10 k  
10  
120  
96  
72  
48  
24  
0
1.0 k  
100  
R
DS  
Y
fs  
Y
fs  
7.0  
C
gs  
4.0  
V
V
= -ā2.3 V =  
= -ā5.7 V =  
10  
1.0 k  
100  
GS(off)  
GS(off)  
Y
os  
C
gd  
1.0  
0
1.0  
0.01  
0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100  
10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0  
0
I , DRAIN CURRENT (mA)  
D
V , GATE SOURCE VOLTAGE (VOLTS)  
GS  
Figure 2. Common–Source Output  
Admittance and Forward Transconductance  
versus Drain Current  
Figure 3. On Resistance and Junction  
Capacitance versus Gate–Source Voltage  
http://onsemi.com  
2
MMBFJ309LT1 MMBFJ310LT1  
|S |, |S  
21 11  
|
|S |, |S |  
12 22  
0.85 0.45  
0.79 0.39  
0.73 0.33  
0.67 0.27  
0.61 0.21  
0.55 0.15  
0.060 1.00  
0.048 0.98  
0.036 0.96  
0.024 0.94  
0.012 0.92  
0.90  
30  
24  
18  
12  
6.0  
0
3.0  
2.4  
1.8  
1.2  
0.6  
S
22  
V
= 10 V  
= 10 mA  
= 25°C  
DS  
I
D
S
21  
T
A
Y
11  
V
= 10 V  
= 10 mA  
= 25°C  
DS  
I
D
T
A
Y
Y
21  
S
11  
22  
S
12  
Y
12  
500 700 1000  
f, FREQUENCY (MHz)  
100  
200  
300  
500 700 1000  
100  
200  
300  
f, FREQUENCY (MHz)  
Figure 4. Common–Gate Y Parameter  
Magnitude versus Frequency  
Figure 5. Common–Gate S Parameter  
Magnitude versus Frequency  
θ
, θ  
21 11  
θ
, θ  
12 22  
θ
, θ  
11 12  
θ
, θ  
21 22  
180° 50°  
170° 40°  
160° 30°  
150° 20°  
140° 10°  
-ā20° 87°  
-ā20° 120°  
-ā40° 100°  
-ā60° 80°  
-ā80° 60°  
-ā100° 40°  
-ā120° 20°  
0
θ
11  
θ
22  
-ā20°  
θ
21  
-ā40° 86°  
-ā60°  
θ
-ā20°  
-ā40°  
-ā60°  
-ā80°  
-ā100°  
22  
θ
21  
-ā80° 85°  
-ā100°  
-ā120° 84°  
-ā140°  
θ
21  
θ
12  
θ
θ
12  
11  
V
I
= 10 V  
V
I
T
A
= 10 V  
= 10 mA  
= 25°C  
DS  
= 10 mA  
-ā160° 83°  
-ā180°  
DS  
D
θ
11  
D
T
= 25°C  
A
130°  
0°  
100  
-ā200° 82°  
200  
300  
500 700 1000  
100  
200  
300  
500 700 1000  
f, FREQUENCY (MHz)  
f, FREQUENCY (MHz)  
Figure 6. Common–Gate Y Parameter  
Phase–Angle versus Frequency  
Figure 7. S Parameter Phase–Angle  
versus Frequency  
http://onsemi.com  
3
MMBFJ309LT1 MMBFJ310LT1  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
SOLDERING PRECAUTIONS  
The power dissipation of the SOT–23 is a function of the  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipa-  
tion. Power dissipation for a surface mount device is deter-  
The melting temperature of solder is higher than the  
rated temperature of the device. When the entire device is  
heated to a high temperature, failure to complete soldering  
within a short time could result in device failure. There-  
fore, the following items should always be observed in  
order to minimize the thermal stress to which the devices  
are subjected.  
mined byT  
of the die, R  
, the maximum rated junction temperature  
, the thermal resistance from the device  
J(max)  
θJA  
junction to ambient, and the operating temperature, T .  
A
Using the values provided on the data sheet for the SOT–23  
package, P can be calculated as follows:  
Always preheat the device.  
D
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
into the equation for an ambient temperature T of 25°C,  
A
one can calculate the power dissipation of the device which  
in this case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed  
circuit board to achieve a power dissipation of 225 milli-  
watts. There are other alternatives to achieving higher  
power dissipation from the SOT–23 package. Another  
alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause exces-  
sive thermal shock and stress which can result in damage  
to the device.  
http://onsemi.com  
4
MMBFJ309LT1 MMBFJ310LT1  
PACKAGE DIMENSIONS  
SOT–23 (TO–236AB)  
CASE 318–08  
ISSUE AF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
A
L
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
C
B
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
1
2
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
V
G
0.0005 0.0040 0.013  
0.0034 0.0070 0.085  
K
L
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
0.35  
0.89  
2.10  
0.45  
S
V
H
J
D
K
STYLE 10:  
PIN 1. DRAIN  
2. SOURCE  
3. GATE  
http://onsemi.com  
5
MMBFJ309LT1 MMBFJ310LT1  
Notes  
http://onsemi.com  
6
MMBFJ309LT1 MMBFJ310LT1  
Notes  
http://onsemi.com  
7
MMBFJ309LT1 MMBFJ310LT1  
SENSEFET is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
MMBFJ309LT1/D  

相关型号:

MMBFJ309-HIGH

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-236AA
TI

MMBFJ309D87Z

RF Small Signal Field-Effect Transistor, 1-Element, Ultra High Frequency Band, Silicon, N-Channel, Junction FET, SOT-23, 3 PIN
FAIRCHILD

MMBFJ309L

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-236AB, CASE 318-07, 3 PIN
MOTOROLA

MMBFJ309L99Z

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, FET, TO-236AB
TI

MMBFJ309LT1

JFET VHF/UHF Amplifier Transistor
MOTOROLA

MMBFJ309LT1

JFET VHF/UHF Amplifier Transistor
ONSEMI

MMBFJ309LT1G

JFET - VHF/UHF Amplifier Transistor N-Channel
ONSEMI

MMBFJ309LT1G_09

JFET - VHF/UHF Amplifier Transistor
ONSEMI

MMBFJ309LT1_06

JFET - VHF/UHF Amplifier Transistor N-Channel
ONSEMI

MMBFJ309LT3

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-236AB
MOTOROLA

MMBFJ309S62Z

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, FET, TO-236AB
TI

MMBFJ309_10

N-Channel RF Amplifier
FAIRCHILD