NB4N316MDTR2G [ONSEMI]

3.3 V AnyLevel Receiver to CML Driver/Translator with Input Hysteresis; 3.3 V AnyLevel接收到CML驱动器/转换器与输入滞后
NB4N316MDTR2G
型号: NB4N316MDTR2G
厂家: ONSEMI    ONSEMI
描述:

3.3 V AnyLevel Receiver to CML Driver/Translator with Input Hysteresis
3.3 V AnyLevel接收到CML驱动器/转换器与输入滞后

驱动器 转换器 电平转换器 驱动程序和接口 锁存器 接口集成电路 光电二极管
文件: 总12页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB4N316M  
3.3 V AnyLevelt Receiver  
to CML Driver/Translator  
with Input Hysteresis  
2.0 GHz Clock / 2.5 Gb/s Data  
http://onsemi.com  
The NB4N316M is a differential Clock or Data receiver and will  
accept AnyLevelt input signals: LVPECL, CML, LVCMOS,  
LVTTL, or LVDS. These signals will be translated to CML, operating  
up to 2.0 GHz or 2.5 Gb/s, respectively. As such, the NB4N316M is  
ideal for SONET, GigE, Fiber Channel, Backplane and other Clock or  
Data distribution applications. The CML outputs are 16 mA open  
MARKING  
DIAGRAM*  
8
8
1
E316  
ALYWG  
G
TSSOP8  
DT SUFFIX  
CASE 948R  
collector (see Figure 18) which requires resistor (R ) load path to V  
L
TT  
termination voltage (see Figure 19). The open collector CML outputs  
1
must be terminated to V at power up. The differential outputs  
TT  
produce Current–Mode Logic (CML) compatible levels when the  
receiver is loaded with 50 W or 25 W loads connected to 1.8 V, 2.5 V  
or 3.3 V supplies. This simplifies device interface by eliminating a  
need for coupling capacitors.  
The NB4N316M features an input threshold hysteresis of  
approximately 25 mV, providing increased noise immunity and stability.  
The device is offered in a small 8pin TSSOP package (MSOP8  
compatible). Application notes, models, and support documentation  
are available at www.onsemi.com.  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
(Note: Microdot may be in either location)  
*For additional marking information, refer to  
Application Note AND8002/D.  
Features  
Maximum Input Clock Frequency > 2.0 GHz  
Maximum Input Data Rate > 2.5 Gb/s  
Typically 1 ps of RMS Clock Jitter  
Typically 10 ps of Data Dependent Jitter  
550 ps Typical Propagation Delay  
150 ps Typical Rise and Fall Times  
Differential CML Outputs  
Q
Q
D
D
Figure 1. Functional Block Diagram  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 11 of this data sheet.  
25 mV of Receiver Input Threshold Hysteresis  
Operating Range: V = 3.0 V to 3.6 V with V = 0 V and  
CC  
EE  
V
TT  
= 1.8 V to 3.6 V  
Functionally Compatible with Existing 2.5 V / 3.3 V LVEL,  
LVEP, EP, and SG Devices  
40°C to +85°C Ambient Operating Temperature  
These are PbFree Devices*  
*For additional information on our PbFree strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
November, 2006 Rev. 3  
NB4N316M/D  
NB4N316M  
NC  
D
1
2
8
7
V
CC  
Q
Q
D
3
4
6
5
V
V
EE  
BB  
Figure 2. Pinout (Top View) and Logic Diagram  
Table 1. Pin Description  
Pin  
1
Name  
NC  
I/O  
Description  
No Connect.  
2
D
ECL, CML, LVCMOS, LVDS,  
LVTTL Input  
Noninverted Differential Input. (Note 1)  
3
D
ECL, CML, LVCMOS, LVDS,  
LVTTL Input  
Inverted Differential Input. (Note 1)  
4
5
6
7
8
V
V
Internally Generated Reference Voltage Supply.  
Negative Supply Voltage.  
BB  
EE  
Q
Q
CML Output  
CML Output  
Inverted Differential Output. Typically Terminated with 50 W Resistor to V .  
TT  
Noninverted Differential Output. Typically Terminated with 50 W Resistor to V  
.
TT  
V
Positive Supply Voltage.  
CC  
1. In the differential configuration if no signal is applied on D/D input, then the device will be susceptible to selfoscillation.  
http://onsemi.com  
2
 
NB4N316M  
Table 2. ATTRIBUTES  
Characteristics  
Value  
ESD Protection  
Human Body Model  
Machine Model  
> 1000 V  
> 70 V  
Moisture Sensitivity (Note 1)  
Flammability Rating  
Transistor Count  
8TSSOP  
Level 3  
UL 94 V0 @ 0.125 in  
225  
Oxygen Index: 28 to 34  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Positive Power Supply  
Condition 1  
= 0.5 V  
Condition 2  
Rating  
Unit  
V
V
V
V
V
V
4
CC  
EE  
I
EE  
CC  
Negative Power Supply  
= +0.5 V  
4  
V
Positive Input  
Negative Input  
V
V
= 0 V  
= 0 V  
V = V +0.4 V  
4
4  
V
V
EE  
CC  
I
I
CC  
V = V –0.4 V  
EE  
V
Output Voltage  
Minimum  
Maximum  
V
+ 600  
+ 400  
mV  
mV  
O
EE  
CC  
V
T
Operating Temperature Range  
Storage Temperature Range  
40 to +85  
°C  
°C  
A
T
65 to +150  
stg  
JA  
q
Thermal Resistance (JunctiontoAmbient)  
(Note 2)  
0 lfpm  
500 lfpm  
TSSOP8  
TSSOP8  
190  
130  
°C/W  
°C/W  
q
Thermal Resistance (JunctiontoCase)  
1S2P (Note 2)  
TSSOP8  
41 to 44  
265  
°C/W  
°C  
JC  
T
sol  
Wave Solder  
< 3 Sec @ 260°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
2. JEDEC standard multilayer board 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.  
http://onsemi.com  
3
 
NB4N316M  
Table 4. DC CHARACTERISTICS, CLOCK Inputs, CML Outputs V = 3.0 V to 3.6 V, V = 0 V, T = 40°C to +85°C  
CC  
EE  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
I
Power Supply Current (Inputs and Outputs Open)  
20  
30  
mA  
CC  
R = 50 W, V = 3.6 V to 2.5 V  
L
TT  
V
Output HIGH Voltage (Note 3)  
V
60  
V
10  
V
TT  
mV  
mV  
mV  
OH  
OL  
TT  
TT  
TT  
TT  
TT  
V
Output LOW Voltage (Note 3)  
V
1100  
V
800  
V
V
V
V
640  
TT  
TT  
TT  
|V  
|
Differential Output Voltage Magnitude  
640  
780  
1000  
OD  
R = 25 W, V = 3.6 V to 2.5 V $5%  
L
TT  
V
Output HIGH Voltage (Note 3)  
V
60  
V
10  
V
TT  
mV  
mV  
mV  
OH  
TT  
V
Output LOW Voltage (Note 3)  
V
550  
V
400  
320  
TT  
OL  
TT  
TT  
|V  
|
Differential Output Voltage Magnitude  
320  
390  
500  
OD  
R = 50 W, V = 1.8 V $5%  
L
TT  
V
Output HIGH Voltage (Note 3)  
V
170  
1100  
570  
V
10  
V
TT  
mV  
mV  
mV  
OH  
TT  
V
Output LOW Voltage (Note 3)  
V
V
800  
640  
TT  
OL  
TT  
TT  
|V  
|
Differential Output Voltage Magnitude  
780  
1000  
OD  
R = 25 W, V = 1.8 V $5%  
L
TT  
V
Output HIGH Voltage (Note 3)  
V
85  
V
10  
V
TT  
mV  
mV  
mV  
OH  
TT  
V
Output LOW Voltage (Note 3)  
V
500  
V
400  
320  
TT  
OL  
TT  
TT  
|V  
|
Differential Output Voltage Magnitude  
285  
390  
500  
OD  
DIFFERENTIAL INPUT DRIVEN SINGLEENDED (Figures 14 and 16)  
V
V
V
V
Input Threshold Reference Voltage Range (Note 5)  
Singleended Input HIGH Voltage  
V
V
mV  
mV  
mV  
mV  
th  
EE  
CC  
V
+ 100  
400  
1500  
V + 400  
CC  
IH  
IL  
th  
Singleended Input LOW Voltage  
V
V
100  
th  
EE  
Internally Generated Reference Voltage Supply (Loaded with 100 mA)  
V
V
1400  
V 1300  
CC  
BB  
CC  
CC  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15 and 17)  
V
V
V
V
Differential Input HIGH Voltage  
V
V
+ 400  
mV  
mV  
mV  
mV  
mV  
pF  
IHD  
EE  
CC  
CC  
Differential Input LOW Voltage  
V
400  
EE  
V
100  
ILD  
Input Common Mode Range (Differential Configuration)  
V
V
CC  
CMR  
ID(HYST)  
EE  
Differential Input Voltage Hysteresis (V  
V  
)
25  
IHD  
ILD  
|V  
|
ID  
Differential Input Voltage Magnitude (|V  
Input Capacitance (Note 7)  
V |) (Note 7)  
100  
V
V  
EE  
IHD  
ILD  
CC  
C
1.5  
IN  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
3. CML outputs require R receiver termination resistors to V for proper operation. Outputs must be connected through R to V at power  
L
TT  
L
TT  
up. The output parameters vary 1:1 with V . V = 1.71 V to 3.6 V.  
TT TT  
4. Input parameters vary 1:1 with V  
.
CC  
5. V is applied to the complementary input when operating in singleended mode.  
th  
6. V  
(MIN) varies 1:1 with V , V  
max varies 1:1 with V  
.
CMR  
EE  
CMR  
CC  
7. Parameter guaranteed by design and evaluation but not tested in production.  
http://onsemi.com  
4
 
NB4N316M  
Table 5. AC CHARACTERISTICS V = 3.0 V to 3.6 V, V = 0 V; (Note 8)  
CC  
EE  
40°C  
25°C  
85°C  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Symbol  
Characteristic  
Unit  
V
Output Voltage Amplitude (R = 50 W)  
mV  
OUTPP  
OUTPP  
DATA  
L
f
f
f
1 GHz  
550  
400  
200  
660  
640  
400  
550  
400  
200  
660  
640  
400  
550  
400  
200  
660  
640  
400  
in  
in  
in  
(See Figure 12)  
1.5 GHz  
2.0 GHz  
V
Output Voltage Amplitude (R = 25 W)  
mV  
L
f
f
f
1 GHz  
1.5 GHz  
2.0 GHz  
280  
280  
200  
370  
360  
300  
280  
280  
200  
370  
360  
400  
280  
280  
200  
370  
360  
400  
in  
in  
in  
(See Figure 12)  
f
Maximum Operating Data Rate  
1.5  
2.5  
1.5  
2.5  
1.5  
2.5  
Gb/s  
ps  
t
t
,
Propagation Delay to Output Differential  
@ 0.25 GHz  
350  
550  
750  
350  
550  
750  
350  
550  
750  
PLH  
PHL  
t
Duty Cycle Skew (Note 9)  
2
20  
2
20  
2
20  
ps  
ps  
SKEW  
Device to Device Skew (Note 13)  
20  
100  
20  
100  
20  
100  
t
RMS Random Clock Jitter R = 50 W and  
R = 25 W (Note 11)  
L
JITTER  
L
1
1
1
3
3
3
1
1
1
3
3
3
1
1
1
3
3
3
f
f
f
= 750 MHz  
= 1.5 GHz  
= 2.0 GHz  
in  
in  
in  
PeaktoPeak Data Dependent Jitter R = 50 W  
L
15  
20  
55  
85  
15  
20  
55  
85  
15  
20  
55  
85  
f
f
= 1.5 Gb/s  
= 2.5 Gb/s  
DATA  
DATA  
(Note 12)  
PeaktoPeak Data Dependent Jitter R = 25 W  
L
5
10  
35  
35  
5
10  
35  
35  
5
10  
35  
35  
f
f
= 1.5 Gb/s  
= 2.5 Gb/s  
DATA  
DATA  
(Note 12)  
V
Input Voltage Swing/Sensitivity  
200  
200  
200  
mV  
ps  
INPP  
(Differential Configuration) (Note 10)  
t
t
Output Rise/Fall Times @ 0.25 GHz  
(20% 80%)  
Q, Q  
150  
300  
150  
300  
150  
300  
r
f
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
8. Measured by forcing V  
(MIN) from a 50% duty cycle clock source. All output loaded with an external R = 50 W and R = 25 W to V  
.
TT  
INPP  
L
L
Outputs must be connected through R to V at power up. Input edge rates 150 ps (20% 80%).  
L
TT  
9. Duty cycle skew is measured between differential outputs using the deviations of the sum of T  
and T  
@ 0.25 GHz.  
pw−  
pw+  
10.V  
(MAX) cannot exceed V V . Input voltage swing is a singleended measurement operating in differential mode.  
INPP  
CC EE  
11. Additive RMS jitter with 50% duty cycle clock signal.  
23  
12.Additive peaktopeak data dependent jitter with input NRZ data signal (PRBS 2 1).  
13.Device to device skew is measured between outputs under identical transition @ 0.5 GHz.  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
R = 50 W  
L
R = 50 W  
L
R = 25 W  
L
R = 25 W  
L
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
INPUT CLOCK FREQUENCY (GHz)  
INPUT CLOCK FREQUENCY (GHz)  
(V V = 3.3 V V = 3.3 V @ 255C V = 100 mV)  
(V V = 3.0 V V = 1.71 V @255C V = 100 mV)  
CC  
EE  
TT  
in  
CC  
EE  
TT  
in  
Figure 3. Output Voltage Amplitude (VOUTPP) versus Input Clock Frequency (fIN) at Ambient Temperature (Typical)  
http://onsemi.com  
5
 
NB4N316M  
NB4N316M  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
85°C  
40°C  
25°C  
40°C  
25°C  
85°C  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
INPUT CLOCK FREQUENCY (GHz)  
INPUT CLOCK FREQUENCY (GHz)  
Figure 4. Data Dependent Jitter vs. Frequency  
and Temperature (VCC VEE = 3.3 V; VTT = 3.3 V  
@ 255C; VIN = 100 mV; PRBS 2231; RL = 50 W)  
Figure 5. Data Dependent Jitter vs. Frequency  
and Temperature (VCC VEE = 3.3 V; VTT = 3.3 V  
@ 255C; VIN = 100 mV; PRBS 2231; RL = 25 W)  
600  
550  
500  
450  
400  
350  
300  
600  
550  
500  
450  
400  
350  
t
PD  
t
PD  
300  
V
0.5 V  
VCC * VEE  
V
+ 0.5 V  
CC  
40  
25  
85  
EE  
2
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (V)  
Figure 6. Typical Propagation Delay vs.  
Temperature (VCC VEE = 3.3 V; VTT = 3.3 V  
@ 255C; Vin = 100 mV; RL = 50 W)  
Figure 7. Typical Propagation Delay vs. Input  
Offset Voltage (VCC VEE = 3.3 V; VTT = 3.3 V  
@ 255C; Vin = 100 mV RL = 50 W)  
35  
30  
25  
20  
15  
10  
5
I
CC  
0
40  
25  
85  
TEMPERATURE (°C)  
Figure 8. Supply Current vs. Temperature  
http://onsemi.com  
6
NB4N316M  
DDJ = 5 ps  
DDJ = 3 ps  
TIME (266.8 ps/div)  
TIME (266.8 ps/div)  
Figure 9. Typical Differential Output Waveform at 750 Mb/s  
(RL = 50 W Left Plot, RL = 25 W Right Plot, Vin = 100 mV, System DDJ = 24 ps)  
DDJ = 5 ps  
DDJ = 12 ps  
TIME (133.2 ps/div)  
TIME (133.2 ps/div)  
Figure 10. Typical Differential Output Waveform 1.5 Gb/s  
(RL = 50 W Left Plot, RL = 25 W Right Plot, Vin = 100 mV, System DDJ = 25 ps)  
DDJ = 20 ps  
DDJ = 7 ps  
TIME (80 ps/div)  
TIME (80 ps/div)  
Figure 11. Typical Differential Output Waveform 2.5 Gb/s  
(RL = 50 W Left Plot, RL = 25 W Right Plot, Vin = 100 mV, System DDJ = 24 ps)  
http://onsemi.com  
7
NB4N316M  
D
V
V
= V (D) V (D)  
IH IL  
INPP  
D
Q
= V (Q) V (Q)  
OUTPP  
OH  
OL  
Q
t
PHL  
t
PLH  
Figure 12. AC Reference Measurement  
Z = 50 W  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 W  
o
50 W  
50 W  
V
TT  
V
= V 2.0 V  
TT  
CC  
Figure 13. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D Termination of ECL Logic Devices.)  
D
D
D
D
V
th  
V
th  
Figure 14. Differential Input Driven  
Figure 15. Differential Inputs Driven  
Differentially  
SingleEnded  
V
V
CC  
CC  
V
IHCLKmax  
V
V
IHmax  
V
V
CMmax  
thmax  
V
ILCLKmax  
ILmax  
V
= V  
V  
ID  
IHD ILD  
D
D
V
V
V
IH  
th  
IHDtyp  
ILDtyp  
IHDmin  
V
CMR  
V
D
th  
V
V
IL  
V
V
V
IHmin  
ILmin  
V
V
CMmax  
thmin  
GND  
V
ILDmin  
GND  
Figure 16. Vth Diagram  
Figure 17. VCMR Diagram  
http://onsemi.com  
8
NB4N316M  
V
CC  
Input  
ESD  
Input  
ESD  
Q
Q
1.25 kW  
1.25 kW  
1.25 kW  
1.25 kW  
R
C
R
C
IN  
D
D
IN  
Input  
ESD  
Input  
ESD  
Internal  
Current Source  
16 mA  
Current Source  
V
EE  
V
Input  
EE  
Output  
Figure 18. CML Input and Output Structure  
http://onsemi.com  
9
NB4N316M  
V
= V  
CCA  
TTA  
V
= 1.8 V 2.5 V or 3.3 V  
CCA  
V
= 3.3 V  
50 W  
50 W  
CCA  
Z = 50 W  
Z = 50 W  
Receiver  
A
NB4N316M  
V
= V  
CCB  
TTB  
V
= 0 V  
EE  
V
= V  
TTB CCB  
V
= 3.3 V  
CCB  
50 W  
50 W  
Z = 50 W  
Z = 50 W  
V
= 1.8 V 2.5 V or 3.3 V  
CCB  
50 W  
50 W  
NB4N316M  
Receiver  
B
V
= 0 V  
EE  
V
= V  
CCC  
TTC  
V
= 1.8 V 2.5 V or 3.3 V  
CCC  
V
= 3.3 V  
75 W  
75 W  
CCC  
Z = 75 W  
Z = 75 W  
Receiver  
C
NB4N316M  
V
= V  
CCD  
TTD  
V
= 0 V  
EE  
V
= 3.3 V  
CCD  
Z = 100 W  
Z = 100 W  
V
= 1.8 V 2.5 V or 3.3 V  
CCD  
100 W  
100 W  
NB4N316M  
Receiver  
D
V
= 0 V  
EE  
Figure 19. Typical Examples of the Application Interface  
http://onsemi.com  
10  
NB4N316M  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB4N316MDTG  
TSSOP8  
(PbFree)  
100 Units / Rail  
NB4N316MDTR2G  
TSSOP8  
(PbFree)  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1672/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
11  
NB4N316M  
PACKAGE DIMENSIONS  
TSSOP8  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948R02  
ISSUE A  
8x K REF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
2X L/2  
8
5
4
0.25 (0.010)  
B
U−  
L
1
M
PIN 1  
IDENT  
5. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
6. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE −W−.  
S
0.15 (0.006) T U  
A
V−  
F
DETAIL E  
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
3.10  
3.10  
MAX  
0.122  
0.122  
0.043  
0.006  
0.028  
A
B
C
D
F
2.90  
2.90  
0.80  
0.05  
0.40  
0.114  
0.114  
C
1.10 0.031  
0.15 0.002  
0.70 0.016  
0.10 (0.004)  
W−  
SEATING  
D
T−  
G
G
K
L
0.65 BSC  
0.026 BSC  
PLANE  
0.25  
0.40 0.010  
0.016  
4.90 BSC  
0.193 BSC  
0
DETAIL E  
M
0
6
6
_
_
_
_
AnyLevel and ECLinPS are trademarks of Semiconductor Components INdustries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB4N316M/D  

相关型号:

NB4N441

3.3V Serial Input MultiProtocol PLL Clock Synthesizer, Differential LVPECL Output
ONSEMI

NB4N441MNG

3.3V Serial Input MultiProtocol PLL Clock Synthesizer, Differential LVPECL Output
ONSEMI

NB4N441MNR2G

3.3V Serial Input MultiProtocol PLL Clock Synthesizer, Differential LVPECL Output
ONSEMI

NB4N441_07

3.3V Serial Input MultiProtocol PLL Clock Synthesizer, Differential LVPECL Output
ONSEMI

NB4N507A

3.3V/5V, 50 MHz to 200 MHz PECL Clock Synthesizer
ONSEMI

NB4N507AD

3.3V/5V, 50 MHz to 200 MHz PECL Clock Synthesizer
ONSEMI

NB4N507ADG

3.3V/5V, 50 MHz to 200 MHz PECL Clock Synthesizer
ONSEMI

NB4N507ADR2

3.3V/5V, 50 MHz to 200 MHz PECL Clock Synthesizer
ONSEMI

NB4N507ADR2G

3.3V/5V, 50 MHz to 200 MHz PECL Clock Synthesizer
ONSEMI

NB4N507A_06

3.3V/5V, 50 MHz to 200 MHz PECL Clock Synthesizer
ONSEMI

NB4N527S

3.3V, 2.5Gb/s Dual AnyLevel⑩ to LVDS Receiver/Driver/Buffer/Translator with Internal Input Termination
ONSEMI

NB4N527SMN

3.3V, 2.5Gb/s Dual AnyLevel⑩ to LVDS Receiver/Driver/Buffer/Translator with Internal Input Termination
ONSEMI