NB3L202K_18 [ONSEMI]

Differential 1:2 HCSL Fanout Buffer;
NB3L202K_18
型号: NB3L202K_18
厂家: ONSEMI    ONSEMI
描述:

Differential 1:2 HCSL Fanout Buffer

文件: 总14页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB3L202K  
2.5 V, 3.3 V Differential 1:2  
HCSL Fanout Buffer  
Description  
The NB3L202K is a differential 1:2 Clock fanout buffer with  
High−speed Current Steering Logic (HCSL) outputs. Inputs can  
directly accept differential LVPECL, LVDS, and HCSL signals.  
Single−ended LVPECL, HCSL, LVCMOS, or LVTTL levels are  
accepted with a proper external Vth reference supply per Figures 4  
and 6. The input signal will be translated to HCSL and provides two  
identical copies operating up to 350 MHz.  
The NB3L202K is optimized for ultra−low phase noise, propagation  
delay variation and low output–to–output skew, and is DB200H  
compliant. As such, system designers can take advantage of the  
NB3L202K’s performance to distribute low skew clocks across the  
backplane or the motherboard making it ideal for Clock and Data  
distribution applications such as PCI Express, FBDIMM, Networking,  
Mobile Computing, Gigabit Ethernet, etc.  
www.onsemi.com  
MARKING  
DIAGRAM  
1
QFN16  
NB3L  
202K  
ALYWG  
G
3x3  
CASE 485FM  
1
NB3L202K = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
Output drive current is set by connecting a 475 W resistor from  
IREF (Pin 10) to GND per Figure 11. Outputs can also interface to  
LVDS receivers when terminated per Figure 12.  
Y
W
G
= Year  
= Work Week  
= Pb−Free Package  
(Note: Microdot may be in either location)  
Features  
Maximum Input Clock Frequency > 350 MHz  
2.5 V 5% / 3.3 V 10% Supply Voltage Operation  
2 HCSL Outputs  
ORDERING INFORMATION  
See detailed ordering and shipping information page 13 of this  
data sheet.  
DB200H Compliant  
PCIe Gen 3, Gen 4 Compliant  
Individual OE Control Pin for Each Output  
100 ps Max Output−to−Output Skew Performance  
1 ns Typical Propagation Delay  
500 ps Typical Rise and Fall Times  
80 fs Maximum Additive RMS Phase Jitter  
−40°C to +85°C Ambient Operating Temperature  
QFN 16−pin Package, 3 mm x 3 mm  
These Devices are Pb−Free and are RoHS Compliant  
Typical Applications  
PCI Express  
FBDIMM  
Mobile Computing  
Networking  
Gigabit Ethernet  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
January, 2018 − Rev. 4  
NB3L202K/D  
NB3L202K  
Figure 1. Simplified Block Diagram  
Figure 2. 16−Pin QFN Pinout  
(Top View)  
www.onsemi.com  
2
NB3L202K  
Table 1. PIN DESCRIPTION  
Pin Number  
Pin Name  
GND  
I/O  
Description  
1
2
Power  
I, DIF  
I, DIF  
Power  
Power  
O, DIF  
O, DIF  
Power  
Power  
I
Ground  
CLK_IN  
CLK_IN#  
VDD  
Differential True input  
Differential Complementary input  
Core power supply  
3
4
5
GND_O  
DIF_1#  
DIF_1  
Ground for outputs  
6
0.7 V Differential Complementary Output  
0.7 V Differential True Output  
7
8
VDD_O  
GND  
Power supply for outputs  
9
Ground  
10  
IREF  
A precision resistor is attached to this pin to set the differential output current.  
Use R  
Use R  
= 475 W, 1% for 100 W trace, with 50 W termination.  
= 412 W, 1% for 85 W trace, with 43 W termination.  
REF  
REF  
11  
12  
OE0#  
OE1#  
I, SE  
I, SE  
LVTTL / LVCMOS active low input for enabling output DIF_0/0#. 0 enables outputs,  
1 disables outputs. Internal pull down.  
LVTTL / LVCMOS active low input for enabling output DIF_1/1#. 0 enables outputs,  
1 disables outputs. Internal pull down.  
13  
14  
15  
16  
EP  
VDD_O  
DIF_0  
Power  
O, DIF  
O, DIF  
Power  
Power supply for outputs  
0.7 V Differential True Output  
0.7 V Differential Complementary Output  
Ground for outputs  
DIF_0#  
GND_O  
Exposed  
Pad  
Thermal  
The Exposed Pad (EP) on the QFN16 package bottom is thermally connected to the die  
for improved heat transfer out of package. The exposed pad must be attached to a  
heat−sinking conduit. The pad is electrically connected to the die, and must be electri-  
cally and thermally connected to GND on the PC board.  
www.onsemi.com  
3
NB3L202K  
Table 2. ATTRIBUTES  
Characteristics  
Value  
> 2000 V  
ESD Protection  
Human Body Model  
RPD − Pull−down Resistor  
Moisture Sensitivity (Note 1)  
Flammability Rating  
Transistor Count  
50 kW  
Level 1  
Oxygen Index: 28 to 34  
UL 94 V−0 @ 0.125 in  
1344  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
Table 3. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
DD  
Core Supply Voltage  
4.6  
V
DD_O  
I/O Supply Voltage  
4.6  
V
V
Input High Voltage (Note 2)  
Input Low Voltage  
4.6  
V
IH  
V
−0.5  
V
IL  
I
Maximum Output Current  
Operating Temperature Range  
Storage Temperature Range  
24  
mA  
°C  
°C  
°C/W  
OUT  
T
−40 to +85  
−65 to +150  
A
T
stg  
q
Thermal Resistance (Junction−to−Ambient) (Note 3)  
0 lfpm  
500 lfpm  
42  
35  
JA  
q
Thermal Resistance (Junction−to−Case) (Note 3)  
Wave Solder  
4
°C/W  
°C  
JC  
T
sol  
265  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
2. Maximum V is not to exceed maximum V  
.
IH  
DD  
3. JEDEC standard multilayer board − 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.  
www.onsemi.com  
4
 
NB3L202K  
Table 4. DC CHARACTERISTICS V = V  
= 3.3 V 10% or 2.5 V 5%, T = −40°C to 85°C  
DD  
DD_O  
A
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
POWER SUPPLY CURRENT  
V
Core Power Supply Voltage  
V
V
= 3.3 V 10%  
2.970  
2.375  
3.3  
2.5  
3.630  
2.625  
V
V
DD  
DD  
= 2.5 V 5%  
DD  
V
DD_O  
Output Power Supply Voltage  
V
= 3.3 V 10%  
= 2.5 V 5%  
2.970  
2.375  
3.3  
2.5  
3.630  
2.625  
DD_O  
V
DD_O  
I
+ I  
DD_O  
Total Power Supply Current (all outputs active @ 350 MHz, R = 412 W,  
REF  
80  
110  
mA  
DD  
R = 43 W)  
L
I
Standby Current, all OE pins de−asserted with inputs @ 350 MHz  
Incremental output current for additional output; One OE Enabled  
50  
15  
65  
65  
23  
88  
mA  
mA  
mA  
stdby  
l
incr  
I
+ l  
Standby Current plus incremental current for one additional differential output;  
One OE Enabled @ 350 MHz  
stdby  
incr  
HCSL OUTPUTS (Notes 4, 5)  
V
Output HIGH Voltage  
Output LOW Voltage  
660  
850  
mV  
mV  
mV  
OH  
V
−150  
OL  
V
OUT  
Output Swing (Single−Ended)  
Output Swing (Differential)  
400  
800  
750  
1500  
DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Note 6) (Figures 4 and 6)  
V
CLK_IN/CLK_IN# Single-ended Input HIGH Voltage  
CLK_IN/CLK_IN# Single-ended Input LOW Voltage  
Input Threshold Reference Voltage Range (Note 7)  
Single-ended Input Voltage (VIH − VIL)  
0.5  
GND  
0.25  
0.5  
V
V
V
V
V
IH  
DD  
V
V
− 0.3  
IL  
th  
IH  
V
V
− 1.0  
DD  
V
ISE  
VDD  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Note 8) (Figures 5 and 7)  
V
Differential Input HIGH Voltage  
Differential Input LOW Voltage  
0.5  
0
V
− 0.85  
DD  
V
V
IHD  
V
V
IHD  
ILD  
0.25  
V
Differential Input Voltage (V  
− V )  
ILD  
0.25  
0.5  
5  
1.3  
V
V
ID  
IHD  
V
Input Common Mode Range (Differential Configuration) (Note 9) (Figure 8)  
Input Leakage Current 0 < V < V (Note 10)  
V
− 0.85  
DD  
IHCMR  
I
IL  
5
mA  
IN  
DD  
LVTTL / LVCMOS INPUTS (OEx#)  
V
Input HIGH Voltage  
Input LOW Voltage  
2.0  
−0.3  
−10  
V
DD  
+ 0.3  
V
V
IH  
V
0.8  
+10  
100  
IL  
I
IL  
Input LOW Current (V = GND)  
mA  
mA  
IN  
I
IH  
Input HIGH Current (V = V  
)
IN  
DD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Test configuration is R = 33.2 W, R = 49.9, C = 2 pF, R = 475 W.  
S
L
L
REF  
5. Measurement taken from Single−Ended waveform unless specified otherwise.  
6. V , V and V parameters must be complied with simultaneously.  
V
IL, th  
IH  
ISE  
7. V is applied to the complementary input when operating in single−ended mode.  
th  
8. V , V  
V
and V  
parameters must be complied with simultaneously.  
IHD  
ILD, ID  
CMR  
9. The common mode voltage is defined as V  
.
IH  
10.Does not include inputs with pulldown resistors.  
www.onsemi.com  
5
 
NB3L202K  
Table 5. AC TIMING CHARACTERISTICS V = V  
= 3.3 V 10% or 2.5 V 5%, T = −40°C to 85°C (Note 15)  
DD  
DD_O  
A
Symbol  
Characteristics  
Min  
350  
175  
0.5  
Typ  
Max  
Unit  
MHz  
ps  
F
max  
Maximum Input Frequency  
T /T  
rise fall  
Rise Time / Fall Time (Notes 13, 17 and 33) (Figure 13)  
Output Slew Rate (Notes 13 and 17)  
500  
700  
2.0  
Output Slew Rate  
DT /DT  
V/ns  
ps  
Rise/Fall Time Variation (Notes 17 and 26)  
125  
20%  
850  
+150  
rise  
fall  
Slew Rate Matching (Notes 18, 27 and 28)  
V
high  
Voltage High (Notes 17, and 20) (Figure 14)  
Voltage Low (Notes 17, and 21) (Figure 14)  
(Note 29 and 32)  
660  
−150  
0.35  
250  
700  
0
mV  
mV  
V
low  
Input Slew Rate  
absolute  
V/ns  
mV  
V
Absolute Crossing Point Voltages (Notes 12, 17 and 24)  
Relative Crossing Point Voltages can be calculated (Notes 16, 17  
and 24) (Figure 16)  
550  
cross  
Total DV  
Total Variation of Vcross Over All Edges (Notes 17 and 25)  
(Note 18) (Figure 15)  
140  
55  
mV  
%
cross  
Duty Cycle  
45  
V
Maximum Voltage (Overshoot) (Notes 17 and 22) (Figure 14)  
Maximum Voltage (Undershoot) (Notes 17 and 23) (Figure 14)  
Ringback Voltage (Note 17) (Figure 14)  
V
+ 0.3  
V
ovs  
high  
V
uds  
V
− 0.3  
V
low  
V
0.2  
4
N/A  
V
rb  
T
oe_lat  
OE Latency (Note 11)  
6
12  
1.4  
20  
80  
Cycles  
ns  
t
pd  
Input−to−Output Delay CLK_IN, DIF_[1:0] (Note 31)  
0.6  
0
1.0  
5.0  
46  
t
Output−to−Output Skew across 2 outputs DIF_[1:0] (Notes 30 and 31)  
ps  
SKEW  
t
Additive RMS Phase Jitter f = 156.25 MHz, 12 kHz − 20 MHz Inte-  
carrier  
fs  
f
JITTER  
grated Range  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product per-  
formance may not be indicated by the Electrical Characteristics if operated under different conditions.  
11. Time from deassertion until outputs are >200 mV.  
12.Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLK#.  
13.Measured from V = 0.175 V to V = 0.525 V. Only valid for Rising Clock and Falling Clock#.  
OL  
OH  
14.This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing  
15.Test configuration is R = 33.2 W, R = 49.9, C = 2 pF, R = 475 W.  
S
P
L
REF  
16.Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min = 0.250 + 0.5 (V  
− 0.700). Vcross(rel) Max = 0.550 − 0.5  
high avg  
(0.700 – V  
), (see Figure 16 for further clarification).  
high avg  
17.Measurement taken from Single Ended waveform.  
18.Measurement taken from differential waveform.  
19.Unless otherwise noted, all specifications in this table apply to all frequencies.  
20.V  
21.V  
is defined as the statistical average High value as obtained by using the Oscilloscope V  
Math function.  
high  
high  
is defined as the statistical average Low value as obtained by using the Oscilloscope V Math function.  
low  
low  
22.Overshoot is defined as the absolute value of the maximum voltage.  
23.Undershoot is defined as the absolute value of the minimum voltage.  
24.The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
25.DVcross is defined as the total variation of all crossing voltages of Rising CLOCK and Falling CLOCK#. This is the maximum allowed vari-  
ance in Vcross for any particular system.  
26.Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.  
27.Matching applies to rising edge rate for clock and falling edge rate for Clock#. It is measured using a 75 mV window centered on the average  
crosspoint where clock rising meets Clock# falling. The median crosspoint is used to calculate the voltage threshold the oscilloscope is to  
use for the edge rate calculations.  
28.Slew Rate matching is derived using the following, 2 * (T  
– T ) / (T  
+ T ).  
rise fall  
rise  
fall  
29.Input slew rate is based on single ended measurement. This is the minimum input slew rate at which the NB3L202K devices are guaranteed  
to meet all performance specifications.  
30.Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.  
31.Measured from differential cross−point to differential cross−point with scope averaging on to find mean value.  
32.The differential input clock is expected to be sourced from a high performance clock oscillator.  
33.Measured at 3.3 V 10% with typical HCSL input levels.  
www.onsemi.com  
6
 
NB3L202K  
Figure 3. Typical Phase Noise Plot at fcarrier = 156.25 MHz at an Operating Voltage of 3.3 V, Room Temperature  
The above phase noise data was captured using Agilent  
E5052A/B. The data displays the input phase noise and  
output phase noise used to calculate the additive phase jitter  
at a specified integration range. The additive RMS phase  
jitter contributed by the device (integrated between 12 kHz  
and 20 MHz) is 45.7 fs.  
To obtain the most accurate additive phase noise  
measurement, it is vital that the source phase noise be  
notably lower than that of the DUT. If the phase noise of the  
source is similar or greater than the device under test output,  
the source noise will dominate the additive phase jitter  
calculation and lead to an artificially low result for the  
additive phase noise measurement within the integration  
range.  
The additive RMS phase jitter performance of the fanout  
buffer is highly dependent on the phase noise of the input  
source.  
2
2
Additive RMS phase jitter + ǸRMS phase jitter of output * RMS phase jitter of input  
2
2
45.7 fs + Ǹ73.7 fs * 57.8 fs  
www.onsemi.com  
7
NB3L202K  
Table 6. ELECTRICAL CHARACTERISTICS − PHASE JITTER PARAMETERS  
(V = V  
= 3.3 V 10% or 2.5 V 5%, T = −40°C to 85°C)  
A
DD  
DD_O  
Symbol  
Parameter  
Conditions (Notes 34 and 39)  
Min  
Typ  
Max  
Unit  
t
PCIe Gen 1 (Notes 35 and 36)  
10  
ps (p−p)  
jphPCIeG1  
PCIe Gen 2 Lo Band  
10 kHz < f < 1.5 MHz (Notes 35 and 38)  
ps  
(rms)  
0.3  
0.7  
t
jphPCIeG2  
PCIe Gen 2 High Band  
1.5 MHz < f < Nyquist (50 MHz)  
(Notes 35 and 38)  
ps  
(rms)  
PCIe Gen 3  
(PLL BW= 2−4 MHz or 2−5 MHz, CDR = 10 MHz)  
(Notes 35 and 38)  
t
t
0.07  
0.07  
0.4  
0.4  
0.3  
ps  
ps  
jPCIeG3  
Additive Phase Jitter  
PCIe Gen 4  
(PLL BW= 2−4 MHz or 2−5 MHz, CDR = 10 MHz)  
(Notes 35 and 38)  
jPCIeG4  
QPI & SMI  
(100.00 MHz or 133.33 MHz, 4.8 Gb/s,  
6.4 Gb/s 12UI) (Notes 37 and 38)  
ps  
(rms)  
QPI & SMI  
ps  
(rms)  
t
jphQPI_SMI  
0.1  
0.1  
(100.00 MHz, 8.0 Gb/s, 12UI) (Notes 37 and 38)  
QPI & SMI  
ps  
(rms)  
(100.00 MHz, 9.6 Gb/s, 12UI) (Notes 37 and 38)  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
34.Applies to all outputs.  
35.See http://www.pcisig.com for complete specs  
36.Sample size of at least 100K cycles. This figures extrapolates to 108 ps pk−pk @ 1M cycles for a BER of 1−12.  
37.Calculated from Intel−supplied Clock Jitter Tool v 1.6.3.  
38.For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter) = (total jitter) - (input jitter)  
2
2
2
39.Guaranteed by design and characterization, not tested in production  
www.onsemi.com  
8
 
NB3L202K  
CLK_IN  
V
IH  
V
CLK_IN  
th  
IL  
V
CLK_IN#  
CLK_IN#  
V
th  
Figure 4. Differential Input Driven  
Single−Ended  
Figure 5. Differential Inputs  
Driven Differentially  
V
DD  
thmax  
V
V
IHmax  
V
ILmax  
V
ID  
= |V  
− V  
IHD(IN) ILD(IN)|  
V
IH  
V
th  
V
IL  
CLK_IN#  
CLK_IN  
V
th  
V
IHD  
V
ILD  
V
V
IHmin  
V
thmin  
ILmin  
GND  
Figure 6. Vth Diagram  
Figure 7. Differential Inputs Driven Differentially  
V
DD  
V
V
IHDmax  
ILDmax  
IHDtyp  
V
IHCMR MAX  
CLK_IN#  
V
INPP  
= V (CLK_IN) −  
IH  
V (CLK_IN)  
IL  
CLK_IN#  
CLK_IN  
CLK_IN  
DIF_n#  
V
IHCMR  
V
V
ID  
= V  
− V  
IHD ILD  
V
V
= V (DIF_n) −  
OH  
(DIF_n)  
V
ILDtyp  
OUTPP  
OL  
DIF_n  
V
V
IHDmin  
V
IHCMR MIN  
t
PHL  
ILDmin  
t
PLH  
GND  
Figure 8. VIHCMR Diagram  
Figure 9. AC Reference Measurement  
www.onsemi.com  
9
NB3L202K  
Z = 50 W  
R
R
0
S1  
DIF_n  
Receiver  
HCSL  
Driver  
Z = 50 W  
0
S2  
DIF_n#  
REF  
R
L1  
50 W  
R
50 W  
C
2 pF  
C
2 pF  
L2  
L1  
L2  
I
R
REF  
A. Connect 475 W resistor R  
from I  
pin to GND.  
REF  
REF  
B. R , R : 33 W for Test and Evaluation. Select to Minimizing Ringing.  
S1  
S2  
C. C , C : Receiver Input Simulation (for test only not added to application circuit.  
L1  
L2  
D. R , R Termination and Load Resistors Located at Received Inputs.  
L1  
L2  
Figure 10. Typical Termination Configuration for Output Driver and Device Evaluation  
3.3 V  
I
REF  
I
OUT  
C1  
V
Mirror  
M
Iref  
M
Mir  
2R  
R
M
OUTB  
M
OUT  
M
Dum  
OUT  
OUT  
~1.1 V  
Out_predrv  
R
REF  
Figure 11. HCSL Simplified Output Structure  
www.onsemi.com  
10  
NB3L202K  
NB3L202K  
Z = 50 W  
Qx  
Qx  
o
LVDS  
Device  
HCSL  
Device  
100 W  
Z = 50 W  
100 W  
o
R = 150 W  
L
R = 150 W  
L
IREF  
R
REF  
GND  
Figure 12. HCSL Interface Termination to LVDS  
MEASUREMENT POINTS FOR DIFFERENTIAL  
TRise (Clock)  
V
OH  
= 0.525 V  
V
Cross  
V
OL  
= 0.175 V  
TFall (Clock#)  
Figure 13. Single−Ended Measurement Points for Trise, Tfall  
V
ovs  
V
high  
V
rb  
V
rb  
V
low  
V
uds  
Figure 14. Single−Ended Measurement Points for Vovs, Vuds, Vrb  
www.onsemi.com  
11  
NB3L202K  
TPeriod  
High Duty Cycle%  
Low Duty Cycle%  
Skew measurement point  
0.000 V  
Figure 15. Differential (CLOCK – CLOCK#) Measurement Points (Tperiod, Duty Cycle)  
V
Max  
cross(rel)  
550  
500  
450  
400  
350  
300  
250  
200  
ForVhigh> 700mV  
Use Equ. 2  
ForVhigh < 700mV  
Use Equ. 1  
Crossing Point (mV)  
V
Min  
cross(rel)  
625  
650  
675  
700  
725  
750  
775  
800  
825  
850  
V
high  
Average (mV)  
Equ 1: V  
Equ 2: V  
Max = 0.550 − 0.5(0.7 − V  
)
cross(rel)  
cross(rel)  
high avg  
− 0.7)  
Min = 0.250 + 0.5(V  
high avg  
Figure 16. Vcross Range Clarification (Note 40)  
40.The picture above illustrates the effect of V above and below 700 mV on the V range. The purpose of this is to prevent a 250 mV  
high  
cross  
with a 660 mV V  
V
cross  
with an 850 mV V  
. In addition, this prevents the case of a 550 mV V  
. The actual specification for V  
high cross  
high  
cross  
is dependent upon the measured amplitude of V  
.
high  
www.onsemi.com  
12  
 
NB3L202K  
Signal and Feature Operation  
Table 7. OE# FUNCTIONALITY (Notes 41, 42 and 43)  
CLK_IN / CLK_IN#  
Running  
OE# (Pin)  
DIF  
DIF #  
Low  
Notes  
1
0
x
Low  
Running  
x
41  
Running  
Running  
x
Not Running  
41.The outputs are tri−stated, but the termination networks pull them low  
42.OE# pins are asynchronous asserted−low signals.  
43.Each OE# pin controls two pair of DIF outputs.  
OE# Assertion (Transition from ‘1’ to ‘0’)  
OE# De−Assertion (Transition from ‘0’ to ‘1’)  
The maximum latency from the de−assertion to tristated  
(low due to termination pull down) outputs is 12 DIF clock  
periods.  
All differential outputs that were tri−stated (low due to  
termination pull down) will resume normal operation in a  
glitch free manner. The latency from the assertion to active  
outputs is 4 − 12 DIF clock periods.  
Note: Input clock must remain running for a minimum of  
12 clock cycles.  
Table 8. NB3L202K RESISTIVE LUMPED TEST LOADS FOR DIFFERENTIAL CLOCKS  
Board Target Trace/Term Z  
Reference R, Iref = VDD/(3*R  
)
Output Current  
V
OH  
@ Z  
Rs  
Rp  
REF  
100 W Differential  
R
= 475 W 1%,  
I
= 6 * I  
0.7 V @ 50  
33 W  
50 W  
REF  
OH  
REF  
50 W Single−Ended  
I
= 2.32 mA  
5%  
5%  
REF  
85 W Differential  
R
= 412 W, 1%,  
I
= 6 * I  
0.7V @ 43.2  
27 W  
43 W  
REF  
OH  
REF  
43 W Single−Ended  
I
= 2.67 mA  
5%  
5%  
REF  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB3L202KMNG  
QFN16  
(Pb−Free)  
123 Units / Rail  
NB3L202KMNTXG  
QFN16  
(Pb−Free)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
13  
 
NB3L202K  
PACKAGE DIMENSIONS  
QFN16 3x3, 0.5P  
CASE 485FM  
ISSUE A  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. OUTLINE MEETS JEDEC DIMENSIONS PER  
MO−220, VARIATION VEED−6.  
PIN 1  
LOCATION  
DETAIL A  
E
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
A3  
0.15  
C
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
0.15  
C
TOP VIEW  
0.18  
0.30  
D
3.00 BSC  
D2  
E
E2  
e
K
L
1.25  
3.00 BSC  
1.25  
0.50 BSC  
0.20  
0.30  
1.55  
A1  
DETAIL B  
(A3)  
0.10  
C
C
DETAIL B  
1.55  
A
−−−  
0.50  
0.08  
A1  
SIDE VIEW  
SEATING  
PLANE  
NOTE 4  
RECOMMENDED  
SOLDERING FOOTPRINT*  
C
D2  
3.30  
DETAIL A  
16X  
0.65  
16X  
L
PACKAGE  
OUTLINE  
5
1.55  
8
9
1
4
E2  
16X  
K
1.55 3.30  
1
12  
16  
13  
16X  
0.30  
16X b  
e
0.10  
0.05  
C
C
A B  
e/2  
0.50  
NOTE 3  
PITCH  
BOTTOM VIEW  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB3L202K/D  

相关型号:

NB3L204K

Differential 1:4 HCSL Fanout Buffer
ONSEMI

NB3L204KMNG

Differential 1:4 HCSL Fanout Buffer
ONSEMI

NB3L204KMNTXG

Differential 1:4 HCSL Fanout Buffer
ONSEMI

NB3L204K_17

Differential 1:4 HCSL Fanout Buffer
ONSEMI

NB3L208K

Differential 1:8 HCSL Fanout Buffer
ONSEMI

NB3L208KMNG

Differential 1:8 HCSL Fanout Buffer
ONSEMI

NB3L208KMNTXG

Differential 1:8 HCSL Fanout Buffer
ONSEMI

NB3L208K_17

Differential 1:8 HCSL Fanout Buffer
ONSEMI

NB3L553

2.5 V / 3.3 V / 5.0 V 1:4 Clock Fanout Buffer
ONSEMI

NB3L553DG

2.5 V / 3.3 V / 5.0 V 1:4 Clock Fanout Buffer
ONSEMI

NB3L553DR2G

2.5 V / 3.3 V / 5.0 V 1:4 Clock Fanout Buffer
ONSEMI

NB3L553MNR4G

2.5 V / 3.3 V / 5.0 V 1:4 Clock Fanout Buffer
ONSEMI