NB4N11MDTR2G [ONSEMI]

多电平时钟/数据输入至 CML 接收器/缓冲器/转换器,2.5 Gbps,3.3 V;
NB4N11MDTR2G
型号: NB4N11MDTR2G
厂家: ONSEMI    ONSEMI
描述:

多电平时钟/数据输入至 CML 接收器/缓冲器/转换器,2.5 Gbps,3.3 V

时钟 光电二极管 接口集成电路 锁存器 转换器
文件: 总12页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 V, 2.5 Gb/s Multi Level  
Clock/Data Input to CML  
Receiver/Buffer/Translator  
NB4N11M  
Description  
www.onsemi.com  
The NB4N11M is a differential 1to2 clock/data  
distribution/translation chip with CML output structure, targeted for  
highspeed clock/data applications. The device is functionally  
equivalent to the EP11, LVEP11, SG11 or 7L11M devices. Device  
produces two identical differential output copies of clock or  
data signal operating up to 2.5 GHz or 2.5 Gb/s, respectively. As such,  
NB4N11M is ideal for SONET, GigE, Fiber Channel, Backplane and  
other clock/data distribution applications.  
8
1
TSSOP8  
DT SUFFIX  
CASE 948R  
Inputs accept LVPECL, CML, LVCMOS, LVTTL, or LVDS  
(See Table 5). The CML outputs are 16 mA open collector  
MARKING DIAGRAM*  
(See Figure 18) which requires resistor (R ) load path to V  
L
TT  
8
termination voltage. The open collector CML outputs must be  
terminated to V at power up. Differential outputs produces  
E11M  
TT  
ALYWG  
current–mode logic (CML) compatible levels when receiver loaded  
with 50 W or 25 W loads connected to 1.8 V, 2.5 V or 3.3 V supplies  
(see Figure 19). This simplifies device interface by eliminating a need  
for coupling capacitors.  
The device is offered in a small 8pin TSSOP package.  
Application notes, models, and support documentation are available  
at www.onsemi.com.  
G
1
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
Features  
(Note: Microdot may be in either location)  
Maximum Input Clock Frequency > 2.5 GHz  
Maximum Input Data Rate > 2.5 Gb/s  
Typically 1 ps of RMS Clock Jitter  
*For additional marking information, refer to  
Application Note AND8002/D.  
Typically 10 ps of Data Dependent Jitter @ 2.5 Gb/s, R = 25 W  
Q0  
L
420 ps Typical Propagation Delay  
Q0  
150 ps Typical Rise and Fall Times  
D
D
Operating Range: V = 3.0 V to 3.6 V with V = 0 V and  
CC  
EE  
V
TT  
= 1.8 V to 3.6 V  
Functionally Compatible with Existing 2.5 V / 3.3 V LVEL, LVEP,  
EP, and SG Devices  
These Devices are PbFree, Halogen Free and are RoHS Compliant  
Q1  
Q1  
Figure 1. Functional Block Diagram  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
© Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
May, 2021 Rev. 3  
NB4N11M/D  
NB4N11M  
Q0  
Q0  
1
2
8
7
V
CC  
D
D
6
5
Q1  
Q1  
3
4
V
EE  
Figure 2. Pinout (Top View) and Logic Diagram  
Table 1. Pin Description  
Pin  
Name  
I/O  
Description  
1
Q0  
CML Output  
Noninverted differential output. Typically receiver terminated with 50 W  
resistor to V . Open collector CML outputs must be terminated to V at  
TT  
TT  
powerup.  
2
3
Q0  
Q1  
CML Output  
CML Output  
Inverted differential output. Typically receiver terminated with 50 W resistor  
to V . Open collector CML outputs must be terminated to V at powerup.  
TT  
TT  
Noninverted differential output. Typically receiver terminated with 50 W  
resistor to V . Open collector CML outputs must be terminated to V at  
TT  
TT  
powerup.  
4
Q1  
CML Output  
Inverted differential output. Typically receiver terminated with 50 W resistor  
to V . Open collector CML outputs must be terminated to V at powerup.  
TT  
TT  
5
6
V
Negative supply voltage.  
Inverted differential input.  
EE  
D
LVPECL, CML, HSTL,  
LVCMOS, LVDS, LVTTL Input  
7
8
D
LVPECL, CML, HSTL,  
Noninverted differential input.  
Positive supply voltage.  
LVCMOS, LVDS, LVTTL Input  
V
CC  
www.onsemi.com  
2
NB4N11M  
Table 2. ATTRIBUTES  
Characteristics  
Value  
ESD Protection  
Human Body Model  
Machine Model  
> 1000 V  
> 70 V  
Moisture Sensitivity (Note 1)  
8TSSOP  
Level 3  
Flammability Rating  
Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
Transistor Count  
197  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Positive Power Supply  
Condition 1  
= 0.5 V  
Condition 2  
Rating  
Unit  
V
CC  
V
EE  
V
CC  
4
V
V
V
EE  
Negative Power Supply  
= +0.5 V  
4  
V
I
Positive Input  
Negative Input  
V
EE  
V
CC  
= 0 V  
= 0 V  
V = V +0.4 V  
4
4  
V
V
I
CC  
V = V –0.4 V  
I
EE  
V
O
Output Voltage  
Minimum  
Maximum  
V
+ 600  
+ 400  
mV  
mV  
EE  
CC  
V
T
Operating Temperature Range  
Storage Temperature Range  
40 to +85  
°C  
°C  
A
T
stg  
65 to +150  
q
Thermal Resistance (JunctiontoAmbient)  
(Note 2)  
0 lfpm  
500 lfpm  
TSSOP8  
TSSOP8  
190  
130  
°C/W  
°C/W  
JA  
q
Thermal Resistance (JunctiontoCase)  
1S2P (Note 2)  
TSSOP8  
41 to 44  
265  
°C/W  
°C  
JC  
T
sol  
Wave Solder  
< 3 Sec @ 260°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
2. JEDEC standard multilayer board 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.  
www.onsemi.com  
3
 
NB4N11M  
Table 4. DC CHARACTERISTICS, CLOCK Inputs, CML Outputs V = 3.0 V to 3.6 V, V = 0 V, T = 40°C to +85°C  
CC  
EE  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
I
Power Supply Current (Inputs and Outputs Open)  
25  
35  
mA  
CC  
R = 50 W, V = 3.6 V to 2.5 V  
L
TT  
V
Output HIGH Voltage (Note 3)  
V
60  
V
10  
V
TT  
mV  
mV  
mV  
OH  
TT  
TT  
TT  
TT  
TT  
V
Output LOW Voltage (Note 3)  
V
TT  
1100  
V
800  
V
V
V
V
640  
OL  
TT  
TT  
|V  
|
Differential Output Voltage Magnitude  
640  
780  
1000  
OD  
R = 25 W, V = 3.6 V to 2.5 V $5%  
L
TT  
V
OH  
Output HIGH Voltage (Note 3)  
V
TT  
60  
V
10  
V
TT  
mV  
mV  
mV  
V
Output LOW Voltage (Note 3)  
V
TT  
550  
V
TT  
400  
320  
TT  
OL  
|V  
|
Differential Output Voltage Magnitude  
320  
390  
500  
OD  
R = 50 W, V = 1.8 V $5%  
L
TT  
V
OH  
Output HIGH Voltage (Note 3)  
V
TT  
170  
1100  
570  
V
10  
V
TT  
mV  
mV  
mV  
V
Output LOW Voltage (Note 3)  
V
TT  
V
TT  
800  
640  
TT  
OL  
|V  
|
Differential Output Voltage Magnitude  
780  
1000  
OD  
R = 25 W, V = 1.8 V $5%  
L
TT  
V
OH  
Output HIGH Voltage (Note 3)  
V
TT  
85  
V
10  
V
TT  
mV  
mV  
mV  
V
Output LOW Voltage (Note 3)  
V
TT  
500  
V
TT  
400  
320  
TT  
OL  
|V  
|
Differential Output Voltage Magnitude  
285  
390  
500  
OD  
DIFFERENTIAL INPUT DRIVEN SINGLEENDED (Figures 14 and 16)  
V
Input Threshold Reference Voltage Range (Note 5)  
Singleended Input HIGH Voltage  
V
V
mV  
mV  
mV  
th  
EE  
CC  
V
IH  
V
+ 100  
V
+ 400  
th  
CC  
V
IL  
Singleended Input LOW Voltage  
V
400  
V
100  
EE  
th  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15 and 17)  
V
Differential Input HIGH Voltage  
V
V
V
+ 400  
mV  
mV  
mV  
mV  
pF  
IHD  
EE  
CC  
V
Differential Input LOW Voltage  
V
400  
100  
ILD  
EE  
CC  
V
CMR  
Input Common Mode Range (Differential Configuration)  
V
EE  
V
CC  
|V  
|
Differential Input Voltage Magnitude (|V  
Input Capacitance (Note 7)  
V |) (Note 7)  
100  
V
CC  
V  
EE  
ID  
IHD  
ILD  
C
1.5  
IN  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm.  
3. CML outputs require R receiver termination resistors to V for proper operation. Outputs must be connected through R to V at power  
L
TT  
L
TT  
up. The output parameters vary 1:1 with V  
.
TT  
4. Input parameters vary 1:1 with V  
.
CC  
5. V is applied to the complementary input when operating in singleended mode.  
th  
CMR  
6. V  
(MIN) varies 1:1 with V , V  
max varies 1:1 with V  
.
EE  
CMR  
CC  
7. Parameter guaranteed by design and evaluation but not tested in production.  
www.onsemi.com  
4
 
NB4N11M  
Table 5. AC CHARACTERISTICS V = 3.0 V to 3.6 V, V = 0 V; (Note 8)  
CC  
EE  
40°C  
25°C  
85°C  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Symbol  
Characteristic  
Unit  
V
Output Voltage Amplitude (R = 50 W)  
mV  
OUTPP  
OUTPP  
L
f
in  
f
in  
f
in  
1 GHz  
550  
400  
150  
660  
640  
400  
550  
400  
150  
660  
640  
400  
550  
400  
150  
660  
640  
400  
(See Figure 12)  
1.5 GHz  
2.5GHz  
V
Output Voltage Amplitude (R = 25 W)  
mV  
L
f
in  
f
in  
f
in  
1 GHz  
1.5 GHz  
2.5GHz  
280  
280  
100  
370  
360  
300  
280  
280  
100  
370  
360  
400  
280  
280  
100  
370  
360  
400  
(See Figure 12)  
f
Maximum Operating Data Rate  
1.5  
2.5  
1.5  
2.5  
1.5  
2.5  
Gb/s  
ps  
DATA  
t
t
,
Propagation Delay to Output Differential  
@ 0.5 GHz  
300  
420  
600  
300  
420  
600  
300  
420  
600  
PLH  
PHL  
t
Duty Cycle Skew (Note 9)  
Within Device Skew  
2
5
20  
25  
2
5
20  
25  
2
5
20  
25  
ps  
ps  
SKEW  
Device to Device Skew (Note 13)  
20  
100  
20  
100  
20  
100  
t
RMS Random Clock Jitter R = 50 W and  
L
R = 25 W (Note 11)  
L
JITTER  
1
1
1
3
3
3
1
1
1
3
3
3
1
1
1
3
3
3
f
in  
f
in  
f
in  
= 750 MHz  
= 1.5 GHz  
= 2.5 GHz  
PeaktoPeak Data Dependent Jitter R = 50 W  
L
15  
20  
55  
85  
15  
20  
55  
85  
15  
20  
55  
85  
f
f
= 1.5 Gb/s  
= 2.5 Gb/s  
DATA  
DATA  
(Note 12)  
PeaktoPeak Data Dependent Jitter R = 25 W  
L
5
10  
35  
35  
5
10  
35  
35  
5
10  
35  
35  
f
f
= 1.5 Gb/s  
= 2.5 Gb/s  
DATA  
DATA  
(Note 12)  
V
Input Voltage Swing/Sensitivity  
100  
100  
100  
mV  
ps  
INPP  
(Differential Configuration) (Note 10)  
t
Output Rise/Fall Times @ 0.5 GHz  
(20% 80%)  
Q, Q  
150  
300  
150  
300  
150  
300  
r
t
f
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm.  
8. Measured by forcing V  
(MIN) from a 50% duty cycle clock source. All output loaded with an external R = 50 W and R = 25 W to V  
.
TT  
INPP  
L
L
Outputs must be connected through R to V at power up. Input edge rates 150 ps (20% 80%).  
L
TT  
9. Duty cycle skew is measured between differential outputs using the deviations of the sum of T  
and T  
@ 0.5 GHz.  
pw−  
pw+  
10.V  
(MAX) cannot exceed V V . Input voltage swing is a singleended measurement operating in differential mode.  
INPP  
CC EE  
11. Additive RMS jitter with 50% duty cycle clock signal.  
23  
12.Additive peaktopeak data dependent jitter with input NRZ data signal (PRBS 2 1).  
13.Device to device skew is measured between outputs under identical transition @ 0.5 GHz.  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
R = 50 W  
L
R = 50 W  
L
R = 25 W  
R = 25 W  
L
L
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
INPUT CLOCK FREQUENCY (GHz)  
INPUT CLOCK FREQUENCY (GHz)  
(V V = 3.3 V V = 3.3 V @ 255C V = 100 mV)  
(V V = 3.0 V V = 1.71 V @255C V = 100 mV)  
CC  
EE  
TT  
in  
CC  
EE  
TT  
in  
Figure 3. Output Voltage Amplitude (VOUTPP) versus Input Clock Frequency (fIN) at Ambient Temperature (Typical)  
www.onsemi.com  
5
 
NB4N11M  
NB4N11M  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
85°C  
25°C  
40°C  
85°C  
40°C  
25°C  
0
0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3  
INPUT CLOCK FREQUENCY (GHz)  
0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3  
INPUT CLOCK FREQUENCY (GHz)  
Figure 4. Data Dependent Jitter vs. Frequency  
and Temperature (VCC VEE = 3.3 V; VTT = 3.3 V  
@ 255C; VIN = 100 mV; PRBS 2231; RL = 50 W)  
Figure 5. Data Dependent Jitter vs. Frequency  
and Temperature (VCC VEE = 3.3 V; VTT = 3.3 V  
@ 255C; VIN = 100 mV; PRBS 2231; RL = 25 W)  
600  
550  
500  
450  
400  
350  
300  
600  
550  
500  
450  
400  
350  
t
t
PD  
PD  
300  
V
0.5 V  
VCC * VEE  
V
CC  
+ 0.5 V  
40  
25  
85  
EE  
2
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (V)  
Figure 6. Typical Propagation Delay vs.  
Temperature (VCC VEE = 3.3 V; VTT = 3.3 V  
@ 255C; Vin = 100 mV; RL = 50 W)  
Figure 7. Typical Propagation Delay vs. Input  
Offset Voltage (VCC VEE = 3.3 V; VTT = 3.3 V  
@ 255C; Vin = 100 mV RL = 50 W)  
35  
30  
25  
20  
15  
10  
5
I
CC  
0
40  
25  
85  
TEMPERATURE (°C)  
Figure 8. Supply Current vs. Temperature  
www.onsemi.com  
6
NB4N11M  
DDJ = 5 ps  
DDJ = 3 ps  
TIME (266.8 ps/div)  
TIME (266.8 ps/div)  
Figure 9. Typical Differential Output Waveform at 750 Mb/s  
(RL = 50 W Left Plot, RL = 25 W Right Plot, Vin = 100 mV, System DDJ = 24 ps)  
DDJ = 5 ps  
DDJ = 12 ps  
TIME (133.2 ps/div)  
TIME (133.2 ps/div)  
Figure 10. Typical Differential Output Waveform 1.5 Gb/s  
(RL = 50 W Left Plot, RL = 25 W Right Plot, Vin = 100 mV, System DDJ = 25 ps)  
DDJ = 20 ps  
DDJ = 7 ps  
TIME (80 ps/div)  
TIME (80 ps/div)  
Figure 11. Typical Differential Output Waveform 2.5 Gb/s  
(RL = 50 W Left Plot, RL = 25 W Right Plot, Vin = 100 mV, System DDJ = 24 ps)  
www.onsemi.com  
7
NB4N11M  
D
V
V
= V (D) V (D)  
IH IL  
INPP  
D
Q
= V (Q) V (Q)  
OUTPP  
OH  
OL  
Q
t
PHL  
t
PLH  
Figure 12. AC Reference Measurement  
V
TT  
50 W  
50 W  
Q
Q
D
D
DUT  
Z = 50 W  
Receiver  
Device  
Driver  
Device  
Z = 50 W  
Figure 13. Typical Termination for Output Driver and Device Evaluation  
D
D
D
D
V
th  
V
th  
Figure 14. Differential Input Driven  
Figure 15. Differential Inputs Driven  
Differentially  
SingleEnded  
V
V
CC  
CC  
V
IHCLKmax  
V
V
IHmax  
V
V
CMmax  
thmax  
V
ILCLKmax  
ILmax  
V
= V  
V  
ID  
V
IHD ILD  
D
D
V
V
IH  
th  
IHDtyp  
ILDtyp  
IHDmin  
V
CMR  
V
th  
D
V
V
IL  
V
V
IHmin  
V
ILmin  
V
V
CMmax  
thmin  
GND  
V
ILDmin  
GND  
Figure 16. Vth Diagram  
Figure 17. VCMR Diagram  
www.onsemi.com  
8
NB4N11M  
V
CC  
Input  
ESD  
Input  
ESD  
Q
Q
1.25 kW  
1.25 kW  
1.25 kW  
1.25 kW  
R
R
C
C
IN  
D
D
IN  
Input  
ESD  
Input  
ESD  
Internal  
Current Source  
16 mA  
Current Source  
V
EE  
V
EE  
Input  
Output  
Figure 18. CML Input and Output Structure  
www.onsemi.com  
9
NB4N11M  
V
TTA  
= V  
CCA  
V
CCA  
= 1.8 V 2.5 V or 3.3 V  
V
CC  
= 3.3 V  
50 W  
50 W  
Z = 50 W  
Z = 50 W  
Receiver  
A
NB4N11M  
V
TTB  
= V  
CCB  
V
TTB  
= V  
CCB  
50 W  
50 W  
Z = 50 W  
Z = 50 W  
V
CCB  
= 1.8 V 2.5 V or 3.3 V  
50 W  
50 W  
Receiver  
B
V
EE  
= 0 V  
V
TTC  
= V  
CCC  
V
CCC  
= 1.8 V 2.5 V or 3.3 V  
V
CC  
= 3.3 V  
75 W  
75 W  
Z = 75 W  
Z = 75 W  
Receiver  
C
NB4N11M  
V
TTD  
= V  
CCD  
Z = 100 W  
Z = 100 W  
V
CCD  
= 1.8 V 2.5 V or 3.3 V  
100 W  
100 W  
Receiver  
D
V
EE  
= 0 V  
Figure 19. Typical Examples of the Application Interface  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB4N11MDTR2G  
TSSOP8  
(PbFree)  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
www.onsemi.com  
10  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSSOP 8  
CASE 948R02  
ISSUE A  
DATE 04/07/2000  
SCALE 2:1  
8x K REF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
2X L/2  
8
5
4
0.25 (0.010)  
B
U−  
L
1
M
PIN 1  
IDENT  
5. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
6. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE -W-.  
S
0.15 (0.006) T U  
A
V−  
F
DETAIL E  
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
3.10  
3.10  
MAX  
0.122  
0.122  
0.043  
0.006  
0.028  
A
B
C
D
F
2.90  
2.90  
0.80  
0.05  
0.40  
0.114  
0.114  
C
1.10 0.031  
0.15 0.002  
0.70 0.016  
0.10 (0.004)  
W−  
SEATING  
D
T−  
G
G
K
L
0.65 BSC  
0.026 BSC  
PLANE  
0.25  
0.40 0.010  
0.016  
4.90 BSC  
_
0.193 BSC  
0
DETAIL E  
M
0
6
6
_
_
_
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON00236D  
TSSOP 8  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NB4N11SMNG

PECL TO LVDS TRANSLATOR, COMPLEMENTARY OUTPUT, QCC16, 3 X 3 MM, LEAD FREE, QFN-16
ONSEMI

NB4N11SMNR2G

PECL TO LVDS TRANSLATOR, COMPLEMENTARY OUTPUT, QCC16, 3 X 3 MM, LEAD FREE, QFN-16
ONSEMI

NB4N121K

3.3V Differential In 1:21 Differential Fanout Clock Driver with HCSL level Output
ONSEMI

NB4N121KMN

3.3V Differential In 1:21 Differential Fanout Clock Driver with HCSL level Output
ONSEMI

NB4N121KMNG

3.3V Differential In 1:21 Differential Fanout Clock Driver with HCSL level Output
ONSEMI

NB4N121KMNR2

3.3V Differential In 1:21 Differential Fanout Clock Driver with HCSL level Output
ONSEMI

NB4N121KMNR2G

3.3V Differential In 1:21 Differential Fanout Clock Driver with HCSL level Output
ONSEMI

NB4N316M

3.3 V AnyLevel Receiver to CML Driver/Translator with Input Hysteresis
ONSEMI

NB4N316MDTG

3.3 V AnyLevel Receiver to CML Driver/Translator with Input Hysteresis
ONSEMI

NB4N316MDTR2G

3.3 V AnyLevel Receiver to CML Driver/Translator with Input Hysteresis
ONSEMI

NB4N441

3.3V Serial Input MultiProtocol PLL Clock Synthesizer, Differential LVPECL Output
ONSEMI

NB4N441MNG

3.3V Serial Input MultiProtocol PLL Clock Synthesizer, Differential LVPECL Output
ONSEMI